
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

33

Efficient Algorithm for Extracting Complete Repeats

from Biological Sequences

Munina Yusufu
School of Computer Science and Technology

Xinjiang Normal University
Urumqi, China

Gulina Yusufu
School of Education Science
Xinjiang Normal University

Urumqi, China

ABSTRACT

In this paper, an approach for efficiently extracting the

repeating patterns in a biological sequence is proposed. A

repeating pattern is a subsequence which appears more than

once in a sequence, which is one of the most important

features that can be used for revealing functional or

evolutionary relationships in biological sequences. The

algorithm does a rapid scan of the string to find repeating

regions where the repeating substring has been marked using

length, occurrence positions, and occurrence frequency. The

algorithm execute in linear time and space independent of

alphabet size. The algorithm also has the capability to restrict

output complete repeats in which length (period) p ≥ pmin,

where pmin ≥ 1 is a user-specified minimum. The algorithm

outputs complete repeats, and can be extended or applied to

other situations, for example computing maximal repeats, or

finding common motifs in a set of biological sequences.

General Terms

Algorithms, Data Mining.

Keywords

Complete repeats, Biological sequence, Suffix array, Motif

finding

1. INTRODUCTION
A large portion of DNA consists of repeating patterns of

various sizes, from very small to very large. It has been

estimated that repetitive DNA sequences comprise

approximately 50% of the human genome [1, 2]. It is assumed

that frequent or rare patterns may correspond to signals in

biological sequences that imply functional or evolutionary

relationships. For example, repetitive patterns in the promoter

regions of functionally related genes may correspond to

regulatory elements (e.g. transcription factor binding sites).

Another example can be found in [3] where the authors

applied repeat analysis to five distinct areas of computational

biology: checking fragment assemblies, searching for low

copy repeats related to human malformations, finding unique

sequences, comparing gene structures and mapping of

cDNA/EST.

The researchers point out that repeats in the evolutionary

process can be used to help forming a new gene [4]. In some

cases, repeating patterns have been implicated in human

disease [5]. A repeating three nucleotide pattern on the human

X chromosome is sometimes replicated incorrectly, causing

the number of repeats to balloon from 50 to hundreds or

thousands [6]. Individual with this defect suffer from Fragile-

X mental retardation [6]. Several other diseases are also

known to have association with the increases in the number of

trinucleotide repeats, including Huntington's disease [7] and

Friedreich's ataxia [8]. Therefore, in-depth research on

biological sequence repeats will help to reveal the

pathogenesis of certain genetic diseases, and provide an

effective method for the diagnosis and treatment of these

genetic diseases. Finding common substrings in a set of

strings is also important. For example, motifs or short strings

common to protein sequences are assumed to represent a

specific property of the sequences [9, 10].

Given the importance of repeating patterns and the massive

amount of exponentially growing DNA sequence data, it is a

daunting challenge to develop efficient methods and

algorithms for finding repeats. In this paper, we investigate

mathematical and algorithmic aspects of repeats in biological

sequences. Considering the importance of the definition of

repeats, we introduce a definition of repeats that considers

both length and frequency of occurrences. We then propose an

efficient approach for the extraction of the repeating patterns

in biological objects, which does a rapid scan of the string, to

find repeating regions where the repeating substring has been

marked using length, occurrence positions, and occurrence

frequency. The algorithm execute in linear time and space

independent of alphabet size. The algorithm also has the

capability to restrict output complete repeats in which length

(period) p ≥ pmin, where pmin ≥ 1 is a user-specified minimum.

In Section 2 we describe previous related work. In Section 3

we introduce some definitions and preprocessing, we then

analyze various features of repeating patterns in biological

sequences. We use an example to show the basic idea of the

proposed method for finding complete repeats and propose a

linear time and space algorithm. Section 4 summarizes the

results and outlines the future work.

2. PREVIOUS WORK
The first step of designing efficient algorithm for locating

repeats is giving the accurate definition of the repeats.

Repetitive patterns, or repeats for short, usually refer to the

sequences that occur repeatedly in biological sequences.

Based on the reassociation rate, DNA sequences are divided

into three classes:

1. Highly repetitive: About 10-15% of

mammalian DNA reassociates very rapidly.

