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ABSTRACT 

In this paper, an approach for efficiently extracting the 

repeating patterns in a biological sequence is proposed. A 

repeating pattern is a subsequence which appears more than 

once in a sequence, which is one of the most important 

features that can be used for revealing functional or 

evolutionary relationships in biological sequences. The 

algorithm does a rapid scan of the string to find repeating 

regions where the repeating substring has been marked using 

length, occurrence positions, and occurrence frequency. The 

algorithm execute in linear time and space independent of 

alphabet size. The algorithm also has the capability to restrict 

output complete repeats in which length (period) p ≥ pmin, 

where pmin ≥ 1 is a user-specified minimum. The algorithm 

outputs complete repeats, and can be extended or applied to 

other situations, for example computing maximal repeats, or 

finding common motifs in a set of biological sequences.  
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1. INTRODUCTION 
A large portion of DNA consists of repeating patterns of 

various sizes, from very small to very large. It has been 

estimated that repetitive DNA sequences comprise 

approximately 50% of the human genome [1, 2]. It is assumed 

that frequent or rare patterns may correspond to signals in 

biological sequences that imply functional or evolutionary 

relationships. For example, repetitive patterns in the promoter 

regions of functionally related genes may correspond to 

regulatory elements (e.g. transcription factor binding sites). 

Another example can be found in [3] where the authors 

applied repeat analysis to five distinct areas of computational 

biology: checking fragment assemblies, searching for low 

copy repeats related to human malformations, finding unique 

sequences, comparing gene structures and mapping of 

cDNA/EST. 

The researchers point out that repeats in the evolutionary 

process can be used to help forming a new gene [4]. In some 

cases, repeating patterns have been implicated in human 

disease [5]. A repeating three nucleotide pattern on the human 

X chromosome is sometimes replicated incorrectly, causing 

the number of repeats to balloon from 50 to hundreds or 

thousands [6]. Individual with this defect suffer from Fragile-

X mental retardation [6]. Several other diseases are also 

known to have association with the increases in the number of 

trinucleotide repeats, including Huntington's disease [7] and 

Friedreich's ataxia [8]. Therefore, in-depth research on 

biological sequence repeats will help to reveal the 

pathogenesis of certain genetic diseases, and provide an 

effective method for the diagnosis and treatment of these 

genetic diseases. Finding common substrings in a set of 

strings is also important. For example, motifs or short strings 

common to protein sequences are assumed to represent a 

specific property of the sequences [9, 10].  

Given the importance of repeating patterns and the massive 

amount of exponentially growing DNA sequence data, it is a 

daunting challenge to develop efficient methods and 

algorithms for finding repeats. In this paper, we investigate 

mathematical and algorithmic aspects of repeats in biological 

sequences. Considering the importance of the definition of 

repeats, we introduce a definition of repeats that considers 

both length and frequency of occurrences. We then propose an 

efficient approach for the extraction of the repeating patterns 

in biological objects, which does a rapid scan of the string, to 

find repeating regions where the repeating substring has been 

marked using length, occurrence positions, and occurrence 

frequency. The algorithm execute in linear time and space 

independent of alphabet size. The algorithm also has the 

capability to restrict output complete repeats in which length 

(period) p ≥ pmin, where pmin ≥ 1 is a user-specified minimum. 

In Section 2 we describe previous related work. In Section 3 

we introduce some definitions and preprocessing, we then 

analyze various features of repeating patterns in biological 

sequences. We use an example to show the basic idea of the 

proposed method for finding complete repeats and propose a 

linear time and space algorithm. Section 4 summarizes the 

results and outlines the future work. 

2. PREVIOUS WORK 
The first step of designing efficient algorithm for locating 

repeats is giving the accurate definition of the repeats. 

Repetitive patterns, or repeats for short, usually refer to the 

sequences that occur repeatedly in biological sequences.  

Based on the reassociation rate, DNA sequences are divided 

into three classes:  

1. Highly repetitive: About 10-15% of 

mammalian DNA reassociates very rapidly. 

This class includes tandem repeats. The copies 

lie adjacent to each other, either directly or 

inverted. There are three kinds of tandem 

repeats, which include: satellites, minisatellites 

(variable number tandem repeat), and 

microsatellites (short tandem repeat). Tandem 

repeat is also called repetition in some 

literatures. 

