
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

13

Cryptanalysis of bcrypt and SHA-512 using Distributed

Processing over the Cloud

Atishay Aggarwal

VESIT,University Of Mumbai
Mumbai,India

Pranav Chaphekar
VESIT,University Of Mumbai

Mumbai,India

Rohit Mandrekar
VESIT,University Of Mumbai

Mumbai,India

ABSTRACT

Passwords are one of the commonly used method to protect

one’s personal information against the intruders. But storing

passwords as plaintext is not safe, hence they are saved in

form of hashes. And authentication occurs by comparing the

hash in the database to the hash generated from input taken. It

is crucial that the hashing algorithm is not only tough to

reverse engineer but, should also be nearly impossible to find

a collision [1]. The study considers a different approach using

distributed processing to compute multiple hashes at a very

high speed, making one of the most widely used hashing

algorithm SHA- 512[2] seem not that secure after all. The

approach involves cryptanalyzing bcrypt, another hashing

algorithm, and concluding whether it’s a good alternative.

General Terms
Algorithm, Analysis.

Keywords
Keyspace, Hashing, bcrypt, SHA-512, Cryptanalysis,

Distributed processing, Cloud. Cluster

1. INTRODUCTION

1.1 Motivation
Passwords are the primary method of protection against the

cyber-attacks. They are not only used in authenticating an

account but also to maintain the privacy of the user , whether

it be your email account, e-commerce account , banking

account or any other account. Storing passwords in database

as clear text is dangerous. The hashing algorithm consists of a

hash function which converts the input text called as key into

a message digest known as hash. A comparison of the

performance of two strong [3] hashing algorithms-SHA -512

and Bcrypt was made, analysing speed of the algorithms over

CPU and GPU run on multiple nodes.

1.2 Problem Definition
The main objective of the study is to prove that the time

required for computation of hashes on multiple nodes is less

as compared to that on a single node. Hence, with the cost

remaining constant it is possible to search the keyspace faster

by increasing the number of nodes. Since, SHA-512 is an

inherently fast algorithm, it is possible to compute more

hashes in less time and thus bcrypt could be a feasible

alternative to improve security.

2. DESIGN

2.1 Hardware Specification
The Amazon Elastic Compute Cloud (Amazon EC2) service

provided by Amazon AWS was used, to deploy the instances

which in turn acted as nodes, in the cluster. The reason for

choosing EC2 was that it was possible to create custom Linux

images, which allowed the node to be up and running with

needed dependencies preinstalled. The specification of the

instance types are:

C4.8xlarge:

 36vCPU provided by the Intel Xeon E5-2666 v3.

 60GB memory.

G2.8xlarge:

 32vCPU provided by the Intel Xeon E5-2670.

 60GB memory.

 4 GRID K520 GPUs:

o 800 MHz

o 4GB VRAM

o CUDA cores: 3072

The c4.8xlarge node was used in CPU clusters, whereas the

g2.8xlarge node was used in GPU clusters. To make things

more affordable, spot instances were used, which allows

bidding on unused instances and generally at 200% lesser

cost.

2.2 Algorithms

2.2.1 SHA-512
 SHA-512(Secured Hash Algorithm) is a type of

hashing algorithm that operates on eight 64 bit

words.

 The first step is called as padding in which 1’s and

0’s are appended. The next step involves passing

through the 80 pre-processing functions in which

the various operations like XOR, AND, OR takes

place. The third step includes the initialization of

eight buffers. The penultimate step involves the

processing of the message in 512 bit blocks which

consists of predefined and input functions.

Ultimately, one receives the output as final message

digest in the 8 word buffers.

 It is free of collisions. It computes the fixed length

hash irrespective of number of bits in the original

text. The maximum message size is 2128
 -1 bits.

 The working and explanation of SHA-512 is given

in [4]

2.2.2 bcrypt
 bcrypt is a type of hashing algorithm based on

blowfish that takes passphrases that are 8 to 56

characters long and hashes them internally to a 448

bit key.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

14

 In bcrypt, regular characters are not used. A

password X always takes the same amount of time

regardless of how powerful the hardware is that’s

used to generate X.

 bcrypt requires you to specify a cost/workfactor in

order to generate a password

 This workfactor not only makes the entire process

slower but is also used to generate the end hash

 The workfactor allows us to determine how

expensive the hash function will be.

 [5] discusses the implementation of bcrypt using

special hardware.

2.3 Distributed System Architecture
For distributed processing, one node/PC acts as a master. The

master can also act as a salve for computing. But the master

itself doesn’t have to be computationally fast. Master handles

the division of keyspace and distributing workload amongst

the slaves.

Figure 1. Overview of distributed system architecture

When a slave joins the cluster, its performance is

benchmarked for a number of hashing algorithms, and is

recorded by the master. As seen in Figure 1, when a hash list

is loaded at the master for cryptanalysis, the total keyspace is

divided based on the benchmark of the nodes participating in

the cluster at that particular time. And the keyspace is not

divided completely, but partially for a particular amount of

time. Once this time period is over, the next workload, that is

part of the keyspace, is requested for further computation.

