Stability of k-Tribonacci Functional Equation in NonArchimedean Space

Roji Lather
Department of Mathematics, Maharshi Dayanand University,
Rohtak (Haryana)-124001, India

Manoj Kumar
Department of Mathematics, Maharshi Dayanand University, Rohtak (Haryana)-124001, India

Abstract

Throughout this paper, we investigate the Hyers-Ulam stability of k-Tribonacci functional equation if $(k, x)=\mathrm{kf}(\mathrm{k}, \mathrm{x}$ $-1)+f(k, x-2)+f(k, x-3)$ in the class of functions $f: N \times$ $\mathrm{R} \rightarrow \mathrm{X}$ where X is real non-archimeadean Banach space.

Keywords

Hyers-Ulam Stability, Real Non-archimedean Banach Space,k-Tribonacci functional equation.

1. INTRODUCTION

They study of stability problems for functional equations is related to question of Ulam [20] concerning the stability of group homorophism and affirmatively answered for Banach Spaces by Hyers [2]. Aoki [21] presented the generalization of Hyers results by considering additive mappings and later on, Rassias [23] did for linear mapping by considering an unbounded Cauchy difference. The paper of Rassias has signification
influenced the development of what we now call the Hyers-Ulam-Rassias stability of functional equation. Various extension, generalization and applications obtained by many researchers $[3,4,5,6,9,14,15,16,19,22,24]$.

In 2009, S.M. Jung [18] investigated the Hyer-Ulam stability of Fibonacci functional equation $f(x)=f(x-1)+f(x$ -2).
In 2011, Alvaro H. Salas [1] investigate about the KFibonacci number and their associated number. After that, M. Bidkhan and M. Hosslini [7] proved the stability of Kfibonacci functional equation. Later on, M. Bidkhan, M. Hosseini, C. Park and M. Eshaghi Gordzi [8] successed to prove the Hyers-Ulam stability of k, s-Fibonacci functional equation. First of all, in 2012, M. Gordji, M. Naderi and Th. M. Rassias [35] et. al. proved the stability of Tribonacci functional equation in non -archimedean space and in 2014, M.E.Gordji, Ali Divandi, M. Rostannian, C. Park and D.Y. $\operatorname{Sin}[10]$ also proved the stability of Tribonacci functional equation in 2-normed space.

In this paper, we denote by $\mathrm{F}_{\mathrm{k}, \mathrm{n}}$ the nth k -Tribonacci number where

$$
\mathrm{F}_{\mathrm{k}, \mathrm{n}}=\mathrm{kF}_{\mathrm{k}, \mathrm{n}-1}+\mathrm{F}_{\mathrm{k}, \mathrm{n}-2}+\mathrm{F}_{\mathrm{k}, \mathrm{n}-3} \text { for } \mathrm{n} \geq 3
$$

with initial conditions $\mathrm{F}_{\mathrm{k}, 0}=0, \mathrm{~F}_{\mathrm{k}, 1}=1, \mathrm{~F}_{\mathrm{k}, 2}=1$. From this, we may derive a functional equation

$$
\begin{equation*}
\mathrm{f}(\mathrm{k}, \mathrm{x})=\mathrm{kf}(\mathrm{k}, \mathrm{x}-1)+\mathrm{f}(\mathrm{k}, \mathrm{x}-2)+\mathrm{f}(\mathrm{k}, \mathrm{x}-3) \tag{1.1}
\end{equation*}
$$

which if called the k-Tribonacci function equation if a function $\mathrm{f}: \mathrm{N} \times \mathrm{R} \rightarrow \mathrm{X}$ satisfies the above equation for all $\mathrm{x} \in$ $R, K \in N$, characteristic equation of the kth-Tribonacci sequence is $\quad x^{3}-\mathrm{kx}^{2}-\mathrm{x}-1=0$, and $\mathrm{p}, \mathrm{q}, \mathrm{r}$ denote the roots
of characteristic equation where p is greater than one and q, r, $\in \mathrm{C}$ and $|\mathrm{q}|=|\mathrm{r}|$.
We know that $\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{K}, \quad \mathrm{pq}+\mathrm{qr}+\mathrm{pr}=-1$,
pqr $=1$. For each $x \in R,[x]$ stands for he largest integer that does not exceed x.

