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ABSTRACT 
The branch predictor plays a crucial role in the achievement 

of effective performance in microprocessors with pipelined 

architectures. This paper analyzes performance of branch 

prediction unit for pipelined processors. A memory of 512 

bytes is designed for storing instructions. A 32 byte memory 

is designed for branch target buffer (BTB). This memory is 

utilized for storing history of the branch instructions. A Finite 

State Machine (FSM) is designed for branch predictor unit. It 

consists of four states: strongly taken, weakly taken, weakly 

not taken and strongly not taken. Prediction is done based on 

the status of FSM. If the state of FSM is weakly taken or 

strongly taken, then predictor guesses it as a taken condition 

else it is assumed to be not taken condition. When the 

execution of branch instruction is done for the first time the 

BTB stores the address of current instruction and also the 

address where it jumps. After this the current status of the 

FSM is updated accordingly. The program is executed using a 

branch predictor unit and also without a branch predictor unit. 

The latency of both the processors with a branch prediction 

unit and without is branch prediction unit is computed and 

compared. The simulation results validates that with branch 

prediction unit latency is decreased.  
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1.  INTRODUCTION 
The performance of microprocessor architectures has doubled 

in every two to three years. The techniques used for high 

performance computing are Pipelining and Predictor. 

Pipelining is highly preferred in high performance embedded 

processors as it can increase instruction level parallelism. The 

processor can be broken into different stages while storing 

each intermediate stage by using pipelining. Pipelining can be 

applied for the execution of a number of instructions at a 

particular time. As a result the throughput, which is the 

number of instructions per second of the processor, is 

increased [2]. The pipelined instructions need to be examined 

carefully to understand the effects created by changes in 

control flow. For an instance four pipelined structures may be 

required in a pipelined structure namely, instruction fetch (IF), 

Instruction decode (ID), Execute (EX), and Write back (WB). 

Each instruction undergoes many stages of execution till the 

result of fed instructions is known in the process of pipelining. 

In each preceding stage of pipelining many instructions are 

being executed simultaneously [3]. When instructions are 

being fetched a delay occurs before the results of execution, 

this delay is caused by the conditional branches due to 

unavailability of the next fetch address and this delay creates 

ambiguity in case of branch instructions. The instructions are 

executed sequentially. Due to branch instructions the flow of 

instruction changes, therefore the fetching unit in the 

processor should have prior knowledge of the fact that which 

part of the instruction should be fetched first in order to utilize 

the pipelining stages contained in the branch instructions. In 

case of conditional branches two instructions can be followed. 

If the conditional branch is processed, the fetching of the next 

instruction is done from the address of the next consecutive 

instruction which is known as fall through instruction or the 

instruction is fetched from the target address which is known 

as target instruction. The branch problem arises since the 

conditional branch is required to wait for the condition to get 

resolved and the address of the next instruction is calculated 

before the next instruction is being fetched. This results in a 

delay in the processor. Due to these delays the processor 

performance is degraded. The processing is required to be 

stopped and the processor needs to wait till the direction of 

the branch is not discovered. This introduces stalls in the 

pipeline. The number of stalls is determined by calculating the 

number of stages in between fetching stage and that stage in 

which the branch was resolved. The performance problem can 

be removed by adopting a technique called Branch prediction 

[4]. 

Branch predictor helps to predict the path of a branch 

instruction before actually knowing its behaviour. Flow in the 

instruction pipeline will be improved using branch predictor. 

In modern microprocessors with pipelined architectures 

branch predictors play a crucial role in achieving high 

performance effectively [4]. Conditional jump instruction is 

used to implement two-way branching. In case when the 

conditional jump is considered to be as not taken the 

execution continues along the first branch of the code which 

comes immediately after the conditional jump. In case when 

the conditional jump is considered to be taken the execution 

jumps to the location in the memory of the program where the 

code for the second branch is stored. In pipelined structures 

clock cycles are shorter as the work required by each stage is 

not more. The processors are designed with multiple 

instruction pipelines which allow issuing of multiple 

instructions in each cycle. The processor should be supplied 

large number of instructions in order to use the pipelined 

stages efficiently. The decision to the fact that conditional 

jump is taken or not taken cannot be made until calculation 

has been made on the condition and also until conditional 

jump has passed execution stage in the instruction pipeline 

[5]. When branch prediction unit is not present the processor 

is required to wait for conditional jump instruction to pass 

through the execution stage before the next instruction is 

entered into the fetch stage in the pipeline. The branch 

predictor guesses whether the chances for conditional jump 

are more for being taken or not taken and thereby prevents 
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wastage of cycles. The branch is fetched and speculatively 

executed which has been guessed to be the most likely to 

happen. The speculatively executed or partially executed 

instructions are discarded and the pipeline starts over with the 

correct branch, incurring a delay if it is later detected that the 

guess was wrong. The boxes are used to represent the 

instructions which are independent of each other [9]. The 

number of stages included in the pipeline structure from the 

fetch stage to the execution stage is equivalent to the time 

which is wasted when a branch misprediction occurs. A good 

branch predictor is required when the pipeline gets longer. 

