
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

6

Performance Analysis of Branch Prediction Unit for

Pipelined Processors

Nikhil Panwar
Student M.Tech VLSI Design

ACS Division, Centre for
Development of Advanced

Computing (C-DAC), Mohali,
160071, India

Manjit Kaur
Engineer

ACS Division, Centre for
Development of Advanced

Computing (C-DAC), Mohali,
160071, India

Gurmohan Singh
Senior Engineer

DEC Division, Centre for
Development of Advanced

Computing (C-DAC), Mohali,
160071, India

ABSTRACT
The branch predictor plays a crucial role in the achievement

of effective performance in microprocessors with pipelined

architectures. This paper analyzes performance of branch

prediction unit for pipelined processors. A memory of 512

bytes is designed for storing instructions. A 32 byte memory

is designed for branch target buffer (BTB). This memory is

utilized for storing history of the branch instructions. A Finite

State Machine (FSM) is designed for branch predictor unit. It

consists of four states: strongly taken, weakly taken, weakly

not taken and strongly not taken. Prediction is done based on

the status of FSM. If the state of FSM is weakly taken or

strongly taken, then predictor guesses it as a taken condition

else it is assumed to be not taken condition. When the

execution of branch instruction is done for the first time the

BTB stores the address of current instruction and also the

address where it jumps. After this the current status of the

FSM is updated accordingly. The program is executed using a

branch predictor unit and also without a branch predictor unit.

The latency of both the processors with a branch prediction

unit and without is branch prediction unit is computed and

compared. The simulation results validates that with branch

prediction unit latency is decreased.

Keywords
BTB, FSM, ILP, FPGA, Latency, Processor.

1. INTRODUCTION
The performance of microprocessor architectures has doubled

in every two to three years. The techniques used for high

performance computing are Pipelining and Predictor.

Pipelining is highly preferred in high performance embedded

processors as it can increase instruction level parallelism. The

processor can be broken into different stages while storing

each intermediate stage by using pipelining. Pipelining can be

applied for the execution of a number of instructions at a

particular time. As a result the throughput, which is the

number of instructions per second of the processor, is

increased [2]. The pipelined instructions need to be examined

carefully to understand the effects created by changes in

control flow. For an instance four pipelined structures may be

required in a pipelined structure namely, instruction fetch (IF),

Instruction decode (ID), Execute (EX), and Write back (WB).

Each instruction undergoes many stages of execution till the

result of fed instructions is known in the process of pipelining.

In each preceding stage of pipelining many instructions are

being executed simultaneously [3]. When instructions are

being fetched a delay occurs before the results of execution,

this delay is caused by the conditional branches due to

unavailability of the next fetch address and this delay creates

ambiguity in case of branch instructions. The instructions are

executed sequentially. Due to branch instructions the flow of

instruction changes, therefore the fetching unit in the

processor should have prior knowledge of the fact that which

part of the instruction should be fetched first in order to utilize

the pipelining stages contained in the branch instructions. In

case of conditional branches two instructions can be followed.

If the conditional branch is processed, the fetching of the next

instruction is done from the address of the next consecutive

instruction which is known as fall through instruction or the

instruction is fetched from the target address which is known

as target instruction. The branch problem arises since the

conditional branch is required to wait for the condition to get

resolved and the address of the next instruction is calculated

before the next instruction is being fetched. This results in a

delay in the processor. Due to these delays the processor

performance is degraded. The processing is required to be

stopped and the processor needs to wait till the direction of

the branch is not discovered. This introduces stalls in the

pipeline. The number of stalls is determined by calculating the

number of stages in between fetching stage and that stage in

which the branch was resolved. The performance problem can

be removed by adopting a technique called Branch prediction

[4].

Branch predictor helps to predict the path of a branch

instruction before actually knowing its behaviour. Flow in the

instruction pipeline will be improved using branch predictor.