Definition [13] : We recall that a field K, equipped with a function (non-Archimedean absolute value, valuation) $|\cdot|$ from K into $[0, \infty)$, is called a non-Archimedean field if the function $|\cdot|: K \rightarrow[0, \infty)$ satisfies the following conditions :

1. $|r|=0$ if and only if $r=0$;
2. $|r \mathrm{~s}|=|\mathrm{r}||\mathrm{s}|$;
3. the strong triangle inequality, namely, $|r+s| \leq$ $\max \{|r|,|\mathrm{s}|\}$ for all $\mathrm{r}, \mathrm{s}, \in \mathrm{K}$ clearly, $|1|=1=|-1|$ and $|n| \leq 1$ for all non-zero integer n.
Definition [12] : Let y be a vector space over the nonArchimedean field K with a non-trivial non-Archimedean valuation $\mid \cdot \|$. A function $\|\cdot\|: \mathrm{y} \rightarrow[0, \infty)$ is called a non-Archimedean norm (valuation) if it satisfies the following conditions:
4. $\|x\|=0$ if and only if $x=0$;
5. $\|r x\|=\|r\|\|x\|$ for all $x \in y$ and all $r \in K$;
6. the strong triangle inequality, namely, $\|x+y\| \leq$ $\max (\|x\|,\|y\|)$ for all $x, y \in Y$.

In this case, the pair $(\mathrm{Y},\|\cdot\|)$ is called a non-Archimedean space. By a Banach non-Archimedean space we mean one in which every cauchy sequence is convergent. It follows from the strong triangle inequality that

$$
\left\|x_{n}-x_{m}\right\| \leq \max \left\{\left\|x_{j+1}-x_{j}\right\| ; m \leq j \leq n-1\right\} \text { for all } x_{n}
$$ $\mathrm{x}_{\mathrm{m}} \in \mathrm{Y}$ and all $\mathrm{m}, \mathrm{n} \in \mathrm{N}$ with $\mathrm{n}>\mathrm{m}$.

Therefore, a sequence $\left\{x_{n}\right\}$ is a cauchy sequence in nonArchimedean space $(Y,\|\cdot\|)$ if and only if the sequence $\left\{x_{n+1}-\right.$ $\left.\mathrm{x}_{\mathrm{n}}\right\}$ converges to zero in the space $(\mathrm{Y},\|\cdot\|)$.

2. MAIN RESULT

As we see in [10], the general solution of the Tribonacci functional equation is strongly related to the Tribonacci numbers T_{n}. In the following theorem, we prove the HyersUlam stability of the k-Tribonacci functional equation(1.1)
Theorem [2.1] : Let $(X,\|\cdot\|)$ be a non-Archimedean Banach space. If a function $f: R \rightarrow X$ satisfies the inequality
$\|f(k, x)-k f(k, x-1)-f(k, x-2)-f(k, x-2)\| \leq \varepsilon$
(2.1) for all $x \in R, k \in N$ and for some $\varepsilon>0$, then there exist a k-Tribonacci function
$\mathrm{H}: \mathrm{N} \times \mathrm{R} \rightarrow \mathrm{X}$ such that
$\|f(k, x)-H(k, x)\| \leq \frac{2(1+|q|)+|q|^{2}}{\| q^{2}(r-p)+r^{2}(p-q)+p^{2}(q-r)} \times \frac{\varepsilon}{1-|q|^{2}}$. (2.2)

