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ABSTRACT
Petri nets are used for describing, designing and studying discrete
event-driven systems that are characterized as being concurrent,
asynchronous, distributed, parallel, and/or nondeterministic. As a
graphical tool, Petri net can be used for planning and designing
a system with given objectives, more effectively than flowcharts
and block diagrams. As a mathematical tool, it enables one to set
up state equations and algebraic equations and other mathematical
models which govern the behavior of systems. The aim of this pa-
per is to present some basic results and necessary and sufficient
condition for a 1-safe Petri net that generates all the binary n-
vectors as marking vectors, we shall call such Petri nets as Boolean
Petri nets.
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1. INTRODUCTION
A Petri net is a graphical tool invented by Carl Adam Petri [9]. Petri
nets are very reliable tool to model and study the structure of the
discrete event-driven systems with large population or heavy traffic
appear frequently in many fields such as manufacturing processes,
logistics, telecommunication systems, traffic systems etc [8]. Of all
existing models, Petri nets and their extensions are of undeniable
fundamental interest because they define easy graphical support
for the representation and the understanding of basic mechanism
and behaviors. The development of high-end computers has greatly
enhanced the use of Petri nets in diverse fields. Kansal et al.[5]
showed the existence of 1-safe star Petri net Sn, with |P | = n
and |T | = n + 1, having a central transition, that generates all
the binary n-vectors, as its marking vectors; they also established
the existence of 1-safe Petri net that generates all the binary n-
vectors exactly once as marking vectors[6]. A 1-safe Petri net is
called Boolean when it generates every binary n-vector as its mark-
ing vector and it is called Crisp Boolean when it generates every
binary n-vector exactly once.

2. PRELIMINARIES
For standard terminology and notation on Petri nets, we refer the
reader to Peterson [11]. In this paper, we shall adopt the definition
of Jenson [3]:

A Petri net is a 5-tuple N = (P, T, I−, I+, µ0), where
(a) P is a nonempty set of ‘places’,
(b) T is a nonempty set of ‘transitions’,
(c) P ∩ T = ∅,
(d) I−, I+ : P × T −→ N, where N is the set of nonnegative
integers, are called the negative and the positive ‘incidence
functions’ (or, ‘flow functions’) respectively,
(e) ∀ p ∈ P,∃t ∈ T : I−(p, t) 6= 0 or I+(p, t) 6= 0 and
∀t ∈ T,∃p ∈ P : I−(p, t) 6= 0 or I+(p, t) 6= 0,

(f) µ0 : P → N is the initial marking.

In fact, I−(p, t) and I+(p, t) represent the number of arcs from
p to t and t to p respectively. I−, I+ and µ0 can be viewed as
matrices of size |P | × |T |, |P | × |T | and |P | × 1, respectively.

As in many standard books (e.g., see [12]), Petri net is a particular
kind of directed graph, together with an initial marking µ0. The
underlying graph of a Petri net is a directed, weighted, bipartite
graph consisting of two kinds of nodes, called places and transi-
tions, where arcs are either from a place to a transition or from a
transition to a place. Hence, Petri nets have a well known graphical
representation in which transitions are represented as boxes and
places as circles with directed arcs interconnecting places and
transitions to represent the flow relation. The initial marking is
represented by placing a token in the circle representing a place
pi as a black dot whenever µ0(pi) = 1, 1 ≤ i ≤ n = |P |. In
general, a marking µ is a mapping µ : P −→ N. A marking µ can
hence be represented as a vector µ ∈ Nn, n = |P |, such that the
ith component of µ is the value µ(pi).

Let N = (P, T, I−, I+, µ) be a Petri net. A transition t ∈ T is
said to be enabled at µ if and only if I−(p, t) ≤ µ(p), ∀p ∈ P .
An enabled transition may or may not ‘fire’ (depending on whether
or not the event actually takes place). After firing at µ, the new
marking µ′ is given by the rule

µ′(p) = µ(p)− I−(p, t) + I+(p, t), for all p ∈ P .

A marking µ is said to be reachable from µ0, if there exists a
sequence of transitions which can be successively fired to obtain
µ from µ0. The set of all markings of a Petri net N reachable
from a given marking µ is denoted by M(N,µ) and, together
with the arcs of the form µi tr−→ µj , represents what in standard
terminology called the reachability graph R(N,µ) of the Petri
net N . If the reachability graph has no cycle then it is called
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Fig. 1. Boolean Petri net with 3 places and 4 transitions satisfying |P | ≤
|T |

reachability tree of the Petri net N .

A place in a Petri net is 1-safe if the number of tokens in that
place never exceeds one. A Petri net is 1-safe if all its places are
1-safe. The preset of a transition t is the set of all input places
to t, i.e., •t={p ∈ P : I−(p, t) > 0}. The postset of t is the set
of all output places from t, i.e., t•={p ∈ P : I+(p, t) > 0}.
Similarly, p′s preset and postset are •p={t ∈ T : I+(p, t) > 0}
and p•={t ∈ T : I−(p, t) > 0}, respectively.