This class includes tandem repeats. The copies

lie adjacent to each other, either directly or

inverted. There are three kinds of tandem

repeats, which include: satellites, minisatellites

(variable number tandem repeat), and

microsatellites (short tandem repeat). Tandem

repeat is also called repetition in some

literatures.

2. Moderately repetitive: Roughly 25-40% of

mammalian DNA reassociates at an

intermediate rate. This class includes

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

34

interspersed repeats.

3. Single copy genes (or very low copy number

genes, also called Genomic island): This class

accounts for 50-60% of mammalian DNA.

The automated detection of such repeats in biological

sequences is no trivial task. The first step in the identification

may give the proper definition of the repeats. Biologically

meaningful definition of repeats must consider the length and

frequency of repetitive substrings. Some studies suggest that

accurately define repeats is not easy. Some methods can only

find short repeats or tandem repeats. However, they are

unable to find long and interspersed repeats.

Some methods require an annotated library of repeats for

repeat identification, for example RepeatMasker [11]. This

library is largely dependent on the similarity of homologous

sequences, so the method is limiting. In [12] an algorithm is

proposed to find all the maximal repeated pairs in a string.

The main data structure is suffix tree, and the time complexity

is O(αn+q), where q is the number of pairs output.

REPuter program [3,13] overcomes the limitation of input

sequence size and is the suffix tree based algorithm to identify

repeated sequences, while the output is again a list of pairs of

similar strings of maximal length. A limitation to this method

is the size of the genomic target due to the workload.

MUMmer program [14] is an alignment and comparison

program for a long DNA sequence, and it can also be used to

identify repeat patterns. TRF (Tandem Repeats Finder) [15]

designed by Beason is the most influential method for tandem

repeats discovery. But there is a restriction on the size of the

tandem repeats period.

Algorithms in [16] uses either the suffix trees of both a string

and its reversed string, or alternatively the suffix arrays of

both, to compute all the complete NE repeats (Nonextendible

repeats) in a string in θ(n) time. Algorithm in [17] describes a

suffix array-based linear-time algorithm to compute all

substring equivalence classes in a string --- that is, complete

NE repeats together with all substrings that are unique in a

string in O(n). In [18], several fast algorithms for computing

different kinds of maximal repeats under some restrictions

were proposed, which are also suffix array-based linear-time

algorithms. In practice algorithms in [18] uses substantially

less time and space than either of [16,17].

3. OUR ALGORITHM

3.1 Definitions
We use standard concepts and notation about strings. The set

Σ denotes a nonempty alphabet of symbols, and the alphabet

size σ = |Σ|. A string S is an ordered sequence of elements

drawn from Σ. In this paper, we represent S as an array S[0..n-

1] of n ≥ 0 letters, where n = |S| is called the length of the

string, while the empty string is denoted by ε. We say that S

has n elements S[0], S[2],..., S[n-1], and has n positions while

position 0 is at leftmost side of S and position n-1 is at

rightmost side of S. Corresponding to any pair of integers i

and j that satisfy 0 ≤ i ≤ j ≤ n-1, we define a substring S[i..j] of

S as follows: S[i..j] = S[i]S[i+1]…S[j]. We say that S[i..j]

occurs at position i of S and that it has length j-i+1.

In particular, S[0, i] is called a prefix of S that ends at position

i and S[i, n-1] is called a suffix of S that begins at position i.

Let prefi(S) = S[0, i] and suffi(S) = S[i, n-1] denote the prefix

and suffix of S, respectively. Omitting the subscripts, we let

pref(S) and suff(S) denote the set of all non-empty prefixes

and suffixes of S, respectively.

Intuitively, a repeat is a collection of repeating substrings, not

necessarily adjacent. In a simple way, a repeat can be

described as R = ((i1, j1), (i2, j2)) as in Figure 1, where (i1, j1) is

the first starting and ending positions of repeating substring

ATGC, and (i2, j2) is the second one.

j2i2j1i1

... ...GCG TCTA...ACTAG

Fig. 1 Repeat R = ((i1, j1), (i2, j2)) = ATGC

If repeating substring appears many times, above definition is

inefficient; we also discussed that meaningful definition of

repeats must consider the length and occurrence frequency.

We notice that the repeating substrings of a repeat are the

same length. Therefore, more formally, a repeat in S can be

defined as a tuple

 RS,u = (p; i1, i2,...,ie),

where e ≥ 2, 0 ≤ i1 < i2 < ... < ie ≤ n-1; the repeating substring

 u = S[i1..i1+p-1] = S[i2..i2+p-1] = ... = S[ie..ie+p-1].