Proof: Since, $\mathrm{p}+\mathrm{q}+\mathrm{r}=\mathrm{k}, \mathrm{pq}+\mathrm{qr}+\mathrm{pr}=-1$ and $\mathrm{pqr}=$ 1. So from (1), we obtain
$\| f(k, x)-(p+q+r) f(k, x-1)+(p q+q r+p r)$
$\mathrm{f}(\mathrm{k}, \mathrm{x}-2)-\operatorname{pqr} \mathrm{f}(\mathrm{k}, \mathrm{x}-3) \| \leq \varepsilon$.
for all $x \in R, k \in N$. Now it follows from (1.1) that
$\mathrm{f}(\mathrm{k}, \mathrm{x})-\mathrm{p}(\mathrm{f}(\mathrm{k}, \mathrm{x}-1)-\mathrm{r} \mathrm{f}(\mathrm{k}, \mathrm{x}-2) \mathrm{r}-\mathrm{r} \mathrm{f}(\mathrm{k}, \mathrm{x}-1)=$ $\mathrm{q}[\mathrm{f}(\mathrm{k}, \mathrm{x}-1)-(\mathrm{r}+\mathrm{p}) \mathrm{f}(\mathrm{k}, \mathrm{x}-2)+\operatorname{pr} \mathrm{f}(\mathrm{k}, \mathrm{x}-3)]$
(2.4)
for all $\mathrm{k} \in \mathrm{N}, \mathrm{x} \geq 0$. By mathematical induction, we verify that for all $\mathrm{x} \geq 0$ and all m belonging to the set $\{0,1,2, \ldots .$.$\} , we$ obtain,
$f(k, x)-p(f(k, x-1)-r f(k, x-2))-r f(K, x-1)=$
$q^{m}[f(k, x-m)-r f(k, x-m-1)+\operatorname{pr} f(k, x-m-2)-p$ $\mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m}-1)$]
$\mathrm{f}(\mathrm{k}, \mathrm{x})-\mathrm{r}[\mathrm{f}(\mathrm{k}, \mathrm{x}-1)-\mathrm{q}(\mathrm{k}, \mathrm{x}-2)]-\mathrm{q}(\mathrm{f}, \mathrm{x}-1)=$
$\mathrm{p}^{\mathrm{m}}[\mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m})-\mathrm{rf}(\mathrm{k}, \mathrm{x}-\mathrm{m}-1)+\mathrm{qrf}(\mathrm{k}, \mathrm{x}-\mathrm{m}-2)-\mathrm{qf}(\mathrm{k}$, $\mathrm{x}-\mathrm{m}-1$)]
$\mathrm{f}(\mathrm{k}, \mathrm{x})-\mathrm{q}[\mathrm{f}(\mathrm{k}, \mathrm{x}-1)-\mathrm{pf}(\mathrm{k}, \mathrm{x}-2)]-\mathrm{pf}(\mathrm{k}, \mathrm{x}-1)=$
$r^{m}[f(k, x-m)-p f(k, x-m-1)+q p f(k, x-m-2)-q f(k$, $\mathrm{x}-\mathrm{m}-1$)]
for all $x \geq 0$ and all $m \in\{0,1,2, \ldots .$.$\} .$
If we replace x by $x-\alpha$ in inequality (2.4) then we get
$\| f(k, x-\alpha)-p[f(k, x-\alpha-1)-r f(k, x-\alpha-2)]-r f(k, x-\alpha-$ 1) - qp $f(\mathrm{~K}, \mathrm{x}-\alpha-1)-(\mathrm{r}+\mathrm{p}) f(\mathrm{k}, \mathrm{x}-\alpha-2)+\operatorname{pr} f(\mathrm{k}, \mathrm{x}-\alpha-$ 3) $\| \leq \varepsilon$
for all $\mathrm{x} \in \mathrm{R}, \mathrm{k} \in \mathrm{N}$.
Now multiplying both sides by q^{α},
$\| q^{\alpha}[f(k, x-\alpha)-p\{f(k, x-\alpha-1)-r f(k, x-\alpha-2)\}-r f(k, x-\alpha$ $-1)]-q^{\alpha+1}[f(k, x-\alpha-1)-(r+p) f(k, x-\alpha-2)+\operatorname{prf}(k, x-\alpha-$
3)] $\| \leq\left|q^{\alpha}\right| \varepsilon$
for all $\mathrm{x} \epsilon \mathrm{R}, \mathrm{k} \in \mathrm{N}$. Furthermore, we have
$\| f(k, x)-p(f(k, x-1)-r f(k, x-2))-r f(k, x-1)$
$-q^{m}[f(k, x-m)-(r+p) f(k, x-m-1)+p r f(k, x-m-2)] \|$
$\leq \max _{0 \leq \alpha \leq m-1} \| q^{\alpha}[f(k, x-\alpha)-p\{f(k, x-\alpha-1)-r f(k, x-\alpha-2)\}$
$-r f(k, x-\alpha-1)]-q^{\alpha+1}[f(k, x-\alpha-1)-(r+p) f(k, x-\alpha-2)+$ $\operatorname{prf}(\mathrm{k}, \mathrm{x}-\alpha-3)] \|$

$$
\leq \max _{0 \leq \alpha \leq \mathrm{m}-1}\left\|\mathrm{q}^{\alpha}\right\| \varepsilon=\varepsilon
$$

$$
\text { for all } \mathrm{x} \in \mathrm{R}, \mathrm{~m} \in \mathrm{~N}, \mathrm{k} \in \mathrm{~N} .
$$