Let N = (P, T, I−, I+, µ0) be a Petri net with |P | = n and
|T | = m, the incidence matrix I = [aij ] is an n × m matrix
of integers, |P | = n and |T | = m and its entries are given by
aij = a+ij − a−ij where a+ij=I+(pi, tj) is the number of arcs from
transition tj to its output place pi, known as positive incidence ma-
trix and a−ij=I−(pi, tj) is the number of arcs from place pi to its
output transition tj , known as negative incidence matrix. In other
words, I = I+ − I−.

3. SOME GENERAL RESULTS
In this section, we discuss some necessary conditions for a Boolean
Petri net.

PROPOSITION 1. [6] For any Boolean Petri net, µ0(p) =
1, ∀p ∈ P , where µ0 is the initial marking vector.

LEMMA 1. [4] If a 1-safe Petri net N = (P, T, I−, I+, µ0),
|P | = n, is Boolean then |P | ≤ |T |.

PROOF. Since N is Boolean, it generates the marking vec-
tors of the type (0,1,1,· · · ,1), (1,0,1,· · · ,1),· · · ,(1,1,1,· · · ,0), each
having the Hamming distance 1 from the initial marking vector
µ0=(1,1,1,· · · ,1). These n marking vectors can be obtained only
in the first step of firing because the marking vector whose Ham-
ming distance is 1 from the initial marking cannot be obtained from
any other marking vector whose Hamming distance is greater than
or equal to 2 from the initial marking. These nmarking vectors can
be generated only if for every place pi ∈ P, i = 1, 2, 3, · · · , n,
there exist distinct n transitions say t1,t2,t3,· · · ,tn such that pi ∈
•ti and pi /∈ t•i ∀ i = 1, 2, 3, · · · , n. Hence, |P | ≤ |T |.

The Figure 1 and Figure 2 are the explanation of lemma 1.

LEMMA 2. [4] If a 1-safe Petri net N = (P, T, I−, I+, µ0),
|P | = n, is Boolean then the incidence matrix I of N contains
−In, the negative of the identity matrix of order n, as a submatrix.
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Fig. 2. Reachability tree of Figure 1 containing all the 23 binary 3-vectors

PROOF. Since N generates all the binary n-vectors, µ0(p) =
1, ∀ p ∈ P (by Proposition 1). Again, because of the
generation of all the binary n-vectors, the vectors of the
type (0, 1, 1, · · · , 1), (1, 0, 1, · · · , 1), · · · , (1, 1, 1, · · · , 0) each at
a Hamming distance 1 from the initial marking, have also been
generated. These vectors can be obtained only in the first step of
firing. Therefore, ∀ pi ∈ P , i = 1, 2, 3, · · · , n, there exist dis-
tinct n transitions say t1, t2, t3, · · · , tn such that pi ∈ •ti and
pi /∈ t•i and hence I−(pi, tj) = 1 if i = j and 0 if i 6= j and also
I+(pi, ti) = 0, ∀ i = 1, 2, 3, · · · , n. Since I=I+ − I−, I contains
-In as a submatrix.

The followings are the positive incidence matrix (I+), negative in-
cidence matrix (I−) and incidence matrix I=I+ − I− respectively
of the Figure 1 which contains -In as a submatrix.

t1 t2 t3 t4

I+ =
p1
p2
p3

 0 0 0 0
0 0 0 0
0 0 0 0


t1 t2 t3 t4

I− =
p1
p2
p3

 1 0 0 1
0 1 0 1
0 0 1 1


t1 t2 t3 t4

I = I+ − I− =
p1
p2
p3
−

 1 0 0 1
0 1 0 1
0 0 1 1


4. MAIN RESULT
In this section, we will study necessary and sufficient conditions
for a Boolean Petri nets as reported in [4].

THEOREM 3. A 1-safe Petri net N = (P, T, I−, I+, µ0),
|P | = n with t• = ∅ ∀ t ∈ T is Boolean if and only if

1. µ0(p) = 1, ∀ p ∈ P
2. |P | ≤ |T |
3. The incidence matrix I of N contains -In as a submatrix.

PROOF. Necessity: This follows from Proposition 1, Lemma 1
and Lemma 2 respectively.

Sufficiency: Given the hypothesis and conditions (1), (2) and
(3), we claim that N generates all the binary n-vectors. Since
I = I+ − I− and t• = ∅, ∀ t ∈ T , I+ = 0. This implies that
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I = −I−. Since I contains -In as a submatrix, ∀ pi ∈ P , ∃ti ∈ T
such that pi ∈ •ti, ∀ i = 1, 2, · · · , n. Also, µ0(p) = 1, ∀ p ∈ P .
Therefore, all the n transitions t1, t2, · · · , tn are enabled and fire.
After firing, we get distinct nC1 = n marking vectors whose
Hamming distance is 1 from the initial marking vector. At these
n new marking vectors, (n − 1) transitions are enabled and give
at least nC2 distinct marking vectors, each of whose Hamming
distance is 2 from the initial marking. Therefore, this set of new
vectors contains at least nC2 new distinct binary n-vectors.

