
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.17, October 2015

4

Comparative Analysis of Floyd Warshall and

Dijkstras Algorithm using Opencl

Asad Mohammad
Gyan Ganga College of Technology

Vikram Garg
Gyan Ganga College of Technology

ABSTRACT

Shortest path algorithms finds applications in large real world

domains. All pair shortest path (APSP) and single source

shortest path (SSSP) both have their special applications

domains. All though every SSSP can be applied for all

vertices to calculate APSP. But APSP cant. In this paper

heterogeneous implementation of Floyd warshalls algorithm

and Dijkstra’s algorithm is compared on dense graphs have

positive edge weights ranging from 1 to 10. It is found that

Dijkstra’s algorithm is better than Floyd warshall algorithm in

sequencial implementation. But as there is less parallelism

identified in dijkstra algorithm as compared to parallel to

parallel FW gives less execution time as compared to

Dijkstra’s.

Keywords

Floyd Warshall (FW), Dijkstra algorithm, SSSP, APSP,

OpenCL.

1. INTRODUCTION
The shortest path problem refers to the problem of finding the

shortest path or minimal cost route from a specific source to a

particular destination. Generally, graphs are most widely used

for representation of such problems. Shortest Path problem

basically deals with graphs and in specific, with problems

belonging to weighted directed graph category. It finds

applications in large number of domains such as, in network

routing protocols, VLSI design, robotics and intelligent

transportation systems. A graph is a finite set of vertices and

edges represented as, G (V, E). Vertices are connected using

edges.

A directed graph is a graph in which each edge could be

traversed only in a given direction. To calculate the distance

between any two vertices (also called nodes), edges are given

some values called weights (or cost). These weights measure

the cost or distance between any two nodes via different

possible edge sequence. The shortest path analysis is not

restricted to the shortest distance between the source and

destination, but also refers to other measurement units such as

time, cost and the capacity of the link.

There are number of optimization and high performance

computing techniques like vectorization, loop unrolling using

parallel heterogeneous computing platform. In this paper a

heterogeneous computing platform which provided

parallelism on multiple devices is explored for implementing

shortest path algorithms.

OpenCL is an open source computing platform which

performs following steps :

 First it identifies platforms available on the device

we have run the implementation.

o In this paper intel and NVIDIA platform

is used.

 Second it identifies devices available on available

platforms.

o In intel platform we have 2 devices

available Intel i5 CPU and Intel graphics

card.

o In NVIDIA platform we have NVIDIA

Geforce graphics card.

 Then for the devices we want to exploit a context is

created. And devices in same context can only be

synchronized. So if we want to synchronize 2

devices both need to be in same context.

 Then in fourth step command queues are created for

every device independently. As we want to give

parallel commands to both the devices. 2 command

queues are created.

 Parallel kernels are created using OpenCL for both

the algorithms. And each kernel is processed on

separate devices in same context.

2. RELATED WORK
In [4] three parallelfriendly and work-efficient methods to

solve this Single-Source Shortest Paths (SSSP) problem:

Workfront Sweep, Near-Far and Bucketing. All of these

methods do much less work than traditional Bellman Ford

method. All these techniques for shortest path algorithms are

implemented on GPU. In this paper Dijkstra algorithm is

compared with BellmanFord algorithm on which above

mentioned three techniques are applied. All these algorithms

are studied for different data structures and traversal

techniques. In [10] Floyd Warshall and Dijkstra algorithm are

compared by applying divide and conquer on FW to make use

of multi GPU cluster using OpenCL.

In this paper Floyd Warshall algorithms is compared with

Dijkstra algorithm for dense graphs and Dijkstra algorithm is

also compared with FW with its APSP implementation.

3. FLOYD WARSHALL ALGORITHM
APSP is a fundamental problem in graph theory. Floyd-

Warshall (FW) is a well known algorithm for its solution. FW

sequential implementation uses three nested loops.

Consider a weighted graph G (V, E) stored using adjacency

matrix representation by a weight matrix W of order N*N

where N is number of vertices in G.where, wij W for all (i,j)

 E.

This matrix W contains zero for diagonal elements as both

corresponds to same vetex. And infinity for the vertices which

are not connected directly and weight is there for vertices

which are connected directly or edges available in graph.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.17, October 2015

5

Floyd algorithm :

For(int k=0;k<N;k++)

 For (int i=0;i<N;i++)

 For(int j=0;j<N;j++)

Identified parallelism :

As it is clear from the above algorithm that value of kth

iteration depends on k-1 so this loop contains dependency so

it cannot be removed to perform parallelism. But rest 2 loops

can be called in parallel for N2 threads using OpenCL.

Please use a 9-point Times Roman font, or other Roman font

with serifs, as close as possible in appearance to Times

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

4. DIJKSTRA ALGORITHM
Dijkstra algorithm ia a single source shortest path algorithm

and it can only be applied to connected graphs having positive

edge weights.