(2.9)

Let $x \in R$ be fixed, than (2.8) implies that $\left\{q^{m}[f(k, x-m)-p\right.$ $(f(k, x-m-1)-r f(k, x-m-2))-r f(k, x-m-1))]$ is a cauchy sequence $(|q|<1)$. So by the completeness of X, we may define a function $H_{1}: R \rightarrow X$ such that
$H_{1}(k, x)=\operatorname{Lim}_{m \rightarrow \infty} q^{m}[f(k, x-m)-(p+r) f(k, x-m-1)+p r$
$f(k, x-m-2)]$ for all $x \in R, k \in N$. Applying the definition of H_{1}, we introduce the k -Tribonacci function
$\mathrm{k} \mathrm{H}_{1}(\mathrm{k}, \mathrm{x}-1)+\mathrm{H}_{1}(\mathrm{k}, \mathrm{x}-2)+\mathrm{H}_{1}(\mathrm{k}, \mathrm{x}-3)=$ $\mathrm{kq}^{-1} \operatorname{Lim}_{\mathrm{m} \rightarrow \infty} \mathrm{q}^{\mathrm{m}+1}[\mathrm{f}(\mathrm{k}, \mathrm{x}-(\mathrm{m}+2))-(\mathrm{p}+\mathrm{r}) \mathrm{f}(\mathrm{k}, \mathrm{x}-(\mathrm{m}+1)-1)+\mathrm{pr}$ $\mathrm{f}(\mathrm{k}, \mathrm{x}-(\mathrm{m}+1)-2)]$
$+q^{-2} \operatorname{Lim}_{m \rightarrow \infty} q^{m+2}[f(k, x-(m+2))-(p+r) f(k, x-(m+2)-1)+p r$ $\mathrm{f}(\mathrm{k}, \mathrm{x}-(\mathrm{m}+2)-2)]$
$+q^{-3} \operatorname{Lim}_{m \rightarrow \infty} q^{m+3}[f(k, x-(m+3))-(p+r) f(k, x-(m+3)-1)+p r$ $\mathrm{f}(\mathrm{k}, \mathrm{x}-(\mathrm{m}+3)-2)]$
$=k q^{-1} H_{1}(k, x)+q^{-2} H_{1}(k, x)+q^{-3} H_{1}(k, x)$
$=H_{1}(k, x)$ for all $x \in R, k \in N$. Hence H_{1} is a k-Tribonacci function.

If $m \rightarrow \infty$, then from (2.9), we obtain
$\mid f(k, x)-(p+r) f(k, x-1)+\operatorname{prf}(k, x-2)-H_{1}(k, x) \| \leq$ $\frac{1}{1-|q|} \varepsilon \quad$ (2.10) for all $x \in$
$R, k \in N$. Furthermore, it follows from (2.1) that
$\| f(k, x)-q(f(k, x-1)-p f(k, x-2))-p f(k, x-1)-r[f(k, x-$ 1) $-\mathrm{pf}(\mathrm{k}, \mathrm{x}-2)+\mathrm{pq} \mathrm{f}(\mathrm{k}, \mathrm{x}-3)-\mathrm{qf}(\mathrm{k}, \mathrm{x}-2)] \| \leq \varepsilon$
for all $x \in R, k \in N$. Now, we replace x by $x-\alpha$ in above inequality, we have
$\| f(k, x-\alpha)-q(f(k, x-\alpha-1)-p f(k, x-\alpha-2))-p f(k, x-\alpha$ $-1)-r[f(k, x-\alpha-1)-p f(k, x-\alpha-2)+p q f(k, x-\alpha-3)-q f(k$, $\mathrm{x}-\alpha-2)] \| \leq \varepsilon$
and now multiplying by r^{α} on both sides.
$\| r^{\alpha}[f(k, x-\alpha)-q(f(k, x-\alpha-1)-p f(k, x-\alpha-2))-p f(k, x-$ $\alpha-1)]-r^{\alpha+1}[f(K, x-\alpha-1)-p f(K, x-\alpha-2)+p q f(k, x-\alpha-3)$ $-q f(k, x-\alpha-2)] \|$