In modern microprocessors with pipelined architectures

branch predictors play a crucial role in achieving high

performance effectively [4]. Conditional jump instruction is

used to implement two-way branching. In case when the

conditional jump is considered to be as not taken the

execution continues along the first branch of the code which

comes immediately after the conditional jump. In case when

the conditional jump is considered to be taken the execution

jumps to the location in the memory of the program where the

code for the second branch is stored. In pipelined structures

clock cycles are shorter as the work required by each stage is

not more. The processors are designed with multiple

instruction pipelines which allow issuing of multiple

instructions in each cycle. The processor should be supplied

large number of instructions in order to use the pipelined

stages efficiently. The decision to the fact that conditional

jump is taken or not taken cannot be made until calculation

has been made on the condition and also until conditional

jump has passed execution stage in the instruction pipeline

[5]. When branch prediction unit is not present the processor

is required to wait for conditional jump instruction to pass

through the execution stage before the next instruction is

entered into the fetch stage in the pipeline. The branch

predictor guesses whether the chances for conditional jump

are more for being taken or not taken and thereby prevents

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

7

wastage of cycles. The branch is fetched and speculatively

executed which has been guessed to be the most likely to

happen. The speculatively executed or partially executed

instructions are discarded and the pipeline starts over with the

correct branch, incurring a delay if it is later detected that the

guess was wrong. The boxes are used to represent the

instructions which are independent of each other [9]. The

number of stages included in the pipeline structure from the

fetch stage to the execution stage is equivalent to the time

which is wasted when a branch misprediction occurs. A good

branch predictor is required when the pipeline gets longer.

When a conditional jump is encountered firstly no information

is available for a prediction to take place. A record is kept by

the branch predictor whether the branch is taken or not taken.

2. LITERATURE SURVEY
A lot of research work has been carried out to enhance the

performance of processor. This section provides an idea about

various developments in the past on branch predictors.

J. V. Kumar et al. in 2014 presented a low power pipelined

64-bit RISC processor containing a Floating Point Unit based

on FPGA [7]. The development of this processor was carried

out especially for carrying arithmetic operations on both fixed

and floating point numbers, for branch and logical functions.

No plush occurs for pipelining in case of occurrence of branch

instructions as its implementation was alone by making use of

dynamic branch prediction. As a result the flowing instruction

was increased and high effective performance was

encountered. By using RTL coding the dynamic power could

be reduced since it uses clock gating technique. In this paper

Double Precision floating point arithmetic operations such as

addition, division, multiplication and addition were also

implemented.

Priya P. Ravale et al. in 2010 designed a branch prediction

unit of a microprocessor based on superscalar architecture [8].

In the proposed design rigorous research was carried out using

simple scalar tool through simulation of superscalar

architectures. The result was focused on areas namely, data

dependence, memory latency and control dependency.

Outcomes were noted for various benchmarks in the fields of

data base, operating systems and mathematics with the use of

„C‟ language for combinations of different parameters. An

optimum model have been developed which gave a consistent

performance for all of the above mentioned areas. Control

dependence was critical amongst the three areas for achieving

better performance. So concentration was kept on the 1-level

and 2-level branch prediction scheme in the control

dependence. The interfacing of branch prediction unit was

done using FPGA with an IP core externally by deploying

VLSI technique. The branch predictor unit was evaluated for

its performance using FPGA and was verified in order to find

a branch predictor unit which was optimum.

Harsh Arora et al. in 2013 designed a dynamic branch

prediction modeler for RISC architecture [1]. For designing

this author has studied that owing to features of RISC

architecture, benefits have been taken by computer designers

from ILP and deeper pipelines were used by them along with

wider issue rates and superscalar techniques. Although a

change in the flow of execution of instructions was observed

due to the existence of branch instructions. When a branch

was encountered then either the pipeline need to be stalled till

the execution of branch instructions was going on or a

prediction was required to be made regarding the output of the

branch which was either the branch should be considered as a

taken one or not taken. By addition of stalls in the pipeline the

performance was lost. Technique of branch prediction was

deployed in order to reduce this loss of performance. The

performance loss was minimized by making prediction

regarding the behaviour of branch and issuance of subsequent

instructions before actually knowing the outcome of the

branch.