We call u the generator, p the period (the length), e the

exponent, and i1,i2, ..., ie the occurrence positions of RS,u. Note

that it may happen, for some j ∈ 1..e-1, that ij+1-ij = p or that

ij+1-ij < p -- that is, the substrings of a repeat may be adjacent

or even overlap.

We say that RS,u is complete if for every

 i ∈ 0..n-1 and i ∉ (p; i1, i2,...,ie),

we are assured that S[p; i..i+p-1] ≠ u. We say that RS,u is left-

extendible (LE) if

 (p+1; i1-1, i2-1,...,ie-1)

is a repeat; in this case, (p+1; i1-1, i2-1,...,ie-1) is a repeat

whose suffixes of length p are specified by RS,u. Similarly,

RS,u is right-extendible (RE) if

 (p+1; i1, i2,...,ie)

is a repeat; in this case, (p+1; i1, i2,...,ie) is a repeat whose

prefixes of length p are specified by RS,u. If RS,u is neither LE

nor RE, we say that it is nonextendible (NE).

1 5

S

0 76432

T GG GTTGG=

Fig. 2 DNA Sequence S = GTGGTGTG

In Figure 2, there are several repeats in the DNA sequence S;

for example, RS,GTG = (3; 0, 3, 5) is NE repeat; while RS,TG =

(2; 1, 4, 6) is LE repeat , and RS,GT = (2; 0, 3, 5) is RE repeat.

All of them are complete repeats.

3.2 Biological Sequence
Since a major application of the problem is computational

molecular biology, we briefly introduce the biological

sequence here. DNA sequence is a string containing

characters A, C, G and T, which means that Σ = {A, T, C, G}

for DNA; Σ = {A,C,G,U} for RNA, and for the protein

sequence, Σ = { A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S,

T, V, W, Y}. As stated in [19]: The development of fast

methods for sequencing genes and proteins is one of the most

significant technological achievements of recent times. This

has enabled the creation of large databases which can be

processed by abstracting sequences of nucleic acids (DNA,

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

35

RNA) and amino acids (proteins) into strings of characters.

Finding all repeats in a biological sequence is equivalent to

the problem of finding all repeats in an arbitrary string

containing those characters.

3.3 Preprocessing
Now we introduce certain preprocessing in our algorithm,

namely the suffix array and longest common prefix array,

which are usually used together, become a central data

structure in computational molecular biology. The suffix array

(SA) is an array SA[0..n-1] in which SA[j] = i iff suffix i is

the jth in lexicographical order among all the suffixes of S. The

suffix array of a string of length n over an integer alphabet can

be computed in O(n) time [20].

1 18151295

SA

S

0 2019171614131110876432

T CTGCAA TAGTACGVCGTACG

0 15117934 10206161171228181319145

1 10410-1 01341230132224LCP

i 21

V

21

0

Fig 3: SA and LCP arrays of string S

Let us denote the length of the longest common prefix of

suffixes i and j by lcp(i, j). Then, the LCP array contains the

lengths of the longest common prefixes between successive

suffixes of SA. That is, LCP[i] = lcp(SA[i-1], SA[i]) for 0 < i

≤ n-1. Given S and SA, LCP can also be computed in θ(n)

time [21]. An example of protein sequence as string S together

with SA and LCP arrays are shown in Figure 3.

3.4 Design of the Algorithm
As we discussed in Section 2, the automated detection of

repeats in biological sequences is no trivial task. The first step

of designing efficient algorithm for locating repeats is giving

the accurate definition of the repeats. In Section 3.1, we give

the definition of a repeat as RS,u = (p; i1,i2,...,ie), which

consider the generator u, the period p, the exponent e, and the

occurrence positions i1, i2, ..., ie of RS,u. Since biologically

meaningful definition of repeats must consider the length and

frequency of repetitive substrings, here p is the length of the

repeat, and the frequency can be derived from the occurrence

positions i1,i2,...,ie. Since all these information are unknown,

we need to design an effective approach to locate the positions

of the repeating substrings and the boundaries.

In this section we introduce the basic methodology and design

process of our algorithms, illustrated with the example S =

ATGCAATGCCVGGCATTGCATV.