2. Moderately repetitive: Roughly 25-40% of 

mammalian DNA reassociates at an 

intermediate rate. This class includes 
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interspersed repeats. 

3. Single copy genes (or very low copy number 

genes, also called Genomic island): This class 

accounts for 50-60% of mammalian DNA.   

The automated detection of such repeats in biological 

sequences is no trivial task. The first step in the identification 

may give the proper definition of the repeats. Biologically 

meaningful definition of repeats must consider the length and 

frequency of repetitive substrings. Some studies suggest that 

accurately define repeats is not easy. Some methods can only 

find short repeats or tandem repeats. However, they are 

unable to find long and interspersed repeats.  

Some methods require an annotated library of repeats for 

repeat identification, for example RepeatMasker [11]. This 

library is largely dependent on the similarity of homologous 

sequences, so the method is limiting. In [12] an algorithm is 

proposed to find all the maximal repeated pairs in a string. 

The main data structure is suffix tree, and the time complexity 

is O(αn+q), where q is the number of pairs output. 

REPuter program [3,13] overcomes the limitation of input 

sequence size and is the suffix tree based algorithm to identify 

repeated sequences, while the output is again a list of pairs of 

similar strings of maximal length. A limitation to this method 

is the size of the genomic target due to the workload. 

MUMmer program [14] is an alignment and comparison 

program for a long DNA sequence, and it can also be used to 

identify repeat patterns. TRF (Tandem Repeats Finder) [15] 

designed by Beason is the most influential method for tandem 

repeats discovery. But there is a restriction on the size of the 

tandem repeats period. 

Algorithms in [16] uses either the suffix trees of both a string 

and its reversed string, or alternatively the suffix arrays of 

both, to compute all the complete NE repeats (Nonextendible 

repeats) in a string in θ(n) time. Algorithm in [17] describes a 

suffix array-based linear-time algorithm to compute all 

substring equivalence classes in a string --- that is, complete 

NE repeats together with all substrings that are unique in a 

string in O(n). In [18], several fast algorithms for computing 

different kinds of maximal repeats under some restrictions 

were proposed, which are also suffix array-based linear-time 

algorithms. In practice algorithms in [18] uses substantially 

less time and space than either of [16,17]. 

3. OUR ALGORITHM 

3.1 Definitions 
We use standard concepts and notation about strings. The set 

Σ denotes a nonempty alphabet of symbols, and the alphabet 

size σ = |Σ|. A string S is an ordered sequence of elements 

drawn from Σ. In this paper, we represent S as an array S[0..n-

1] of n ≥ 0 letters, where n = |S| is called the length of the 

string, while the empty string is denoted by ε. We say that S 

has n elements S[0], S[2],..., S[n-1], and has n positions while 

position 0 is at leftmost side of S and position n-1 is at 

rightmost side of S. Corresponding to any pair of integers i 

and j that satisfy 0 ≤ i ≤ j ≤ n-1, we define a substring S[i..j] of 

S as follows: S[i..j] = S[i]S[i+1]…S[j]. We say that S[i..j] 

occurs at position i of S and that it has length j-i+1.  

In particular, S[0, i] is called a prefix of S that ends at position 

i and S[i, n-1] is called a suffix of S that begins at position i. 

Let prefi(S) = S[0, i] and suffi(S) = S[i, n-1] denote the prefix 

and suffix of S, respectively. Omitting the subscripts, we let 

pref(S) and suff(S) denote the set of all non-empty prefixes 

and suffixes of S, respectively.  

Intuitively, a repeat is a collection of repeating substrings, not 

necessarily adjacent. In a simple way, a repeat can be 

described as R = ((i1, j1), (i2, j2)) as in Figure 1, where (i1, j1) is 

the first starting and ending positions of repeating substring 

ATGC, and (i2, j2) is the second one.  

j2i2j1i1

... ...GCG TCTA...ACTAG

 

Fig. 1 Repeat R = ((i1, j1), (i2, j2)) = ATGC 

If repeating substring appears many times, above definition is 

inefficient; we also discussed that meaningful definition of 

repeats must consider the length and occurrence frequency. 