$$
\begin{equation*}
\leq\left|r^{\alpha}\right|_{\varepsilon} \tag{2.11}
\end{equation*}
$$

for all $x \in R, \alpha \in Z$. Now, we have
$\| f(k, x)-q(f(k, x-1)-p f(k, x-2))-p f(k, x-1)-r^{m}[f(k, x-$ $m)-(\mathrm{q}+\mathrm{p}) \mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m}-1)+\mathrm{pq}(\mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m}-2)] \| \quad \leq \max _{1 \leq \alpha \leq \mathrm{m}}$
$\| r^{\alpha}[f(k, x-\alpha)-q\{f(k, x-\alpha-1)-p f(k, x-\alpha-2)\}-p f(k, x-$ $\alpha-1)]-r^{\alpha+1}[f(k, x-\alpha-1)-(p+q) f(k, x-\alpha-2)+p q f(k, x$ $-\alpha-3)] \|$

$$
\begin{equation*}
\leq \max _{0 \leq \alpha \leq m-1}\left\{|r|^{\alpha}\right\} \varepsilon=\varepsilon \tag{2.12}
\end{equation*}
$$

for all $x \in R$ and $m \in N$. We have
$\left\{\mathrm{r}^{\mathrm{m}}[\mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m})-(\mathrm{q}+\mathrm{p}) \mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m}-1)+\mathrm{pq} \mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m}-2)]\right\}$ is a cauchy sequence $\quad(|r|<1)$ for all $x \in R$. Hence, we can define a function $\mathrm{H}_{2}: \mathrm{R} \rightarrow \mathrm{X}$ by
$H_{2}(k, x)=\operatorname{Lim}_{m \rightarrow \infty} r^{m}[f(k, x-m)-(q+p) f(k, x-m-1)+p q$ $\mathrm{f}(\mathrm{k}, \mathrm{x}-\mathrm{m}-2)]$
for all $x \in R$. Using the above definition of H_{2}, we have
$\mathrm{kH}_{2}(\mathrm{k}, \mathrm{x}-1)+\mathrm{H}_{2}(\mathrm{k}, \mathrm{x}-2)+\mathrm{H}_{2}(\mathrm{k}, \mathrm{x}-3)=$
$\mathrm{kr}^{-1} \operatorname{Lim}_{\mathrm{m} \rightarrow \infty} \mathrm{r}^{\mathrm{m}+1} \mathrm{f}(\mathrm{k}, \mathrm{x}-(\mathrm{m}+1))-(\mathrm{q}+\mathrm{p}) \mathrm{f}(\mathrm{k}, \mathrm{x}-(\mathrm{m}+1)-1)+\mathrm{pq}$
$f(k, x-(m+1)-2)]+r^{-2} \operatorname{Lim}_{m \rightarrow \infty} r^{m+2}[f(k, x-(m+2))-(q+p) f(k$, $x-(m+2)-1)+p q f(k, x-(m+2)-2)]+r^{-3} \operatorname{Lim}_{m \rightarrow \infty} r^{m+3}[f(k, x-$ $(m+3))-(q+p) f(k, x-(m+3)-1)+p q f(k, x-(m+3)-2)]$
$=k r^{-1} H_{2}(k, x)+r^{-2} H_{2}(k, x)+r^{-3} H_{2}(k, x)$
$=H_{2}(k, x)$ for all $x \in R$.
So, we can say that H_{2} is also a k -Tribonacci function. If m tends to ∞, then from (2.12), we have
$\left\|f(k, x)-q(f(k, x-1)-p f(k, x-2))-p f(k, x-1)-H_{2}(k, x)\right\|$ $\leq \frac{1}{1-|r|}$ OR
$\left\|f(k, x)-(q+p) f(k, x-1)+q p f(k, x-2)-H_{2}(k, x)\right\| \leq$ $\frac{1}{1-|r|} \varepsilon=\frac{1}{1-|q|} \varepsilon$.
for all $x \in R$. Finally, Analogus to (2.1), we obtain
$\| f(k, x)-r(f(k, x-1)-q f(k, x-2))-q f(k, x-1)$
$-\mathrm{p}[\mathrm{f}(\mathrm{k}, \mathrm{x}-1)-\mathrm{rf}(\mathrm{k}, \mathrm{x}-2)+\mathrm{qrf}(\mathrm{k}, \mathrm{x}-3)-\mathrm{qf}(\mathrm{k}, \mathrm{x}-2)] \| \leq$ ε
for all $x \in R$.
Now we replace x by $x+\alpha$ in above inequality, that we have
$\| f(k, x+\alpha)-r(f(k, x+\alpha-1)-q f(k, x+\alpha-2))-q f(k, x+\alpha$ $-1)-p[f(k, x+\alpha-1)-(r+q) f(k, x-\alpha-2)+q r f(k, x+\alpha-$ 3)] $\| \leq \varepsilon$