When a conditional jump is encountered firstly no information 

is available for a prediction to take place. A record is kept by 

the branch predictor whether the branch is taken or not taken. 

2. LITERATURE SURVEY 
A lot of research work has been carried out to enhance the 

performance of processor. This section provides an idea about 

various developments in the past on branch predictors. 

J. V. Kumar et al. in 2014 presented a low power pipelined 

64-bit RISC processor containing a Floating Point Unit based 

on FPGA [7]. The development of this processor was carried 

out especially for carrying arithmetic operations on both fixed 

and floating point numbers, for branch and logical functions. 

No plush occurs for pipelining in case of occurrence of branch 

instructions as its implementation was alone by making use of 

dynamic branch prediction. As a result the flowing instruction 

was increased and high effective performance was 

encountered. By using RTL coding the dynamic power could 

be reduced since it uses clock gating technique. In this paper 

Double Precision floating point arithmetic operations such as 

addition, division, multiplication and addition were also 

implemented.  

Priya P. Ravale et al.  in 2010 designed a branch prediction 

unit of a microprocessor based on superscalar architecture [8]. 

In the proposed design rigorous research was carried out using 

simple scalar tool through simulation of superscalar 

architectures. The result was focused on areas namely, data 

dependence, memory latency and control dependency. 

Outcomes were noted for various benchmarks in the fields of 

data base, operating systems and mathematics with the use of 

„C‟ language for combinations of different parameters. An 

optimum model have been developed which gave a consistent 

performance for all of the above mentioned areas. Control 

dependence was critical amongst the three areas for achieving 

better performance. So concentration was kept on the 1-level 

and 2-level branch prediction scheme in the control 

dependence. The interfacing of branch prediction unit was 

done using FPGA with an IP core externally by deploying 

VLSI technique. The branch predictor unit was evaluated for 

its performance using FPGA and was verified in order to find 

a branch predictor unit which was optimum. 

Harsh Arora et al. in 2013 designed a dynamic branch 

prediction modeler for RISC architecture [1]. For designing 

this author has studied that owing to features of RISC 

architecture, benefits have been taken by computer designers 

from ILP and deeper pipelines were used by them along with 

wider issue rates and superscalar techniques. Although a 

change in the flow of execution of instructions was observed 

due to the existence of branch instructions. When a branch 

was encountered then either the pipeline need to be stalled till 

the execution of branch instructions was going on or a 

prediction was required to be made regarding the output of the 

branch which was either the branch should be considered as a 

taken one or not taken. By addition of stalls in the pipeline the 

performance was lost. Technique of branch prediction was 

deployed in order to reduce this loss of performance.  The 

performance loss was minimized by making prediction 

regarding the behaviour of branch and issuance of subsequent 

instructions before actually knowing the outcome of the 

branch.  

3.  DESIGN OF BRANCH PREDICTOR 

UNIT  
Figure 1 shows the block diagram branch predictor unit. A 

branch target buffer (BTB) provides instructions in the 

predicted path. Pattern history provides the history of the 

prediction. According to history the selection logic selects 

whether the prediction is to be made from BTB or normal 

execution is to be done without any prediction. When the 

prediction is done from the BTB and conditional branch is 

there then at the time of execution it is checked whether the 

condition is true or not. In case of true condition the 

prediction comes to be true and when condition goes false 

wrong prediction takes place. Now the value of program 

counter (PC) is updated again with the next PC value.     

 

Fig. 1: Block diagram of a branch prediction unit 

At the time of misprediction one pipeline cycle is being 

wasted and the instruction occurring after the branch 

instruction is firstly fetched and then it is ignored. After 

execution of branch instruction is done; the fetching is 

resumed from the address which was resolved. 

