
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.17, October 2015

1

A Comparative Study of GPU Computing by using

CUDA and OpenCL

Asad Mohhamad

Vikram Garg

ABSTRACT
Parallel computing becomes a need to perform task as soon as

possible. This can be done in two way improve hardware or

use parallel programming language i.e. improve software.

Improvement in the hardware is costlier solution compared to

software solution. So we have two basic heterogeneous

parallel languages CUDA and OpenCL which run on both

CPU and GPU according to necessity. When program does

not contain high parallelism it works on CPU which contains

less number of cores. On other hand program contain high

degree of parallelism so each independent code runs on

separate core of GPU. This paper gives the basic idea of the

parallel computing and how these carried out. Explain the

working of both parallel language CUDA and OpenCL with

their detailed architecture. In the last section comparison of

both languages is described.

Keywords
Parallel Computing, GPU, GPGPU, CUDA, OpenCL.

1. INTRODUCTION
Today’s world everything would be quick and efficient.
Performing task in a serial manner on silicon based processor
chip are constraint by the speed of light and thermodynamics
law so processing speed can be increased up to certain level.
So other solution of this is “Go Parallel” means perform the
task in the parallel manner this can boost up the speed.
Parallelism can be achieved in two way hardware solution and
software solution. Hardware solution is one where thousands
of CPU‘s are used working with co-ordination to each other to
solve the big problem. Some of the hardware are NUDT
tianhe, IBM sequaio and PARAM supercomputer. Hardware
solution is not commonly used now because they are specific
to particular hardware and costly. So software solution is the
cost effective solution which exploit the existing hardware.
Software solution can use CPU as well as GPU. In the system
we have limited number of CPU’s are presents due to this our
parallelism is limited. On other hand GPU scope is very wide
because it consists of number of cores or ALU which helps to
obtain parallelism. Here the task is divides into independent
subtask and process them on to different cores.

2. GENERAL PURPOSE GRAPHICS

PROCESSING UNIT

GPU stands for graphics processing unit traditionally it was
used for high definition video and gaming purpose. Now a
day GPU consists of thousands of ALUs and core. These core
or ALUs are used to make GPU as programmable. These
programmable capacity of a GPU make them general purpose
and known as GPGPU. Figure 1 shows the AMD HD 6450
GPU. GPU consist of global memory which is common to all
and local memory dedicated to each compute unit. In the
figure we shows the two compute units and each compute unit
consist of 16 stream unit. Each stream unit consists of four
ALU and one special function unit. So program is divided
into threads and provides the separate ALUs to operation.

Figure 1: GPU Architecture of AMD HD 6450

3. OPEN COMPUTING LANGUAGE
OpenCl is a parallel programming language standardized by
khronous group. OpenCL is a portable heterogeneous
computing language means it can be operated on CPU’s,
GPU’s, DSP’s and hardware. As a name stands it is open for
all vender means by doing small changes it can be run in any
type of hardware. Figure 2 shows that OpenCL is a
heterogeneous computing language means serial function is
execute on the host CPU while function with parallelism
arrives it is execute on parallel kernel of GPU.

Figure 2: Inspiration for OpenCL

Architecture of OpenCL Shown in Figure 3 here the smallest
individual unit is called work item. On other hand group of
work item is called work group. If program consist of
parallelism than host called the kernel for execution of a code
in parallel manner. According to degree of parallelism work
items are allocated each parallel code which execute parallel.
The work of NDrange is to instruct the kernel about the work
group and other information. In OpenCL we have various
range of memory like as private memory, local memory,
global memory and constant memory. Private memory and
local memory both are stored in the GPU chip means local to
work group. Only work item of the work group can access
these two memories. On other hand constant memory and
global memory are GPU memory can be used by any of the
work group. Accessing speed of these memory can be arrange
in ascending order is as follow (means less access time first)
Private memory, Local memory, Constant memory and
Global memory.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.17, October 2015

2

Figure 3: Architecture of OpenCL

The one of the significant advantage of OpenCL is it is a cross
platform language means by small changes it can run on any
platform. Another is it is heterogeneous language means serial
code run on CPU and parallel code runs on GPU.

4. COMPUTE UNIFIED DEVICE

ARCHITECTURE
CUDA is a parallel computing platform implemented by
NVIDIA. CUDA stands for Compute Unified Device
Architecture. CUDA is vender specific means it is operated
on only NVIDIA graphics only. CUDA is a specific to only
NVIDIA so it knows the architecture of the NVIDIA very
well due to this it gives us very efficient results. Figure 4
shows the basic architecture of the CUDA. This is similar to
the OpenCl rather than basic terminology which is described
in the comparison part.

Figure 4: Architecture of CUDA

CUDA gives the faster result because it is dedicated to the
NVIDIA platform so code is specific to that platform. It is
also a heterogeneous language which runs on both CPU as
well as GPUs.

5. COMPARISON BETWEEN CUDA

AND OPENCL
CUDA and OpenCL both are used for parallel platform. The
architecture of the CUDA language is similar to the OpenCL
language it differs in the terminologies. The terminology
comparison is described in the Table 1.