and

$\| p^{-\alpha}[f(k, x+\alpha)-r(f(k, x+\alpha-1)-q f(k, x+\alpha-2))-q f(k, x$ $+\alpha-1)]-p^{-\alpha+1}[f(k, x+\alpha-1)-(r+q) f(k, x-\alpha-2))+q r f(k$, $\mathrm{x}+\alpha-3)] \| \leq\left|\alpha^{-1}\right|^{\mathrm{k}} \varepsilon$
for all $x \in R$ and $\alpha \in Z$. Applying (2.14), we obtain that
$\| p^{-m}[f(k, x+m)-r(f(k, x+m-1)-q f(k, x+m-2))-q f(k$, $x+m-1)]-[f(k, x)-(r+q) f(k, x-1)+\operatorname{rqf}(k, x-2)] \|$
$\leq \max _{1 \leq \mathrm{k} \leq \mathrm{n}}\left\{\| \mathrm{p}^{-\alpha}[\mathrm{f}(\mathrm{k}, \mathrm{x}+\alpha)-\mathrm{r}(\mathrm{f}(\mathrm{k}, \mathrm{x}+\alpha-1)-\mathrm{q} \mathrm{f}(\mathrm{k}, \mathrm{x}+\alpha-\right.$
2)) $-\mathrm{q} f(\mathrm{k}, \mathrm{x}+\alpha-1)]-\mathrm{p}^{-\alpha+1}[\mathrm{f}(\mathrm{k}, \mathrm{x}+\alpha-1)-(\mathrm{r}+\mathrm{q}) \mathrm{f}(\mathrm{k}, \mathrm{x}+\alpha$
$-2)+q r f(k, x+\alpha-3)]$
$\leq \max _{1 \leq \mathrm{k} \leq \mathrm{n}}\left\{\left|\mathrm{p}^{-1}\right|^{\alpha} \varepsilon\right\}=\alpha^{-1} \varepsilon$.
for all $x \in R, m \in N$. By using (2.15) we see that
$\left\{p^{-m}[f(k, x+m)-(r+q) f(k, x+m-1)+q r f(k, x+m-2)]\right\}$ is a cauchy sequence by definition of completeness for a fixed $x \in R$. Hence, we may define a function $\quad H_{3}: R \rightarrow X$ by
$H_{3}(k, x)=\operatorname{Lim}_{m \rightarrow \infty} p^{-m}[f(k, x+m)-(r+q) f(k, x+m+1)+q r f(k, x+$ $m-2)$]
for all $x \in R$. In view of above definition of H_{3}, we obtain
$\mathrm{kH}_{3}(\mathrm{k}, \mathrm{x}-1)+\mathrm{H}_{3}(\mathrm{k}, \mathrm{x}-2)+\mathrm{H}_{3}(\mathrm{k}, \mathrm{x}-3)$
$=\mathrm{kp}^{-1} \operatorname{Lim}_{\mathrm{m} \rightarrow \infty} \mathrm{p}^{-(\mathrm{m}-1)}[\mathrm{f}(\mathrm{k}, \mathrm{x}+\mathrm{m}-1)-(\mathrm{r}+\mathrm{q}) \mathrm{f}(\mathrm{k}, \mathrm{x}+(\mathrm{m}-1)-1)+\mathrm{qr}$ $\mathrm{f}(\mathrm{k}, \mathrm{x}+(\mathrm{m}-1)-2)]$

$$
+\mathrm{p}^{-2} \operatorname{Lim}_{\mathrm{m} \rightarrow \infty} \mathrm{p}^{-(\mathrm{m}-2)}[\mathrm{f}(\mathrm{k}, \mathrm{x}+\mathrm{m}-2)-(\mathrm{r}+\mathrm{q}) \mathrm{f}(\mathrm{k}, \mathrm{x}+(\mathrm{m}-2)-
$$ 1) $+\mathrm{qr} \mathrm{f}(\mathrm{k}, \mathrm{x}+(\mathrm{m}-2)-2)]$

$$
+\mathrm{p}^{-3} \operatorname{Lim}_{\mathrm{m} \rightarrow \infty} \mathrm{p}^{-(\mathrm{m}-3)}[\mathrm{f}(\mathrm{k}, \mathrm{x}+\mathrm{m}-3)-(\mathrm{r}+\mathrm{q}) \mathrm{f}(\mathrm{k}, \mathrm{x}+(\mathrm{m}-3)
$$