In general at any stage j, 3 ≤ j ≤ n, we get a set of at least
nCj new distinct binary n-vectors whose Hamming distance is j
from the initial marking, which are also distinct from the sets of
nCr distinct marking vectors for all r, 2 ≤ r ≤ j − 1. There-
fore, at the nth stage we would have obtained at least nC1 +n

C2 + · · · +n Cn=2n − 1 distinct binary n-vectors. Together with
the initial marking (1, 1, · · · , 1), we thus see that all the 2n binary
n-vectors would have been obtained as marking vectors, possibly
with repetitions. Thus,N is Boolean and the proof is complete.

Figure 1, Figure 2 and incidence matrix of Figure 1) clearly explain
the above theorem.

THEOREM 4. A 1-safe Petri net N = (P, T, I−, I+, µ0),
|P | = n, with I−(pi, tj) = 1, ∀ i, j, is Boolean if and only if
there exist at least nCr , r = 1, 2, · · · , n distinct transitions t ∈ T
such that |t•| = n − r, where r is the Hamming distance of any
binary n-vector from the initial marking (1, 1, · · · , 1).

PROOF. Necessity: Since N generates all the binary n-vectors,
we have the binary n-vectors (0, 1, 1, · · · , 1), (1, 0, 1, · · · , 1),
(1, 1, 0, · · · , 1), · · · , (1, 1, 1, · · · , 1, 0), whose Hamming distance
is 1 from the initial marking (1, 1, 1, · · · 1). They are n in number.
Since I−(pi, tj) = 1, ∀ i, j, these vectors can be obtained only
if I+(pi, tj) = 0 for i = j and 1 for i 6= j, 1 ≤ j ≤ n.
This implies that there are at least nC1 distinct transitions say
t1, t2, · · · , tn such that |t•|=n − 1. After firing, they become
dead. Further, we also have the binary n-vectors (0, 0, 1, · · · , 1),
(1, 0, 0, 1, · · · , 1), (1, 0, 1, 0, 1, · · · , 1), · · · , (1, 1, · · · , 1, 0, 0)
each of whose Hamming distance is 2 from (1, 1, 1, · · · 1). These
vectors are nC2 in number and can be obtained only if there exist
at least nC2 distinct transitions t with |t•| = n − 2. In general,
there are at least nCr distinct transitions t such that |t•| = n − r,
that yield nCr binary n-vectors each at Hamming distance r from
(1, 1, 1, · · · 1).

Sufficiency: Since µ0(p) = 1, ∀ p, all the transitions are enabled
and fire. After firing they all become dead as I−(pi, tj) = 1,
∀ i, j. This implies that the matrix I− is of order n × m where
m ≥ (2n − 1) and the matrix I+ gets constructed as follows.
By hypothesis, there are at least nC1 = n distinct transitions in
N say t1, t2, · · · , tn which on firing generate all the binary n-
vectors each having exactly one zero because |t•i | = n−1 (without
lose of generality, we assume that there is no arc from ti to pi i.e.,
I+(pi, ti) = 0 for i = 1, 2, · · · , n). Thus, we place the transpose
of these binary n-vectors as first n columns in I+ matrix. Next, by
hypothesis, we have nC2 distinct transitions say tn+1, tn+2, · · · ,
tnC2

such that |t•j | = n−2. Since they all become dead after firing
and |t•j | = n − 2, n + 1 ≤ j ≤ nC2 these must generate all the
distinct binary n-vectors each having exactly two zeros. Hence, the
transpose of these nC2 vectors are placed as columns in the matrix
I+ immediately after the previous n = nC1 columns. We are thus
enabled by the hypothesis to construct successively the submatrix
H of order n × (2n − 1) of I+ which contains all the (2n − 1)

t2          
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t      3      
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3          p

2          p
t      4      

t      5      

t      7      

t      6      

Fig. 3. Petri net with I−(pi, tj) = 1 and atleast nCr , r = 1, 2, · · · , n
transitions such that |t•| = n− r
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Fig. 4. Reachability tree of Figure 3 containing all the 23 binary 3-vectors

distinct binary n-vectors, the last column of H being the all zero
n-vector. We may augment to H the initial all-one n-vector as a
column either on the extreme left or on the extreme right of H
in I+. Let the so augmented submatrix of I+ have more columns.
That means, each one of them is a repetition of some columns inH .
Thus, we see that the Petri net N generates all the binary n-vectors
as its marking vectors. Hence N is a Boolean Petri net.

See Figure 3 and Figure 4 for the explanation of Theorem 4.

5. CONCLUSIONS AND SCOPE
As a conclusion, one can ask for the criteria that a 1-safe Petri
net should satisfy for its reachability tree to be finite [13]. While
solution to such a problem can perhaps be used gainfully in
many purely theoretical areas like mathematics, computer science,
universal algebra and order theory, decision theory[2], the extent
and effectiveness of its utility in solving the practical problem
requiring the design of multi-functional switches for the operation
of certain discrete dynamical systems of common use such as
washing machines and teleprinters (e.g., see [1, 7, 10]) can be
explored instantly. So, the characterization of Boolean Petri nets
is an open problem. Also, it appears that a computationally good
characterization of Boolean Petri nets is still distant. In general,
the characterization of Boolean Petri nets is an open problem.
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