We notice that the repeating substrings of a repeat are the 

same length. Therefore, more formally, a repeat in S can be 

defined as a tuple   

                               RS,u = (p; i1, i2,...,ie), 

where e ≥ 2,  0 ≤ i1 < i2 < ... < ie ≤ n-1; the repeating substring 

       u = S[i1..i1+p-1] = S[i2..i2+p-1] = ... = S[ie..ie+p-1]. 

We call u the generator, p the period (the length), e the 

exponent, and i1,i2, ..., ie the occurrence positions of RS,u. Note 

that it may happen, for some j ∈ 1..e-1, that ij+1-ij = p or that 

ij+1-ij < p -- that is, the substrings of a repeat may be adjacent 

or even overlap. 

We say that RS,u  is complete if for every 

                        i ∈ 0..n-1 and i ∉ (p; i1, i2,...,ie), 

we are assured that S[p; i..i+p-1] ≠ u. We say that RS,u is left-

extendible (LE) if 

                               (p+1; i1-1, i2-1,...,ie-1) 

is a repeat; in this case, (p+1; i1-1, i2-1,...,ie-1) is a repeat 

whose suffixes of length p are specified by RS,u. Similarly, 

RS,u is right-extendible (RE) if 

                              (p+1; i1, i2,...,ie) 

is a repeat; in this case, (p+1; i1, i2,...,ie) is a repeat whose 

prefixes of length p are specified by RS,u. If RS,u is neither LE 

nor RE, we say that it is nonextendible (NE).  

                      

1 5

S

0 76432

T GG GTTGG=
 

Fig. 2 DNA Sequence S = GTGGTGTG 

In Figure 2, there are several repeats in the DNA sequence S; 

for example, RS,GTG = (3; 0, 3, 5) is NE repeat; while RS,TG = 

(2; 1, 4, 6) is LE repeat , and RS,GT = (2; 0, 3, 5) is RE repeat. 

All of them are complete repeats.  

3.2 Biological Sequence 
Since a major application of the problem is computational 

molecular biology, we briefly introduce the biological 

sequence here. DNA sequence is a string containing 

characters A, C, G and T, which means that Σ = {A, T, C, G} 

for DNA; Σ = {A,C,G,U} for RNA, and for the protein 

sequence, Σ = { A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, 

T, V, W, Y}. As stated in [19]: The development of fast 

methods for sequencing genes and proteins is one of the most 

significant technological achievements of recent times. This 

has enabled the creation of large databases which can be 

processed by abstracting sequences of nucleic acids (DNA, 
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RNA) and amino acids (proteins) into strings of characters. 

Finding all repeats in a biological sequence is equivalent to 

the problem of finding all repeats in an arbitrary string 

containing those characters.  

3.3 Preprocessing 
Now we introduce certain preprocessing in our algorithm, 

namely the suffix array and longest common prefix array, 

which are usually used together, become a central data 

structure in computational molecular biology. The suffix array 

(SA) is an array SA[0..n-1] in which SA[j] = i iff suffix i is 

the jth in lexicographical order among all the suffixes of S. The 

suffix array of a string of length n over an integer alphabet can 

be computed in O(n) time [20]. 

1 18151295

SA

S

0 2019171614131110876432

T CTGCAA TAGTACGVCGTACG

0 15117934 10206161171228181319145

1 10410-1 01341230132224LCP

i 21

V

21

0

Fig 3: SA and LCP arrays of string S 

Let us denote the length of the longest common prefix of 

suffixes i and j by lcp(i, j). Then, the LCP array contains the 

lengths of the longest common prefixes between successive 

suffixes of SA. That is, LCP[i] = lcp(SA[i-1], SA[i]) for 0 < i 

≤ n-1. Given S and SA, LCP can also be computed in θ(n) 

time [21]. An example of protein sequence as string S together 

with SA and LCP arrays are shown in Figure 3.  

3.4 Design of the Algorithm 
As we discussed in Section 2, the automated detection of 

repeats in biological sequences is no trivial task. The first step 

of designing efficient algorithm for locating repeats is giving 

the accurate definition of the repeats. In Section 3.1, we give 

the definition of a repeat as RS,u = (p; i1,i2,...,ie), which 

consider the generator u, the period p, the exponent e, and the 

occurrence positions i1, i2, ..., ie of RS,u. Since biologically 

meaningful definition of repeats must consider the length and 

frequency of repetitive substrings, here p is the length of the 

repeat, and the frequency can be derived from the occurrence 

positions i1,i2,...,ie. Since all these information are unknown, 

we need to design an effective approach to locate the positions 

of the repeating substrings and the boundaries.  