Fig 4: graphical representation of the SA and LCP

values of S

Figure 4 gives a graphical representation of the SA and LCP

values of S. For simplifying the algorithm, we suppose that

LCP[0]=-1, LCP[n]=-1.

 At each position i = 0, 1,…, n-1, the corresponding
SA[i] values and LCP[i] values are shown.

 The vertical lines in the figure identify increases and
decreases in the LCP values p as i ranges from 0 to
n-1.

 The LCP values allow the detection of repeats:

 When LCP[i] < LCP[i+1] : open a potential repeat
occurring at the positions of SA[i], SA[i+1];

 When LCP[i] = LCP[i+1] : sustain a potential repeat
occurring at the positions of SA[i], SA[i+1];

 When LCP[i] > LCP[i+1]: close the repeat

previously created.

 For example, when LCP[1] < LCP[2], open a
potential repeat occurring at the positions of SA[1],
SA[2]; that is, the repeat substring is ATGC
occurring at positions 0 and 5.

 When LCP[3] = LCP[4], sustain a potential repeat
occurring at the positions of SA[3], SA[4]; that is,
sustain a potential repeat with repeating substring of
AT at positions 14,19.

 When LCP[4] > LCP[5], close the repeat. That
means there is no repeat at the positions SA[4] = 19,
SA[5] = 3.

 Each horizontal line can be specified by a tuple (p;
i, j) where i is the left endpoint of the line, j is the
right endpoint of the line at height p; then (p; i, j)
specifies a repeat in S, moreover, a complete repeat.
For example, there are 3 repeats of length 4, that is,
(4; 1, 2), (4; 11, 12), and (4; 15, 16), corresponding
to (4; 0, 5) = ATGC, (4; 12, 17) = GCAT, and (4; 1,
16) = TGCA, respectively.

 The notation (p; i, j) used here, that identifies a range
i..j in SA provides a mechanism for compressing the
reporting of repeats; in terms of positions in S, for
example, the repeat (p; i, j) = (4; 1, 2) would need to
be reported as (4; 0, 5). See below for the
explanation.

 For example, according to definition in Section 3.1,
repeat RS,ATGC will be (4; 0, 5), but now it can be
specified as (4;1,2), since (4; SA[1], SA[2]) = (4; 0,
5) = ATGC; same as RS,AT = (4;0,5,14,19), can be
specified as (2;1,4), since (2;1,4) = (2; SA[1], SA[2],
SA[3], SA[4]) = (4;0,5,14,19) = AT.

 Some horizontal lines occur in a specific segment (p;
i, j), p = p', p'+1,..,q; that is, with the same range i..j,
but with different heights p. In such cases, the peak
tuple (q; i, j) represents a longest repeat for positions
i and j:

S[SA[i] .. SA[i] + q-1]

 S[SA[i+1] .. SA[i+1] + q-1]

 ……………….

 S[SA[j] .. SA[j] + q-1]

For example, the peak tuple (4;1,2) identifies the longest

repeat (4; SA[1],SA[2]) = (4;0,5) = ATGC; the other tuples in

this segment is (3; SA[1],SA[2]) = (3;0,5) = ATG, so (3;1,2)

corresponding to ATG. We observe that ATG is RE repeats,

but ATGC is NRE, because it is at the peak (it can not be right

extended).

The following lemma express more formally the observations

made above.

Lemma 1 (Completeness) Suppose there is a tuple (p; i, j) as

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

36

defined above. Let u = S[SA[i]..SA[i] + p-1]. Then (p; i, j)

identifies a complete repeat.

Proof Since p is the longest common prefix of the suffixes

SA[i], SA[i + 1], .., SA[j], and i < j, therefore the prefixes of

length p of these suffixes certainly identify a repeat (p; SA[i],

SA[i + 1], .., SA[j]) of S. If (p; i, j) is not a complete repeat,

then there must exist k, such that S[k..k + p−1] = u, for k ∈

{1, 2,…, n} ^ k ∉ {SA[i], SA[i + 1],..,SA[j]}. But since for

some t, SA[t] = k, it follows that t, k ∈ {i, i + 1, .., j}; that is,

k ∈ {SA[i], SA[i + 1], .., SA[j]}, so RS,u = (p; SA[i], SA[i +

1], .., SA[j]) must be a complete repeat of S.