Table 1: Comparison of basic termonoly of OpenCL and
CUDA

Terminology

OpenCL

CUDA

Smallest Unit Work Item Thread

Group of Smallest
Unit

Work Group Block

Connectivity to
Kernel

NDRange Grid

Memory which can
only use by group
of smallest unit

Local Memory

Private Memory

Register Memory

Shared Memory

Local Memory

Memory can be
used to any group
and any where

Constant Memory

Global Memory

Constant Memory

Texture Memory

Global Memory

Other than architecture these two languages are differ in most
of the cases. The detailed comparison of OpenCl and CUDA
are described in the Table 2.

Table 2: Comparison between CUDA and OpenCL

Parameter CUDA OpenCL

Vender Vender Specific For all Vender

Speed It is vender specific so
dedicated platform is
provided to CUDA so
it runs faster

It is open to all so
runs slower
comparatively

Codes Specific code for
NVIDIA

It is similar to C
code

6. CONCLUSION
Parallel processing is the most efficient way to solve the
problem. This divides the whole problem into independent
sub problems and executes them parallel. There are two basic
parallel programming languages which can execute the
program parallel CUDA and OpenCL. CUDA language is
platform dependent so it will support by only NVIDIA
platform and coding is little bit complex. On other hand
OpenCL is open to all supported by most of the GPUs and
coding is similar to C language which is quite easier to
understand. So OpenCl is a good choice to perform parallel
operation.

7. REFERENCES
[1] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J.

Kru¨ger, A. E. Lefohn and T. Purcell B, “ A survey of

general-purpose computation on graphics hardware”,

Comput. Graph. Forum, vol. 26, no. 1, pp. 80–113, 2007.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.17, October 2015

3

[2] K. Fatahalian and M. Houston, “A closer look at GPUs,”

Communications of the ACM, Vol. 51, No. 10, October

2008.

[3] Z. Fan, F. Qiu, A. Kaufman, S. Yoakum-Stove, “GPU

Cluster for High Performance Computing,”, in Proc.

ACM/IEEE conference on Supercomputing, 2004.

[4] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using

data-parallelism to program GPUs for general-purpose

uses”, in Proc. 12th Int. Conf. Architect. Support

Program. Lang. Oper. Syst., pp. 325-335, Oct. 2006.

[5] John D. Owens, Mike Houston, David Luebke and

Simon Green,” GPU Computing Graphics Processing

Units-powerful, programmable, and highly parallel-are

increasingly targeting general-purpose computing

applications”, In the procd. Of IEEE Xplore, Vol. 96, no.

5, May 2008.

[6] John Nickolls, William J. Dally NVIDIA, “THE GPU

COMPUTING ERA”, In the procd. Of IEEE Computer

Society, page no. 56-69, March 2010.

[7] Danilo De Donno, Alessandra Esposito, Luciano

Tarricone, and Luca Catarinucci, “Introduction to GPU

Computing and CUDA Programming: A Case Study on

FOlD” In the procd. Of IEEE Antennas and Propagation

Magazine, Vol. 52, No.3, June 2010.

[8] NVIDIA Corporation Technical Staff, NVIDIA CUDA

Programming Guide 2.2, NVIDIA Corporation, 2009.

[9] M. Harris, S. Sengupta, and J. D. Owens, “Parallel prefix

sum (scan) with CUDA”, in GPU Gems 3, H. Nguyen,

Ed. Reading, MA: Addison-Wesley, pp. 851–876, Aug.

2007.

[10] J. Nickolls et al., ‘‘Scalable Parallel Programming with

CUDA,’’ ACM Queue, vol. 6, no. 2, pp. 40-53, 2008.

[11] Ching-Lung Su, Po-Yu Chen, Chun-Chieh Lan, Long-

Sheng Huang, and Kuo-Hsuan Wu, “Overview and

Comparison of OpenCL and CUDA Technology for

GPGPU” In the procd. Of IEEE, Page no. 448-451,

2012.

[12] Misic, M.J., Durdevic, D.M. ; Tomasevic, M.V.,

“Evolution and trends in GPU computing” In the procd.

Of IEEE 35th International Convention MIPRO, Page

no. 289-294, 21-25 May 2012.

[13] Jääskeläinen, Pekka O., de La Lama, Carlos S, Huerta,

Pablo, Takala and Jarmo H, "OpenCL-based design

methodology for application-specific processors", In the

procd. Of IEEE International Conference on Embedded

Computer Systems (SAMOS), February 17, 2011.

[14] Benedict R Gaster, LEE Howes, David Kaeli, Perhaad

Mistry and Dana Schaa, “Hetrogeneous Computing with

OpenCL” Book publised by Elsevier, 2012.

[15] Aaftab Munshi, Benedict R. Gaster, Timothy G.

Mattson, James Fung and Dan Ginsburg, “OpenCL

Programming Guide”, Book publised by Pearson

Education, 2012.

IJCATM : www.ijcaonline.org

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Misic,%20M.J..QT.&searchWithin=p_Author_Ids:38233522400&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Durdevic,%20D.M..QT.&searchWithin=p_Author_Ids:38260553900&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6231996
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6231996
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5642061
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=5642061