In this section we introduce the basic methodology and design 

process of our algorithms, illustrated with the example S = 

ATGCAATGCCVGGCATTGCATV. 

Fig 4: graphical representation of the SA and LCP 

values of S 

Figure 4 gives a graphical representation of the SA and LCP 

values of S. For simplifying the algorithm, we suppose that 

LCP[0]=-1, LCP[n]=-1. 

 At each position i = 0, 1,…, n-1, the corresponding 
SA[i] values and LCP[i] values are shown. 

 The vertical lines in the figure identify increases and 
decreases in the LCP values p as i ranges from 0 to 
n-1.  

 The LCP values allow the detection of repeats:  

 When LCP[i] < LCP[i+1] : open a potential repeat 
occurring at the positions of SA[i], SA[i+1]; 

 When LCP[i] = LCP[i+1] : sustain a potential repeat 
occurring at the positions of SA[i], SA[i+1]; 

 When LCP[i] > LCP[i+1]: close the repeat 

previously created. 

 For example, when LCP[1] < LCP[2], open a 
potential repeat occurring at the positions of SA[1], 
SA[2]; that is, the repeat substring is ATGC 
occurring at positions 0 and 5.  

 When LCP[3] = LCP[4], sustain a potential repeat 
occurring at the positions of SA[3], SA[4]; that is, 
sustain a potential repeat with repeating substring of 
AT at positions 14,19. 

 When LCP[4] > LCP[5], close the repeat. That 
means there is no repeat at the positions SA[4] = 19, 
SA[5] = 3. 

 Each horizontal line can be specified by a tuple (p; 
i, j) where i is the left endpoint of the line, j is the 
right endpoint of the line at height p; then (p; i, j) 
specifies a repeat in S, moreover, a complete repeat. 
For example, there are 3 repeats of length 4, that is, 
(4; 1, 2), (4; 11, 12), and (4; 15, 16), corresponding 
to (4; 0, 5) = ATGC, (4; 12, 17) = GCAT, and (4; 1, 
16) = TGCA, respectively. 

 The notation (p; i, j) used here, that identifies a range 
i..j in SA provides a mechanism for compressing the 
reporting of repeats; in terms of positions in S, for 
example, the repeat (p; i, j) = (4; 1, 2) would need to 
be reported as (4; 0, 5). See below for the 
explanation. 

 For example, according to definition in Section 3.1, 
repeat RS,ATGC will be (4; 0, 5), but now it can be 
specified as (4;1,2), since (4; SA[1], SA[2]) = (4; 0, 
5) = ATGC; same as RS,AT = (4;0,5,14,19), can be 
specified as (2;1,4), since (2;1,4) = (2; SA[1], SA[2], 
SA[3], SA[4]) = (4;0,5,14,19) = AT.  

 Some horizontal lines occur in a specific segment (p; 
i, j), p = p', p'+1,..,q; that is, with the same range i..j, 
but with different heights p. In such cases, the peak 
tuple (q; i, j) represents a longest repeat for positions 
i and j: 

S[SA[i] .. SA[i] + q-1]  

 S[SA[i+1] .. SA[i+1] + q-1]  

                    ………………. 

    S[SA[j] .. SA[j] + q-1] 

For example, the peak tuple (4;1,2) identifies the longest 

repeat (4; SA[1],SA[2]) = (4;0,5) = ATGC; the other tuples in 

this segment is (3; SA[1],SA[2]) = (3;0,5) = ATG, so (3;1,2) 

corresponding to ATG. We observe that ATG is RE repeats, 

but ATGC is NRE, because it is at the peak (it can not be right 

extended). 

The following lemma express more formally the observations 

made above. 

Lemma 1 (Completeness) Suppose there is a tuple (p; i, j) as 



International Journal of Computer Applications (0975 – 8887) 

Volume 128 – No.16, October 2015 

36 

defined above. Let u = S[SA[i]..SA[i] + p-1]. Then (p; i, j) 

identifies a complete repeat. 