Occurrence frequency of the repeating patterns plays the

important roles in bioinformatics studies. We now analyze

some features relating with the occurrence frequency of the

repeating substring.

In the form of RS,u = (p; i1, i2,...,ie), we could easily determine

the occurrence frequency of the repeating substring u in the

repeat RS,u, which equals to the e, the number of the repeating

substring u appeared. For example, for RS,AT = (4; 0, 5, 14,

19), the occurrence frequency of the repeating substring u =

AT is 4. The occurrence frequency of the repeating substring

u is simply called the occurrence frequency of the repeat RS, u

and written in Fre(RS,u). For the form of RS,u = (p; i, j), then

the occurrence frequency of the repeat Fre(RS,u) equals to j-

i+1. If Fre(RS,u) is equal to or higher than predefined threshold

Fmin, RS,u is called high-frequency repeat, while Fmin = 2 is a

minimal frequency for a repeat. Then we have the following

lemmas that express more features of the repeats.

Lemma 2 If Fre(RS,u) ≥ λ, where λ ≥ 2, then Fre(pref(u)) ≥ λ

and Fre(suff(u)) ≥ λ, where pref(u) and suff(u) denote the set

of all non-empty prefixes and suffixes of u as defined in

Section 3.1.

Lemma 3 For a repeat RS,u and pref(u), the following

inequation holds.

Fre(RS,u) ≤ min(Fre(pref(u)).

An example can be drawn from Figure 2. According to

Lemma 1, there are 4 complete repeats in the third segment of

the figure, which are:

Fre(RS,GCAT) = 2, since RS,GCAT = (p; i, j) = (4; 11, 12),

Fre(RS,GCA) = 3, since RS,GCA = (p; i, j) = (3; 10, 12),

Fre(RS,GC) = 4, since RS,GC = (p; i, j) = (2; 10, 13),

Fre(RS,G) = 5, since RS,GCA = (p; i, j) = (1; 10, 14);

According to Lemma 2 and 3, we have:

Fre(RS,GCAT) ≥ λ (λ ≥ 2) ⇒

Fre(RS,G) ≥ λ, Fre(RS,GC) ≥ λ, Fre(RS,GCA) ≥ λ;

And Fre(RS,GCAT) ≤ min(Fre(RS,GCA), Fre(RS,GC), Fre(RS,G))

For a repeat RS,u and pref(u), according to Lemma 2, all

pref(u) are repeats too, so we have Lemma 4 as follow:

Lemma 4 The peak tuple (q; i, j) represents a longest repeat

for positions i and j, and also the NRE repeat.

Lemma 1,2,3 and 4, together with the graphical presentation

exemplified in Figure 4, motivates representation of repeats

by (p; i, j) where i..j is a range in SA. This is the approach

adopted by our algorithm.

If we want to locate all complete repeats (p; i, j) where i..j is a

range in SA, we need to scan LCP several times. In order to

compute all complete repeats by only scanning LCP once, we

design a stack STALOCH where every stack element has the

form: (location, height). Here location represent the

corresponding initial position (or left boundary), height

represent the corresponding LCP values.

Lemma 1 tells us that in order to specify a complete repeat in

S, it is necessary only to output a triple (p; i, j) -- provided the

suffix array of S is available. We add frequency Fre for the

applications that require the frequency Fre >=Fmin, here Fmin is

a user defined minimal frequency for a repeat. We as well

give the restriction to the period of repeats as Pmin, so the

trivial repeats will not be output.

The algorithm is presented in Figure 5.

Algorithm Complete Repeat Finding algorithm (CRFinder)

CRFinder(S, Pmin, Fmin)

Input: string S of length n, requested minimum repeat length

threshold Pmin and minimum frequency Fmin

Output: all complete repeats (p; i, j) in S that appear at least

Fmin times and period p ≥ Pmin

Preprocessing: Computer SA[i] and LCP[i] (0≤i≤n-1) of

string S; let LCP[0] = -1, LCP[n] = -1

1. k=0; push (STALOCH; 0, 0)

//(location, height) are stored in stack STALOCH, initial values set to 0

2. while (k < n-1)

3. while (LCP[k] <= LCP[k+1]) do

//when LCP[k]<LCP[k+1]: open a potential repeat occurring

4. if (STALOCH[top].height < LCP[k+1]) then

push (STALOCH; k, LCP[k+1])