This method reduces network overhead, keeping

communication to a minimum of workload distribution, which

gives a linear increase in computational speed. Even if a node

fails in between, its keyspace workload can be sent to some

other node to compensate. Hashcat and cudaHashcat were

used on the nodes under the wrapper which handled the

computation.

Example:

Workload size: X

Machine can perform these many hashes/second

(Benchmark): Y

Total keysize: K

Workload time: (Time after which next workload will be sent

to node): Z

X = Y*Z

Assuming 2 nodes,

Keyspace starts from:

0 to N for first node (N<<K)

Therefore next workload is N+1 to N+1+X

2.4 Attack Types
There are many possible attacks used for hash recovery. Some

of the common ones are:

2.4.1 Dictionary attacks
A word list consisting of many common words, common

passwords, and probable passwords is used for hash

generation. The advantage of using this is this method is very

quick since even the most exhaustive of wordlist contains a

billion words. This is the first point of attack. It fails if a more

complex or random password is chosen. [6] discusses the time

and space complexity involved in Dictionary attacks.

2.4.2 Rule based attack:
This acts as an add-on to the dictionary attack. There are a set

of rules which are applied to a dictionary to try various

combinations of the words present in the list. This results in a

larger portion of the probable keyspace being attacked. There

have been many successful results using patterns and such

rules. [7]

2.4.3 Rainbow tables:
Time is lost is computing hashes from plaintext. To save this

time, hashes are pre-computed and stored in tables beforehand

itself. This speeds up the process since the only computational

task is comparing the target hash to the hashes in the rainbow

table. These rainbow tables are huge in size, and thus are

generally limited to wordlist and rule combinations. The point

of failure of this attack is salting. Salting is the process of

adding a user specific text to the plain text, before computing

the hash. This renders rainbow tables useless since even same

passwords will result in different hashes due to salting.

2.4.4 Bruteforce:
The focus of the study is on bruteforce attacks since common

passwords can easily be found using the above techniques.

The last alternative is trying all possible combinations for a

password, which is what bruteforce does. But this should be

the last resort since keyspace increases exponentially as

number of characters increases.

3. PERFORMANCE MEASUREMENT

3.1 Performance with cluster nodes

Table 1. Performance on different number of nodes

 SHA-512 bcrypt

Speed Million Hashes/Second Hashes/Second

1 280 3310

2 560 6620

3 840 9930

4 1120 13240

It is seen that the performance of the algorithms increases

linearly with increase in the number of nodes. The speed of

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

15

SHA-512 which is 280 million hashes/second becomes 4

times, i.e. 1120 million hashes/second when 4 nodes are used.

This is because the keyspace is divided over the available

nodes and the algorithm runs at the same speed at each of the

nodes, thus effectively, the total speed of computing is the

sum of speeds at each node.

3.1.1 bcrypt

Figure 2. CPU vs GPU

According to the Figure 2, in bcrypt, the performance over

CPU is better than the performance over GPU. This is

opposite to most of the other algorithms. Thus it is difficult to

crack a passphrase encrypted with bcrypt if it is attacked over

GPU. Also, the performance is in the order of thousand

hashes/second over the CPU which is still considerably lower

than the performance of most other algorithms. With GPU

never going over 60% utilization, thus was not performing

optimally.

3.1.2 SHA-512

Figure 3. CPU vs GPU

It is clear from Figure 3 that in SHA-512, it is easier to crack

the password when deployed over GPU rather than CPU,

which is in stark contrast to bcrypt. Also, it’s important to

note that as the number of nodes increase, more hashes can be

cracked in both CPU as well as GPU. Moreover, the

performance is in the order of millions of hashes per second

which is considerably higher as compared to bcrypt, making

SHA-512, easier to crack. This increase in speed is due to the

ability of the GPU to perform 32 bit operations much faster

than the CPU.

3.2 Keyspace analysis based on time and

cost
3.2.1 Time

Figure 4. Time vs Number of Characters

The graph in Figure 4 shows the relation between number of

characters and time to crack in million hours. As one can see

from the above graph, the time to crack remains fairly

constant in SHA-512 as the number of characters increase

from 5 to 10, however in bcrypt, the time to crack remains

almost constant but increases exponentially over 8 characters,

making it almost impossible to crack thereafter.

3.2.2 Cost
The cost incurred is dependent on time required to run the

instance. As the number of nodes increase, the time required

to compute the number of hashes decreases by the same

factor, but the cost per node increases linearly. Thus, even

though one can compute faster by increasing the nodes, the

overall cost remains the same.

3.3 Distributed processing analysis
Scanning a large keyspace using a single machine can be very

time consuming, and might not be feasible. But dividing the

keyspace into multiple parts allows multiple nodes to traverse

parts of the keyspace. Doing this gives the probability that a

hash could be found much sooner if it is in the part of the

keyspace towards the end. The algorithm proposed is most

effective over a large keyspace, since it might be possible that

for a smaller keyspace, division will not be feasible and will

result in a performance drop versus a single machine.