3. DESIGN OF BRANCH PREDICTOR

UNIT
Figure 1 shows the block diagram branch predictor unit. A

branch target buffer (BTB) provides instructions in the

predicted path. Pattern history provides the history of the

prediction. According to history the selection logic selects

whether the prediction is to be made from BTB or normal

execution is to be done without any prediction. When the

prediction is done from the BTB and conditional branch is

there then at the time of execution it is checked whether the

condition is true or not. In case of true condition the

prediction comes to be true and when condition goes false

wrong prediction takes place. Now the value of program

counter (PC) is updated again with the next PC value.

Fig. 1: Block diagram of a branch prediction unit

At the time of misprediction one pipeline cycle is being

wasted and the instruction occurring after the branch

instruction is firstly fetched and then it is ignored. After

execution of branch instruction is done; the fetching is

resumed from the address which was resolved.

3.1 BTB (Branch Target Buffer)
This BTB is used to store the address of branch instruction

along with the address of branch target. Figure 2 shows

branch target buffer in which width of branch instruction

address is 16 bits and width of branch target address is also 16

bits and their corresponding depths are 8 bits. Here address 0

is the corresponding to the 0th location and address 7 is

corresponding to 7th location.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

8

Fig. 2: Branch target buffer

When instruction gets decoded then we get to know whether it

is a branch instruction or not. After the result of instruction

decoder, branch predictor checks whether the address of

branch instruction is already there in the BTB or not. If the

address is contained in BTB then the corresponding target

address is predicted and gets executed. After this the value of

program counter is updated. In case the address is not present

in the BTB then at the time of execution of instruction the

address of the instruction is stored in the BTB and after

execution the target address is stored. And if this instruction is

repeated in future the address is already stored and therefore it

gets executed thereby saving 2-3 clock cycles required in the

execution.

3.2 2- Bit Predictor
Dynamic branch prediction involves prediction which is based

on hardware. In this technique a prediction is made based on

the direction taken by the branch when it was executed for the

last few times. With the utilization of branch history the

predictions can be made more accurately. In this method the

history for each branch is considered separately and the

advantage is taken of the repetitive patterns. A typical branch

prediction scheme is shown in figure 3

Fig. 3: 2-bit Branch Prediction

In this work, 2-bit dynamic prediction scheme is employed. A

4-state FSM has been used for its implementation. Four states

are present namely; strongly not taken, weakly not taken,

weakly taken and strongly taken. When the execution is taking

place, in case of taken condition then the state of FSM is

weakly taken. When execution of the same instruction takes

place again then at that time state of FSM changes to strongly

taken when the condition comes out to be true. In case the

condition evaluates to be false then the state changes to

weakly not taken. When the condition is not taken then the

state of FSM is weakly not taken. This process continues, for

each true condition the state gets incremented while for false

condition a decrement in the state is examined. Figure 3

shows how the states change when the execution is taking

place. Branch prediction is based on the patterns and current

state of the FSM.

To test the designed branch prediction unit, a simple 8-bit

RISC processor was designed. To verify the performance of

designed branch prediction unit, a program was executed

firstly without branch prediction and afterwards with branch

prediction.

4. SIMULATION RESULTS
The branch prediction unit was described in Verilog HDL and

synthesized using Xilinx Virtex-5 device XC5VLX50T.

Simulation results of all the blocks have been carried out

using Xilinx ISim simulator.

A processor was designed to perform testing of branch

predictor unit. Outputs were examined for varied number of

inputs. The same inputs were applied to the processor without

branch predictor unit. Figure 4 indicates the simulation

waveforms of designed processor with branch predictor unit.

An input is applied in hex format and output is taken in

accordance with this input value. Cycle [31:0] indicates

number of clock cycles required in execution of a program.

Cycle [31:0] bit gets incremented when clock arrives. Now

the same input is applied to the processor without branch

predictor unit and the value of output is observed. Figure 5

depicts simulation waveforms for the processor without

branch predictor unit. The output for both the simulations has

been checked. The values of output registers are same for both

the simulations but the value of cycle bit is different for both.