5. k++

6. while (LCP[k] > LCP[k+1]) do

//when LCP[k] > LCP[k+1]: close the repeat previously created

7. j=k

8. k++

9. pop(STALOCH) to (i,h)

10. while (STALOCH[top].height > LCP[k]) do

11. for p = h down to STALOCH[top].height +1 do

12. Check(p, i, j)

//check period and occurrence frequency satisfy the requirements

13. pop(STALOCH) to (i,h)

14. for p = h downto LCP[k] +1 do

15. Check(p, i, j)

16. if (STALOCH[top].height < LCP[k]) then

push (STALOCH; i, LCP[k])

17. while (LCP[k] = LCP[k+1]) do
//when LCP[k] = LCP[k+1]: sustain a potential repeat occurring

18. k++

Function Check(p, i, j)

1. f = j-i+1

2. if f >=Fmin and p >= Pmin then

3. output (p; i, j; f)

Fig 5: Complete Repeat Finding algorithm (CRFinder)

To locate all complete repeats in S, we build a suffix array and

LCP array for S in linear time (see e.g. [20] and [21] and

references therein for details about suffix array and LCP array

and their linear time construction), and then our algorithm

CRFinder perform a single left-to-right scan of LCP, so the

total time complexity is linear independent of alphabet size.

Each complete repeat can be specified in constant space

(about 9 bytes), so the space complexity is also linear. A few

execution steps of algorithm CRFinder are showed by using a

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.16, October 2015

37

part of string S (see Figure 3) in Figure 6.Although our

algorithm CRFinder aimed to locate all complete repeats in a

biological sequence, it is trivial to extend CRFinder to find all

the NRE repeats as Lemma 4 pointed “The peak tuple (q; i, j)

represents a longest repeat for positions i and j, and also the

NRE repeat”, it only need to push into the stack with peak

tuple (q; i, j) rather than all the tuples.

Execute steps 14 -15,

Output(4;1,2;2)=RS,ATGC

Output(3;1,2;2)=RS,ATG

LCP[k]k hj

(1, 4)

(0, 0)
(0, 1)

i h

(0, 0)
(0, 1)

LCP[k+1]

0 -1 1

1 1 4

2 4 2

i

2

1 43

1 95

S

0 1110876432

T CAA GVCGTACG

i

(1, 4)

Execute

step 9

Execute

steps1-5

...

...

Execute

step 7

Fig 6: A few execution steps of algorithm CRFinder are

showed by using a part of string S (see Figure 3); we let

Fmin =2 and Pmin =2. The repeats RS,ATGC and RS,ATG are

output.

4. CONCLUSION
Repetitive patterns have a great importance in a variety of

applications not only in computational molecular biology

(including tandem repeats analysis, motif finding, etc.), but

also in data mining [22], and data compression [23].

In this paper we discussed repetitive patterns problem. A

novel approach of finding complete repeats in biological

sequence is proposed, which leads to a natural definition of

repeat length and boundaries, also the frequency can be

derived from the boundaries. The algorithm allows for listing

all occurrences of complete repeats in a given string of length

n in O(n) time. The algorithm also has the capability to restrict

output by using the user-specified minimum and can be

extended or applied to other situations.

5. ACKNOWLEDGMENTS
This work is funded by the Natural Science Foundation of

Xinjiang Uyghur Autonomous Region (No.2012211A056).

6. REFERENCES
[1] Lander E.S, Linton L.M, Birren B, et al.. Initial

Sequencing and Analysis of the Human Genome, Nature,

2001, 409(6822): 860-921.

[2] Treangen TJ, Salzberg SL. Repetitive DNA and next-

generation sequencing: Computational challenges and

solutions, Nature Reviews Genetics, 2011, 13 (1): 36-46.

[3] Stefan Kurtz, Jomuna V. Choudhuri, Enno Ohlebusch,

Chris Schleiermacher, Jens Stoye, Robert Giegerich.

REPuter: The manifold applications of repeat analysis on

a genomic scale, Nucleic Acids Research, 2001,

29(22):4633-4642.

[4] Makalowski W. Not junk after all, Science, 2003,

300(5623): 1246-1247.

[5] International Human Genome Sequencing Consortium.

Finishing the euchromatic sequence of the human

genome. Nature, 2004, 431: 931-945.