This method is most effective when a large hashlist is being

analyzed, since up to 100 million hashes can be brought into

memory, beyond which a performance drop occurs. More the

hashes, higher is the probability of a hash being found by

dividing the keyspace. This happens due to the fact that

passwords are widely distributed along the keyspace, and

won’t be found in a particular part.

4. bcrypt vs SHA-512
Moore’s law states that every two years the amount of

transistors that can be put in a computer doubles. So quicker

the hardware gets, recovering hashes becomes realistic fast.

One just needs to increase hardware. This why SHA-512 is
not the best choice to continue with. Even though collisions

are nearly impossible to find, today itself it’s feasible to

recover the average man's password without spending too

much of time. Salting may seem to add another level of

difficulty, but the answer to that again is, adding more

hardware. bcrypt is derived and expanded upon Blowfish

cipher. The primary thing that makes it slow is a part reused

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

16

from Blowfish, an internal RAM table is involved which is

altered through most of the steps. This makes parallelization

hard, which in turn results in very slow speeds on the GPU,

since GPU memory is shared amongst cores, and ends being

not as fast as the CPU/RAM combination. Due to this the

GPU cannot throttle at its maximum capacity.

Table 2. Time (ms) to compute hashes

bcrypt SHA-512

Cost Time Iterations Time

10 0.034 80,000 0.031

11 0.045 160,000 0.043

12 0.060 320,000 0.060

13 0.2 640,000 0.19

As seen in Table 2, similar speed in computation can be

achieved using both algorithms, by adjusting cost factor and

iterations. But bcrypt shines due to its ineffectiveness on GPU

based attacks. With faster hardware, just increasing the cost

factor, makes the hash secure abiding Moore’s law [8].

5. CONCLUSION
The primary observation is that, if the keyspace being

traversed is divided across nodes, time required reduces

sharply at the same cost, if it was run on a single node.

Current approaches which create a cluster where the entire

cluster acts like a single computational unit, has a tendency to

fail if a node fails. The wrapper solution proposed overcomes

this without a drop in performance. SHA-512 was designed to

be inherently faster, but that is not the most ideal case in real

life. bcrypt is slower, but should be adapted more often, since

speed is irrelevant if security is being compromised. A 7

character, lower case SHA-512 hash’s plaint text can be

computed in less than 3 seconds using a 10 node GPU cluster.

So it’s better if a user has to wait for less than half a second

for a bcrypt hash comparison, rather than a millisecond, if

higher security can be provided. It was found that the

performance decreases when the number of hashes being

checked against, in bcrypt was increased. And since the tool

used was close source, writing a CPU/GPU based hash

computer from scratch that can handle scalability well is the

top agenda. The future scope would be to optimize the

algorithm to handle different types of hash computations

simultaneously if 100% usage is not reached on that particular

node. Also trying to optimize GPU performance of bcrypt by

trying to better utilize GPU memory in parallel.

6. LIMITATIONS
One of the anomalies found while testing bcrypt was, that the

hash calculation speed dropped as the number of hashes being

tested against increased. This is shown graphically in Figure

5. Theoretically, number of hashes should not affect the hash

computation speed, but this was not the case.

Figure 5. Speed vs number of hashes

This might be a limitation of cudaHashcat or hashcat itself,

and was beyond the scope since both are closed source

applications, whose algorithms weren’t available for analysis.

7. REFERENCES
[1] Lin Zhou and Wenbao Han, “A brief implementation

analysis of SHA-1 on FPGAs, GPUs and Cell

Processors”, 2009 International Conference on

Engineering Computation, IEEE,Pages 101-104,May

2009

[2] Shay Gueron,et al., “SHA-512/256”, 2011 Eighth

International Conference on Information Technology:

New Generations, IEEE.Pages 354-358 ,April 2011

[3] Kelly Brown, “The Dangers of Weak Hashes”, SANS

Institute InfoSec Reading Room, June

[4] “Descriptions of SHA-256, SHA-384, and SHA-

512”[Online].Available:http://www.iwar.org.uk/comsec/r

esources/cipher/sha256-384-512.pdf

[5] Wiemer, F. and Zimmermann, R. 2014 High-speed

implementation of bcrypt password search using special-

purpose hardware. IEEE conference Publications. Pages

[6] A. Narayanan and V. Shmatikov, “Fast Dictionary

Attacks on Passwords Using Time-Space

Tradeoff”[Online].Available:http://www.cs.cornell.edu/~

shmat/shmat_ccs05pwd.pdf

[7] Tatli,E.I., August 2015. “Cracking more password

hashes with patterns.” IEEE. Pages 1656 -1665

[8] Katja Malvoni, et.al. “Energy Efficient bcrypt cracking

with low-cost parallel hardware”,USENIX

Association,Berkley,CA,USA,2014

IJCATM:www.ijcaonline.org