3.1  BTB (Branch Target Buffer) 
This BTB is used to store the address of branch instruction 

along with the address of branch target. Figure 2 shows 

branch target buffer in which width of branch instruction 

address is 16 bits and width of branch target address is also 16 

bits and their corresponding depths are 8 bits. Here address 0 

is the corresponding to the 0th location and address 7 is 

corresponding to 7th location. 
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Fig. 2: Branch target buffer 

When instruction gets decoded then we get to know whether it 

is a branch instruction or not. After the result of instruction 

decoder, branch predictor checks whether the address of 

branch instruction is already there in the BTB or not. If the 

address is contained in BTB then the corresponding target 

address is predicted and gets executed. After this the value of 

program counter is updated. In case the address is not present 

in the BTB then at the time of execution of instruction the 

address of the instruction is stored in the BTB and after 

execution the target address is stored. And if this instruction is 

repeated in future the address is already stored and therefore it 

gets executed thereby saving 2-3 clock cycles required in the 

execution. 

3.2  2- Bit Predictor 
Dynamic branch prediction involves prediction which is based 

on hardware. In this technique a prediction is made based on 

the direction taken by the branch when it was executed for the 

last few times. With the utilization of branch history the 

predictions can be made more accurately. In this method the 

history for each branch is considered separately and the 

advantage is taken of the repetitive patterns. A typical branch 

prediction scheme is shown in figure 3 

 
Fig. 3: 2-bit Branch Prediction 

In this work, 2-bit dynamic prediction scheme is employed. A 

4-state FSM has been used for its implementation. Four states 

are present namely; strongly not taken, weakly not taken, 

weakly taken and strongly taken. When the execution is taking 

place, in case of taken condition then the state of FSM is 

weakly taken. When execution of the same instruction takes 

place again then at that time state of FSM changes to strongly 

taken when the condition comes out to be true. In case the 

condition evaluates to be false then the state changes to 

weakly not taken. When the condition is not taken then the 

state of FSM is weakly not taken. This process continues, for 

each true condition the state gets incremented while for false 

condition a decrement in the state is examined. Figure 3 

shows how the states change when the execution is taking 

place. Branch prediction is based on the patterns and current 

state of the FSM.  

To test the designed branch prediction unit, a simple 8-bit 

RISC processor was designed. To verify the performance of 

designed branch prediction unit, a program was executed 

firstly without branch prediction and afterwards with branch 

prediction. 

4. SIMULATION RESULTS 
The branch prediction unit was described in Verilog HDL and 

synthesized using Xilinx Virtex-5 device XC5VLX50T. 

Simulation results of all the blocks have been carried out 

using Xilinx ISim simulator. 

A processor was designed to perform testing of branch 

predictor unit. Outputs were examined for varied number of 

inputs. The same inputs were applied to the processor without 

branch predictor unit. Figure 4 indicates the simulation 

waveforms of designed processor with branch predictor unit. 

An input is applied in hex format and output is taken in 

accordance with this input value. Cycle [31:0] indicates 

number of clock cycles required in execution of a program. 

Cycle [31:0] bit gets incremented when clock arrives. Now 

the same input is applied to the processor without branch 

predictor unit and the value of output is observed. Figure 5 

depicts simulation waveforms for the processor without 

branch predictor unit. The output for both the simulations has 

been checked. The values of output registers are same for both 

the simulations but the value of cycle bit is different for both. 

It can be seen that the values for reg_r1 [7:0], reg_r2 [7:0], 

reg_r3 [7:0], reg_r4 [7:0], reg_r5 [7:0] are same in both the 

waveforms. In figure 4, the value of cycle [31:0] is 470 with 

branch prediction; while it is 585 without branch predictor 

unit in figure 5. It has been observed that 115 cycles have 

been saved with the help of designed branch predictor unit in 

executing the same program.  

The simulation waveforms in figure 6 depict the execution of 

JZNE instruction. JZNE instruction is a conditional branch 

instruction. When the decoding process ends we get to know 

the current state of the instruction whether it is a JZNE 

instruction. The value in state [7:0] gets updated with 12 

which is the value for JZNE instruction. Since it is a branch 

instruction therefore the branch bit goes high. The execution 

of JZNE instruction utilizes five clock cycles. The number of 

clock cycles which are being used is shown in cycle [31:0]. It 

is noted that its value goes from 12 to 16. When the execution 

of JZNE instruction takes place again then its target address is 

predicted by the predictor in advance. As a result of this now 

only 2 clock cycles are required for the execution of JZNE 

instruction. Now in the cycle [31:0] the value goes from 20 to 

21. Hence three cycles can be saved with the help of branch 

predictor. At the time of execution, the condition of JZNE 

instruction is checked. If the condition is true then prediction 

is correct else the prediction is incorrect. Now wp bit goes 

high indicating that a misprediction has occurred. The value 

of PC gets updated again with the address of next instruction.  
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Fig. 4: Simulation waveforms of designed processor with branch predictor unit 