Proof Since p is the longest common prefix of the suffixes 

SA[i], SA[i + 1], .., SA[j], and i < j, therefore the prefixes of 

length p of these suffixes certainly identify a repeat (p; SA[i], 

SA[i + 1], .., SA[j]) of S. If (p; i, j) is not a complete repeat, 

then there must exist k, such that S[k..k + p−1] = u, for k ∈ 

{1, 2,…, n} ^ k ∉ {SA[i], SA[i + 1],..,SA[j]}. But since for 

some t, SA[t] = k, it follows that t, k ∈ {i, i + 1, .., j}; that is, 

k ∈ {SA[i], SA[i + 1], .., SA[j]}, so RS,u = (p; SA[i], SA[i + 

1], .., SA[j]) must be a complete repeat of S.  

Occurrence frequency of the repeating patterns plays the 

important roles in bioinformatics studies. We now analyze 

some features relating with the occurrence frequency of the 

repeating substring.  

In the form of RS,u = (p; i1, i2,...,ie), we could easily determine 

the occurrence frequency of the repeating substring u in the 

repeat RS,u, which equals to the e, the number of the repeating 

substring u appeared. For example, for RS,AT = (4; 0, 5, 14, 

19), the occurrence frequency of the repeating substring u = 

AT is 4. The occurrence frequency of the repeating substring 

u is simply called the occurrence frequency of the repeat RS, u 

and written in Fre(RS,u). For the form of RS,u = (p; i, j), then 

the occurrence frequency of the repeat Fre(RS,u) equals to j-

i+1. If Fre(RS,u) is equal to or higher than predefined threshold 

Fmin, RS,u is called high-frequency repeat, while Fmin = 2 is a 

minimal frequency for a repeat. Then we have the following 

lemmas that express more features of the repeats. 

Lemma 2 If Fre(RS,u) ≥ λ, where λ ≥ 2, then Fre(pref(u)) ≥ λ 

and Fre(suff(u)) ≥ λ, where pref(u) and suff(u) denote the set 

of all non-empty prefixes and suffixes of u as defined in 

Section 3.1. 

Lemma 3 For a repeat RS,u and pref(u), the following 

inequation holds. 

Fre(RS,u) ≤ min(Fre(pref(u)). 

An example can be drawn from Figure 2. According to 

Lemma 1, there are 4 complete repeats in the third segment of 

the figure, which are:  

Fre(RS,GCAT) = 2, since RS,GCAT = (p; i, j) = (4; 11, 12), 

Fre(RS,GCA) = 3, since RS,GCA = (p; i, j) = (3; 10, 12), 

Fre(RS,GC) = 4, since RS,GC = (p; i, j) = (2; 10, 13), 

Fre(RS,G) = 5, since RS,GCA = (p; i, j) = (1; 10, 14); 

According to Lemma 2 and 3, we have:  

Fre(RS,GCAT) ≥ λ ( λ ≥ 2) ⇒ 

Fre(RS,G) ≥ λ, Fre(RS,GC) ≥ λ, Fre(RS,GCA) ≥ λ; 

And Fre(RS,GCAT) ≤ min(Fre(RS,GCA), Fre(RS,GC), Fre(RS,G)) 

For a repeat RS,u and pref(u), according to Lemma 2, all 

pref(u) are repeats too, so we have Lemma 4 as follow: 

Lemma 4 The peak tuple (q; i, j) represents a longest repeat 

for positions i and j, and also the NRE repeat. 

Lemma 1,2,3 and 4, together with the graphical presentation 

exemplified in Figure 4, motivates representation of repeats 

by (p; i, j) where i..j is a range in SA. This is the approach 

adopted by our algorithm. 

If we want to locate all complete repeats (p; i, j) where i..j is a 

range in SA, we need to scan LCP several times. In order to 

compute all complete repeats by only scanning LCP once, we 

design a stack STALOCH where every stack element has the 

form: (location, height). Here location represent the 

corresponding initial position (or left boundary), height 

represent the corresponding LCP values.  

Lemma 1 tells us that in order to specify a complete repeat in 

S, it is necessary only to output a triple (p; i, j) -- provided the 

suffix array of S is available. We add frequency Fre for the 

applications that require the frequency Fre >=Fmin, here Fmin is 

a user defined minimal frequency for a repeat. We as well 

give the restriction to the period of repeats as Pmin, so the 

trivial repeats will not be output. 

The algorithm is presented in Figure 5. 