$-1)+\mathrm{qr} \mathrm{f}(\mathrm{k}, \mathrm{x}+(\mathrm{m}-3)-2)]$
$=\mathrm{kp}^{-1} \mathrm{H}_{3}(\mathrm{k}, \mathrm{x})+\mathrm{p}^{-2} \mathrm{H}_{3}(\mathrm{k}, \mathrm{x})+\mathrm{p}^{-3} \mathrm{H}_{3}(\mathrm{k}, \mathrm{x})$
$=H_{3}(k, x)$ for all $x \in R, k \in N$.
Hence, we can say that H_{3} is also a k-Tribonacci function. If we suppose, m tends to infinity in (2.15) then we have
$\left\|H_{3}(k, x)-f(k, x)+(r+q) f(k, x-1)-q r f(k, x-2)\right\|$

$$
\begin{equation*}
\leq \frac{\alpha^{-1}}{1-\left|\alpha^{-1}\right|} \varepsilon \tag{2.16}
\end{equation*}
$$

for all $x \in R$. From (2.9), (2.12) and (2.15), we observe that

$$
\begin{aligned}
& \left\|f(k, x)-\left[\frac{q^{2}(r-p) H_{1}(k, x)+r^{2}(p-q) H_{2}(k, x)-p^{2}(q-r) H_{3}(k, x)}{q^{2}(r-p)+r^{2}(p-q)+p^{2}(q-r)}\right]\right\| \\
& \quad=\frac{1}{\left|q^{2}(r-p)+r^{2}(p-q)+p^{2}(q-r)\right|} \\
& \|\left(q^{2}(r-p)+r^{2}(p-q)+p^{2}(q-r) f(k, x)-q^{2}(r p) H_{1}(k, x)-\right.
\end{aligned}
$$

$r^{2}(p-q) H_{2}(k, x)+p^{2}(q-r) H_{3}(k, x) \|$
For convince, we assume that

$$
\begin{align*}
& \frac{1}{\left|q^{2}(r-p)+r^{2}(p-q)+p^{2}(q-r)\right|} \\
& =\frac{1}{|\mathrm{~A}|} \tag{2.17}\\
& \leq \frac{1}{|\mathrm{~A}|}\left[\| \mathrm{q}^{2}(\mathrm{r}-\mathrm{p}) \mathrm{f}(\mathrm{k}, \mathrm{x})-\mathrm{q}^{2}\left(\mathrm{r}^{2}-\mathrm{p}^{2}\right) \mathrm{f}(\mathrm{k}, \mathrm{x}-1)+\mathrm{q}^{2}(\mathrm{r}-\mathrm{p}) \operatorname{prf}(\mathrm{k}, \mathrm{x}-2)\right. \\
& -q^{2}(r-p) H_{1}(k, x) \| \\
& +\| r^{2}(p-q) f(k, x)-r^{2}\left(p^{2}-q^{2}\right) f(k, x-1)+r^{2}(p-q) q p f(k, x-2) \\
& -r^{2}(p-q) H_{2}(k, x) \| \\
& +\| p^{2}(q-r) f(k, x)-p^{2}\left(q^{2}-r^{2}\right) f(k, x-1)+p^{2}(q-r) q r f(k, x-2) \\
& -p^{2}(q-r) H_{3}(k, x) \| \\
& \text {] } \quad=\frac{1}{|\mathrm{~A}|}\left[\frac{1}{1-|\mathrm{q}|}+\frac{1}{1-|\mathrm{q}|}+\frac{\left|\mathrm{q}^{2}\right|}{1-\left|\mathrm{q}^{2}\right|}\right] \varepsilon \\
& =\frac{1}{|\mathrm{~A}|}\left[\frac{2}{1-|\mathrm{q}|}+\frac{\left|\mathrm{q}^{2}\right|}{1-\left|\mathrm{q}^{2}\right|}\right] \varepsilon \\
& =\frac{1}{|\mathrm{~A}|}\left[\frac{2(1+|\mathrm{q}|)+|\mathrm{q}|^{2}}{1-\left|\mathrm{q}^{2}\right|}\right] \varepsilon
\end{align*}
$$