The algorithm consists of following steps :

 Distance to source vertex is set to zero.

 Set all other distances to infinity.

 S is set of visited vertices which is empty initially.

 Q is the queue which initially contains all the vertices.

 Then until Q is empty an element is selected from Q with

minimum distance.

 And then this u is added to visited vertex list.

 If new shortest path found is shortest among all it is set

as new shortest path till this step.

Dist[S] 0

For all v ϵ V – {S}

 Do dist[v] ∞

S ᵠ

Q V

While Q ≠ ᵠ

Do u min(Q,dist)

 S S U {u}

 For all v ϵ neighbours[u]

 Do if dist[v] > dist[u] + W(u,v)

 Then d[v] d[u] + W(u,v)

Return dist

Identified parallelism :

For all the vertices in Q we can execute below steps in parallel

and find the vertex using write-write consistency which holds

minimum distance value. So that the distance returned will be

the least of all the vertices processed in parallel.

5. RESULTS AND COMPARATIVE

ANALYSIS
In this paper sequential implementations are developed in c

and parallel implementations are done using OpenCL whose

host is written in c language. All the implementations are

analyzed and executed using integrated development

environment visual studio. All the implementations are

executed on intel i5 cpu @ 2.20 GHz and GPU of NVIDIA

Geforce 820M. Execution time is measured in milliseconds.

All the implementations are executed for different dense

graphs with different vertices with edge weights ranging from

1 to 10.

VERTICES SERIAL FW SERIAL
DIJKSTRA
(SSSP)

SERIAL
DIJKSTRA

(APSP)

64 32 9 21

128 227 72 178

256 961 276 746

512 8401 2214 11002

1024 14551 6920 16326

2048 71324 11287 69337

4096 378991 65879 400221

Figure 1: graph showing comparision of execution time of

serial FW with serial Dijkstra for SSSP and APSP.

It is clear from the above graph serial dijkstra takes less time

as it is order of n*n and serial FW takes comparable time as

Dijkstra when implemented for APSP. So parallel

implementations are expected to take comparable time for

Dijkstra APSP and FW. Which are illustrated below.

VERTICES PARALLEL
FW

PARALLEL
DIJKSTRA
(SSSP)

PARALLEL
DIJKSTRA

(APSP)

64 1 1 3

128 15 7 18

256 21 12 24

512 89 112 171

1024 904 1153 1763

2048 5232 5987 7289

4096 37127 27645 36915

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.17, October 2015

6

Figure 2: graph showing comparision of execution time of

parallel FW with parallel Dijkstra for SSSP and APSP.

6. CONCLUSION
In this paper parallel Floyd Warshall and parallel Dijkstra for

SSSP and APSP are compared with each other and sequential

implementation of the same. It is found that parallel Dijkstra

and parallel FW are comparable with each other. In future

optimization techniques like vectorization, loop unrolling can

also be applied to these implementations.

7. REFERENCES
[1] R. Bellman. On a routing problem. Quarterly of Applied

Mathematics 16:87-90,1958.

[2] Yefim Dinitz , Rotem Itzhak , Hybrid Bellman-Ford-

Dijkstra Algorithm.

[3] Aydın Buluc , John R. Gilbert and Ceren Budak ,

“Solving Path Problems on the GPU” , Journal Parallel

Computing Volume 36 Issue 5-6, June,2010 Pages 241-

253.

[4] Andrew Davidson , Sean Baxter, Michael Garland , John

D. Owens , “Work-Efficient Parallel GPU Methods for

Single-Source Shortest Path “ in International Parallel

and Distributed Processing Symposium, 2014

[5] Owens J.D., Davis, Houston, M., Luebke, D., Green, S.,

“GPU Computing”, in: Proceedings of the IEEE,

Volume: 96 , Issue: 5 , 2008.

[6] A. Munshi, B. R. Gaster, T.G. Mattson, J. Fung, D.

Ginsburg, “OpenCL Programming Guide”, Addison-

Wesley pub., 2011.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C.

Stein, Introduction to Algorithms, Second Edition. The

MIT Press, Sep. 2001.

[8] Kumar, S.; Misra, A.; Tomar, R.S. ,”A modified parallel

approach to Single Source Shortest Path Problem for

massively dense graphs using CUDA” in Computer and

Communication Technology (ICCCT), 2011 2nd

International Conference on , vol., no., pp.635,639, 15-

17 Sept. 2011.

[9] Atul Khanna, John Zinky , “The Revised ARPANET

Routing Metric”, in 1969 ACM.

[10] Hristo Djidjev and Sunil Thulasidasan,Guillaume

Chapuis, Rumen Andonov, and Dominique Lavenier

"Efficient Multi-GPU Computation of All-Pairs Shortest

Paths" in 2014 IEEE 28th International Parallel &

Distributed Processing Symposium.

IJCATM : www.ijcaonline.org