Algorithm Complete Repeat Finding algorithm (CRFinder) 

CRFinder(S, Pmin, Fmin) 

Input: string S of length n, requested minimum repeat length 

threshold Pmin and minimum frequency Fmin 

Output: all complete repeats (p; i, j) in S that appear at least 

Fmin times and period p ≥ Pmin   

Preprocessing: Computer SA[i] and LCP[i] (0≤i≤n-1) of 

string S; let LCP[0] = -1, LCP[n] = -1 

1. k=0; push (STALOCH; 0, 0)  

//(location, height) are stored in stack STALOCH, initial values set to 0 

2. while (k < n-1) 

3.      while (LCP[k] <= LCP[k+1]) do 

//when LCP[k]<LCP[k+1]: open a potential repeat occurring 

4.            if (STALOCH[top].height < LCP[k+1]) then  

push (STALOCH; k, LCP[k+1]) 

5.            k++ 

6.      while (LCP[k] > LCP[k+1]) do  

//when LCP[k] > LCP[k+1]: close the repeat previously created 

7.            j=k  

8.            k++  

9.            pop(STALOCH) to (i,h) 

10.          while (STALOCH[top].height > LCP[k]) do  

11.               for p = h down to STALOCH[top].height +1 do  

12.                     Check(p, i, j) 

//check period and occurrence frequency satisfy the requirements 

13.               pop(STALOCH) to (i,h) 

14.          for p = h downto LCP[k] +1 do  

15.               Check(p, i, j) 

16.          if (STALOCH[top].height < LCP[k]) then  

push (STALOCH; i, LCP[k]) 

17.          while (LCP[k] = LCP[k+1] ) do 
//when LCP[k] = LCP[k+1]: sustain a potential repeat occurring 

18.               k++ 
 
Function Check(p, i, j) 

1. f = j-i+1 

2.      if f >=Fmin and p >= Pmin then 

3.           output (p; i, j; f) 

 

Fig 5: Complete Repeat Finding algorithm (CRFinder) 

To locate all complete repeats in S, we build a suffix array and 

LCP array for S in linear time (see e.g. [20] and [21] and 

references therein for details about suffix array and LCP array 

and their linear time construction), and then our algorithm 

CRFinder perform a single left-to-right scan of LCP, so the 

total time complexity is linear independent of alphabet size. 

Each complete repeat can be specified in constant space 

(about 9 bytes), so the space complexity is also linear. A few 

execution steps of algorithm CRFinder are showed by using a 
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part of string S (see Figure 3) in Figure 6.Although our 

algorithm CRFinder aimed to locate all complete repeats in a 

biological sequence, it is trivial to extend CRFinder to find all 

the NRE repeats as Lemma 4 pointed “The peak tuple (q; i, j) 

represents a longest repeat for positions i and j, and also the 

NRE repeat”, it only need to push into the stack with peak 

tuple (q; i, j) rather than all the tuples. 

Execute steps 14 -15,

Output(4;1,2;2)=RS,ATGC

Output(3;1,2;2)=RS,ATG

LCP[k]k hj

(1, 4)

(0, 0)
(0, 1)

i h

(0, 0)
(0, 1)

LCP[k+1]

0 -1 1

1 1 4

2 4 2

i

2

1 43

1 95

S

0 1110876432

T CAA GVCGTACG

i

(1, 4)

Execute 

step 9

Execute 

steps1-5

...

...

Execute 

step 7

 

Fig 6: A few execution steps of algorithm CRFinder are 

showed by using a part of string S (see Figure 3); we let 

Fmin =2 and Pmin =2. The repeats RS,ATGC and RS,ATG are 

output. 

4. CONCLUSION 
Repetitive patterns have a great importance in a variety of 

applications not only in computational molecular biology 

(including tandem repeats analysis, motif finding, etc.), but 

also in data mining [22], and data compression [23]. 

In this paper we discussed repetitive patterns problem. A 

novel approach of finding complete repeats in biological 

sequence is proposed, which leads to a natural definition of 

repeat length and boundaries, also the frequency can be 

derived from the boundaries. The algorithm allows for listing 

all occurrences of complete repeats in a given string of length 

n in O(n) time. The algorithm also has the capability to restrict 

output by using the user-specified minimum and can be 

extended or applied to other situations.  
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