Putting the value of $|\mathrm{A}|$ from (2.17) we get the required result. Hence,
$\mathrm{H}(\mathrm{k}, \quad \mathrm{x})=$
$\frac{q^{2}(r-p) H_{1}(k, x)+r^{2}(p-q) H_{2}(k, x)-p^{2}(q-r) H_{3}(k, x)}{q^{2}(r-p)+r^{2}(p-q)+p^{2}(q-r)}$
for all $x \in R$. It is not difficult to show that H is a k Tribonacci function satisfying (2.2).

3. REFERENCES

[1] A. H. Sales, About K-Fibonacci numbers and their associated numbers; Int. J. of Math Forum, Vol. 6, no.50, (2011) 2473-2479.
[2] D. H. Hyers, On the stability if linear functional equation, Proc. Natl. Acad. Sci. USA. 27(1941) 221-224.
[3] D. H. Hyers, G. Isac and Th. M Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Boston, 1998.
[4] D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44(1992) 125-153.
[5] G. L. Forti, Hyers-Ulam stability of functional equations in several variables, Aequationes Math., 50 (1995) 143190.
[6] J.M. Rassias, On approximately of approximately linear mappings by linear mappings, J. Functional Anal. USA, 46 (1982) 126-130.
[7] M. Bidkham and M. Hosseini, Hyers - Ulam stability of K-Fibonacci functional equation, Int. J. Nonlinear Anal. Appl., 2 (2011) 42-49.
[8] M. Bidkham, M. Hosseini, C. park and M. Eshaghi Gordji, Nearly (k,s)- Fibonacci functional equations in β normed spaces, Aequationes Math., 83 (2012) 131-141.
[9] M. Eshaghi Gordji and H. Khodaei, Stability of Functional Equations,LAP LAMBERT Academic Publishing, 2010.
[10] M. Eshaghi Gordji, A. Divandari, C. Park and D. Y. Shin ,Hyers-Ulam stability of a Tribonacci functional equation in 2-normed space , J. Comp. Anal. and Appl. Vol.6, No. 3 (2014) 503-508.
[11] M. Gordji, M. Naderi and Th. M.Rassias: Solution and Stability of Tribonacci functional equation in NonArchinedean Banach spaces (2011)67-74.
[12] M. S. Moslehian and Th. M. Rassias: Stability of functional equation in Non- Archimedean spaces, Applicable Analysis and Discrete Mathematics. 1 (2007) 325-334.
[13] M. Eshaghi Gordji , M. Bavand Savad Kouchi, M.Bidkham Additive- Cubic functional equation from
addive groups into Non- Archimedean Banach spaces, Faculty of Sci. and Math. 5 (2013) 731-738.
[14] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math . Anal. Appl. 184 (1994) 431-436.
[15] P. Gavruta and L. Gavruta, A new method for the generalized Hyers-Ulam-Rassias stability, Int. J. Nonlinear Anal. Appl., 1 (2010) 11-18.
[16] R. Ger and P. Semrl, The stability of exponential equation, Proc. Amer. Math. Soc., 124 (1996) 779-787.
[17] S. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
[18] S. Jung, Hyers-Ulam stability of Fibonacci functional equation, Bull. Iranian Math. Soc., 35 (2009) 217-227.
[19] S. Jung, Hyers-Ulam-Rassias stability of functional equations in nonlinear analysis, Springer Optimization and Its Applications, 48, Springer, New York, 2011. xiv+362pp. ISBN: 978-1-4419-9636-7.
[20] S. M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed., Wiley, New York, 1940.
[21] T. Aoki: On the stability of linear transformation in Banach spaces, J. Math. Soc. Jpn. 2, (1950) 64-66.
[22] Th. M. Rassias, On the stability ofthe linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297300.
[23] Th. M. Rassias, Approximate homomorphisms, Aequationes Math., 44 (1992) 125-153.
[24] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991) 431-434.