 

Fig. 5: Simulation waveforms of designed processor without branch predictor unit 
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Fig. 6: Simulation waveform of execution of JZNE instruction 

By testing different inputs, the latency of different branch 

instructions has been calculated. Table 1 shows the number of 

clock cycles saved in executing branch instructions using 

designed branch predictor. Figure 7 shows the latency for 

different branch instructions. From the figure 7, it is clear that 

for the execution of JZNE instruction 5 clock cycles are 

required in processor without branch predictor unit while it 

takes 2 cycles for its execution in processor having branch 

predictor unit. So, with every prediction 3 clock cycles are 

being saved by JZNE instruction. A similar phenomenon is 

observed for other branch instructions as well.  

Table 1: Latency and save clock cycle by 

predictor 

Instruction 

No. of clock cycle 

Number of 

clock cycles 

saved  
With branch 

predictor 

Without 

branch 

predictor 

CALL 2 4 2 

JZNE 2 5 3 

ICALL 2 3 1 

JZ 2 5 3 

RJMP 2 3 1 

JMP 2 4 2 

BREQ 2 5 3 

BRNE 2 5 3 

RET 3 3 0 

BRGE 2 5 3 

BRLE 2 5 3 

 

Fig 7: Latency for different branch instructions 

The design has been synthesized in Xilinx Synthesis Tool 

(XST). Table 2 and table 3 show the device utilization 

summary and the timing summary of the designed processor 

with and without branch prediction unit respectively. 
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Table 2: Device utilization summary of the design 

Parameter 

With 

Branch 

Predictor 

Without 

Branch 

Predictor 

Overhead 

Number of Slice 

Registers 
4699 4279 8.93 % 

Number of Slice 

LUTs 
15331 11385 25.73 % 

Number of fully used 

LUT-FF pairs 
877 436 50.28 % 

Number of unique 

control sets 
19 14 26.31 % 

 

Table 3: Timing summary of the design 

Parameter 

Timing summary 

With Branch 

Predictor 

Without Branch 

Predictor 

Minimum period 

(ns) 
8.359 8.133 

Maximum 

Frequency(MHz) 
119.632 122.960 

Levels of Logic 17 16 

The table 2 shows the device utilization summary of processor 

with and without branch prediction unit. The overheads to 

design a processor with branch prediction unit using Virtex 5 

(XC5VLX50T) are 8.93%, 25.73%, 50.28 % and 26.31 % for 

the resources i.e. slice registers, slice LUTs, fully used LUT-

FF Pairs and Unique control sets respectively. Table 3 shows 

the timing summary of the processor with and without branch 

prediction unit. The maximum frequency at which a processor 

can be operated with and without branch predictor are 

199.632MHz and 122.960MHz respectively. It can be seen 

that the minimum period is more and the latency of branching 

instruction is less for the design with branch prediction unit. 

Therefore it is concluded that the design of a processor with 

branch prediction unit is more efficient.  

5. FPGA IMPLEMENTATION OF THE 

DESIGN 
The Branch prediction unit has been implemented using 

Xilinx Virtex-5 device XC5VLX50T. This board is having 8 

input ports and each port is of 1-bit. 8 LEDs are used for 

representing an output bit. In the implementation of branch 

predictor unit these LEDs indicates the values of the registers. 

Two inputs are used as select lines for checking the values of 

different registers. The numbers of clock cycles which are 

used in execution of the program are displayed on the LCD. 

 

Fig. 8: FPGA implementation 

6. CONCLUSION 
The 2-bit branch predictor was designed using finite state 

machine (FSM) comprising of four stages- strongly taken, 

weakly taken, strongly not taken and weakly not taken. 

Prediction was done based on the status of FSM and branch 

history. To test the designed branch predictor unit, a simple 8-

bit RISC processor was implemented on a processor which 

has been designed. To verify the performance of designed 

branch predictor unit, a program was executed firstly without 

branch prediction and afterwards with branch prediction. The 

overheads to design a processor with branch prediction unit 

using Virtex-5 (XC5VLX50T) are 8.93%, 25.73%, 50.28 % 

and 26.31 % for the resources i.e. slice registers, slice LUTs, 

fully used LUT-FF Pairs and Unique control sets respectively.  

The latency of execution of program for both cases was 

computed and compared. A significant reduction in the 

latency was observed from the simulation results with branch 

prediction unit. The maximum frequency at which a processor 

can be operated with and without branch predictor are 

199.632MHz and 122.960MHz respectively. Therefore it is 

concluded that the design of a processor with branch 

prediction unit is more efficient.  
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