[6] Verkerk A., Pieretti M., Sutcliffe J., Fu Y., Kul D.,

Pizzuti A., Refiner O., et al.. Identification of gene

(FMR-1) containing a CGG repeat coincident with a

breakpoint cluster region exhibiting length variation in

fragile X syndrome, Cell, 1991, 65: 905-914.

[7] Huntington's Disease Collaborative Research Group. A

novel gene containing a trinucleotide repeat that is

expanded an unstable on Huntington's disease

chromosomes, Cell, 1993, 72: 971-983.

[8] Campuzano V., Montermini L., Molto M.D., Pianese L.

Cossee M, et al.. Friedreich's ataxia: autosomal recessive

disease caused by an intronic GAA triplet repeat

expansion, Science, 1996, 271(5254):1423-1427.

[9] E. Eskin, P. A. Pevzner. Finding Composite Regulatory

Patterns in DNA Sequences. Bioinformatics, 2002, 18

Suppl 1:S354-363.

[10] Sagot, MF. Spelling Approximate Repeated or Common

Motifs Using a Suffix Tree. Lecture Notes in Computer

Science, 1998, 1380:111-127.

[11] A.F.A. Smit and P. Green. REPEATMASKER.

Available at http://www.repeatmasker.org/

[12] Dan Gusfield. Algorithms on Strings, Trees and

Sequences, Cambridge University Press, 1997.

[13] Stefan Kurtz, Chris Schleiermacher. REPuter: Fast

computation of maximal repeats in complete genomes,

Bioinformatics, 1999, 15(5):426-427.

[14] A. L. Delcher et al. Alignment of whole genomes,

Nucleic Acids Research, 1999, 27:2369-2376.

[15] Gary Benson. Tandem repeats finder: A program to

analyze DNA sequences, Nucleic Acids Research, 1999,

27(2):573-580.

[16] Frantisek Franek, William F. Smyth, Yudong Tang.

Computing all repeats using suffix arrays, Journal of

Automata, Languages and Combinatorics, 2003, 8(4):

579-591.

[17] Kaziyuki Narisawa, Shunsuke Inenaga, Hideo Bannai,

Masayuki Takeda, Efficient computation of substring

equivalence classes with suffix arrays, Proc. of 18th

CPM, 2007, 340-351.

[18] Simon J. Puglisi, W. F. Smyth, Munina Yusufu. Fast,

Practical Algorithms for Computing All the Repeats in a

String, Mathematics in Computer Science, 2010,

3(4):371-496.

[19] Albert A. Conti, Tom Van Court, Martin C. Herbordt.

Processing Repetitive Sequence Structures with

Mismatches at Streaming Rate. Lecture Notes in

Computer Science, 2004, 3203:1080-1083.

[20] Juha Karkkainen, Peter Sanders. Simple linear work

suffix array construction, Proc. of 30th ICALP, LNCS

2719, 2003, 943-955.

[21] Kasai, G. Lee, H. Arimura, S. Arikawa, K. Park. Linear-

time longest-common-prefix computation in suffix arrays

and its applications, Proc. of 12th CPM, LNCS 2089,

2001, 181-192.

[22] Nizar R. Mabroukeh, C. I. Ezeife. A Taxonomy of

Sequential Pattern Mining Algorithms. ACM Computing

Surveys, 2010, 43(1):3:1-3:41.

[23] Anisa Al-Hafeedh, Maxime Crochemore, Lucian Ilie,

Evguenia Kopylova, W.F. Smyth, German Tischler,

Munina Yusufu. A comparison of index-based Lempel-

Ziv LZ77 factorization algorithms. ACM Computing

Surveys, 2012, 45(1):5:1-5:17.

IJCATM:www.ijcaonline.org

http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://dl.acm.org/author_page.cfm?id=81498658781&coll=DL&dl=ACM&trk=0&cfid=529007664&cftoken=61692480
http://dl.acm.org/author_page.cfm?id=81338490986&coll=DL&dl=ACM&trk=0&cfid=529007664&cftoken=61692480
http://dl.acm.org/author_page.cfm?id=81314495046&coll=DL&dl=ACM&trk=0&cfid=529007664&cftoken=61692480
http://dl.acm.org/author_page.cfm?id=81456606797&coll=DL&dl=ACM&trk=0&cfid=529007664&cftoken=61692480