It can be seen that the values for reg_r1 [7:0], reg_r2 [7:0],

reg_r3 [7:0], reg_r4 [7:0], reg_r5 [7:0] are same in both the

waveforms. In figure 4, the value of cycle [31:0] is 470 with

branch prediction; while it is 585 without branch predictor

unit in figure 5. It has been observed that 115 cycles have

been saved with the help of designed branch predictor unit in

executing the same program.

The simulation waveforms in figure 6 depict the execution of

JZNE instruction. JZNE instruction is a conditional branch

instruction. When the decoding process ends we get to know

the current state of the instruction whether it is a JZNE

instruction. The value in state [7:0] gets updated with 12

which is the value for JZNE instruction. Since it is a branch

instruction therefore the branch bit goes high. The execution

of JZNE instruction utilizes five clock cycles. The number of

clock cycles which are being used is shown in cycle [31:0]. It

is noted that its value goes from 12 to 16. When the execution

of JZNE instruction takes place again then its target address is

predicted by the predictor in advance. As a result of this now

only 2 clock cycles are required for the execution of JZNE

instruction. Now in the cycle [31:0] the value goes from 20 to

21. Hence three cycles can be saved with the help of branch

predictor. At the time of execution, the condition of JZNE

instruction is checked. If the condition is true then prediction

is correct else the prediction is incorrect. Now wp bit goes

high indicating that a misprediction has occurred. The value

of PC gets updated again with the address of next instruction.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

9

Fig. 4: Simulation waveforms of designed processor with branch predictor unit

Fig. 5: Simulation waveforms of designed processor without branch predictor unit

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

10

Fig. 6: Simulation waveform of execution of JZNE instruction

By testing different inputs, the latency of different branch

instructions has been calculated. Table 1 shows the number of

clock cycles saved in executing branch instructions using

designed branch predictor. Figure 7 shows the latency for

different branch instructions. From the figure 7, it is clear that

for the execution of JZNE instruction 5 clock cycles are

required in processor without branch predictor unit while it

takes 2 cycles for its execution in processor having branch

predictor unit. So, with every prediction 3 clock cycles are

being saved by JZNE instruction. A similar phenomenon is

observed for other branch instructions as well.

Table 1: Latency and save clock cycle by

predictor

Instruction

No. of clock cycle

Number of

clock cycles

saved
With branch

predictor

Without

branch

predictor

CALL 2 4 2

JZNE 2 5 3

ICALL 2 3 1

JZ 2 5 3

RJMP 2 3 1

JMP 2 4 2

BREQ 2 5 3

BRNE 2 5 3

RET 3 3 0

BRGE 2 5 3

BRLE 2 5 3

Fig 7: Latency for different branch instructions

The design has been synthesized in Xilinx Synthesis Tool

(XST). Table 2 and table 3 show the device utilization

summary and the timing summary of the designed processor

with and without branch prediction unit respectively.

0

1

2

3

4

5

6

C
A

LL

JZ
N

E

IC
A

LL JZ

R
JM

P

JM
P

B
R

EQ

B
R

N
E

R
ET

B
R

G
E

B
R

LE

C
lo

ck
 C

yc
le

With Branch Predictor Without Branch Predictor

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

11

Table 2: Device utilization summary of the design

Parameter

With

Branch

Predictor

Without

Branch

Predictor

Overhead

Number of Slice

Registers
4699 4279 8.93 %

Number of Slice

LUTs
15331 11385 25.73 %

Number of fully used

LUT-FF pairs
877 436 50.28 %

Number of unique

control sets
19 14 26.31 %

Table 3: Timing summary of the design

Parameter

Timing summary

With Branch

Predictor

Without Branch

Predictor

Minimum period

(ns)
8.359 8.133

Maximum

Frequency(MHz)
119.632 122.960

Levels of Logic 17 16

The table 2 shows the device utilization summary of processor

with and without branch prediction unit. The overheads to

design a processor with branch prediction unit using Virtex 5

(XC5VLX50T) are 8.93%, 25.73%, 50.28 % and 26.31 % for

the resources i.e. slice registers, slice LUTs, fully used LUT-

FF Pairs and Unique control sets respectively. Table 3 shows

the timing summary of the processor with and without branch

prediction unit. The maximum frequency at which a processor

can be operated with and without branch predictor are

199.632MHz and 122.960MHz respectively. It can be seen

that the minimum period is more and the latency of branching

instruction is less for the design with branch prediction unit.

Therefore it is concluded that the design of a processor with

branch prediction unit is more efficient.

5. FPGA IMPLEMENTATION OF THE

DESIGN
The Branch prediction unit has been implemented using

Xilinx Virtex-5 device XC5VLX50T. This board is having 8

input ports and each port is of 1-bit. 8 LEDs are used for

representing an output bit. In the implementation of branch

predictor unit these LEDs indicates the values of the registers.

Two inputs are used as select lines for checking the values of

different registers. The numbers of clock cycles which are

used in execution of the program are displayed on the LCD.

Fig. 8: FPGA implementation

6. CONCLUSION
The 2-bit branch predictor was designed using finite state

machine (FSM) comprising of four stages- strongly taken,

weakly taken, strongly not taken and weakly not taken.

Prediction was done based on the status of FSM and branch

history. To test the designed branch predictor unit, a simple 8-

bit RISC processor was implemented on a processor which

has been designed. To verify the performance of designed

branch predictor unit, a program was executed firstly without

branch prediction and afterwards with branch prediction. The

overheads to design a processor with branch prediction unit

using Virtex-5 (XC5VLX50T) are 8.93%, 25.73%, 50.28 %

and 26.31 % for the resources i.e. slice registers, slice LUTs,

fully used LUT-FF Pairs and Unique control sets respectively.

The latency of execution of program for both cases was

computed and compared. A significant reduction in the

latency was observed from the simulation results with branch

prediction unit. The maximum frequency at which a processor

can be operated with and without branch predictor are

199.632MHz and 122.960MHz respectively. Therefore it is

concluded that the design of a processor with branch

prediction unit is more efficient.

7. REFERENCES
[1] H. Arora, S. Kotecha, R. Samyal, “Dynamic Branch

Prediction Modeller for RISC Architecture,” in Proc.

International Conf Machine Intelligence and Research

Advancement (ICMIRA), pp.397-401, Dec. 21-23,2013.

[2] D. A. Patterson and J. L. Hennessy, Computer

Organization and Design: The Hardware Software

Interface. Burlington. 4th ed. USA: Morgan Kaufmann,

2010.

[3] D. Orozco, “TIDeFlow: A Parallel Execution Model for

High Performance Computing Programs,” in Proc.

International Conf Parallel Architectures and

Compilation Techniques (PACT), pp.211-216, Oct. 10-

14, 2011.

[4] C. Egan, “Dynamic Branch Prediction in High

Performance Super Scalar Processors,” Ph.D. thesis,

University of Hertfordshire, August 2000.

[5] Dezso Sima, Terence Fountain and Peter Kacsuk,

Advanced Computer Architectures: A Design Space

Approach. 1st edition Pearson Education Inc., 1997.

[6] Tse-Yu Yeh, “Two-Level Adaptive Branch Prediction

and Instruction Fetch Mechanisms for High Performance

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

12

Superscalar Processors,” PhD thesis, University of

Michigan., 1993.

[7] J.V Kumar, B Nagaraju, C Swapna, T Ramanjappa,

“Design and development of FPGA based low power

pipelined 64-Bit RISC processor with double precision

floating point unit,” in Proc. International Conf

Communications and Signal Processing (ICCSP).,

pp.1054-1058, Apr. 3-5,2014.

[8] P.P Ravale, S. S Apte, “Design of a branch prediction

unit of a microprocessor based on superscalar

architecture using VLSI,” in Proc. 2nd International

Conf Computer Engineering and Technology (ICCET),

vol.3, pp.355-360, Apr. 16-18, 2010.

[9] J.W Kwak, C.S Jhon, “High-performance embedded

branch predictor by combining branch direction history

and global branch history,” in Proc. IET Computers &

Digital Techniques, vol.2, no.2, pp.142-154, March

2008.

IJCATM:www.ijcaonline.org

