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ABSTRACT 

This work aims to propose an inverse methodology for the 

physical properties identification of sandwich beams by 

measured flexural resonance frequencies. The physical 

parameters are the Young‟s modulus and the loss factor.  

They are estimated for each one of materials that constitute 

the structure of the sandwich beam which is made with the 

association of Hot-rolled steel, Polyurethane Rigid Foam and 

High Impact Polystyrene. This kind of the sandwich beam 

are widely used for the assembly of household refrigerators 

and food freezers. The solutions are obtained with parametric 

optimization of physical parameters of the materials that 

forming the sandwich beam with three methods: Genetic 

Algorithms (GA), Differential Evolution (DE), and Particle 

Swarm Optimization (PSO). Furthermore, this work intend 

verify the quality of the solutions obtained with parametric 

optimization. The parameters are estimated using measured 

and numeric frequency response functions (FRFs). The 

mathematical model to verify numeric FRF is obtained using 

the Finite Element Method and the two-dimensional 

elasticity theory coupled to three optimization methods. The 

results of the optimizations show that it is possible to 

determine effectively the physical parameters of a sandwich 

beam with this methodology.  

Keywords 

Sandwich beam, Optimization, Young‟s Modulus, GA, PSO, 

DE. 

1. INTRODUCTION 
This work aims to propose an inverse methodology for the 

physical properties identification of sandwich beams by 

measured flexural resonance frequencies. The solutions are 

obtained with parametric optimization of physical parameters 

of the materials that forming a sandwich beam with three 

methods: Genetic Algorithms (GA), Differential Evolution 

(DE), and Particle Swarm Optimization (PSO). In this case it 

was used mathematical model obtained by finite element 

method (FEM) with two dimensional  (2D) elasticity theory 

and a objective function based on the difference between 

experimental and numerical values of ressonance 

frequencies. The parameters estimated were the Young‟s 

modulus and the loss factor of the Polyurethane Rigid Foam 

(PRF) and High Impact Polystyrene (HIP). The physical 

parameters of sandwich beams made with the association of 

hot-rolled steel, PRF and HIP applied to  assembly of 

household refrigerators and food freezer are estimated using 

measured and numeric frequency response functions (FRFs). 

As already exposed, the mathematical model is obtained by 

FEM with the 2D elasticity theory with the following 

characteristics: 

a)The sandwich beam is discretized with cubic elements 

which are suitable to represent the shear stress along the 

thickness of beam. This does not provided with lower order 

elements. The test sample is a beam that can be considered 

short and the amount of strain energy associated with the 

shear is important in the calculations; 

b)As the core of sandwich beam is softer than the face, 

appear regions of compression/traction core vibration modes 

that can not be represented by the classical theory of 

Timoshenko or Euler-Bernoulli beam. This 

compression/traction is best observed  in higher order modes; 

c)2D element can prescribe regions of detachment and 2D 

model provides better representation of the boundary 

conditions (clamped end);  

d)This model is closer to reality which leads to adjustments 

that are more accurate; 

e)Disadvantage, the 2D model needs high computational 

time (mesh with more degrees of freedom). How  (angular 

frequency) is variable, for each new value of this parameter a 

new finite element analysis should be performed, because the 

equivalent stiffness matrix depends on . 

The GA is based on Darwin‟s concept of the selection and 

natural evolution applied to mathematical programming. It 

was originally proposed by Holland and Jong in 1975 [1] and 

it has been widely used in the last years for obtaining 

optimum solutions for many engineering efforts. The GA has 

the ability of searching for a global optimum in 

discontinuous and multimodal spaces without requiring a 

proper initial point [2]. The DE is a direct search method that 

was developed for minimizing the problems represented by 

non-linear and non-differentiable continuous spatial 

functions. This method was created in 1995 by Storn and 

Price [3] when attempting to solve a polynomial fitting 

problem by Chebychev associated with electronic filter 

designs. In addition, the method is fairly simple and presents 

fast convergence features for problems that involve a small 

number of particles and a large number of design variables.  

The PSO was introduced by Eberhart and Kennedy in 1995 

[4], using concepts of social behavior of populations, such as 

bird flocking and fish schooling. The PSO is an optimization 

technique based on just one population with predetermined 

number of the particles that evolve within the hyperspace 
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defined by the design variable boundaries following some 

random criteria towards the particle with the best 

performance (usually the particle that is closest to the 

optimum point). The application these three methods for 

physical properties identification of materials can be seen in 

Quaranta et al. [5],  Vaz et al. [6],  Kalita et al. [7], Düğenci 

et al. [8].    

The proved efficiency of sandwich beams and its current 

usage in a growing rate demands a higher level of 

acknowledgment of the mechanical properties, even when 

the structure is submitted to dynamic loads. For household 

refrigerators and food freezers, one of the main complaints to 

the customer care centers is related to noise generation, that 

is related most of the times with vibration of the cabinet that 

produces sound irradiation from internal components like 

shelves and containers, leaking to the outside of the unit. The 

efficient numerical models are necessary to estimate the 

dynamical behavior of such systems. When the complex 

sandwich beams are used the physical parameters are 

difficult to be estimated. Sandwich structures have high 

specific stiffness and strength. Because of these properties 

they are widely used in engineering and many types of 

sandwich structures has been studied with mathematical 

models. However, little attention has been paid to identifying 

the mechanical properties of these beams, [9]. Sandwich 

structures formed by polymeric thin sheet and lightweight 

core are widely used in engineering fields where there are 

required high bending stiffness and strength combined with a 

reduced weight. Nevertheless, the sandwich structures can be 

used in several engineering applications only if their elastic 

and damping properties are properly characterized. The 

heterogeneity e orthotropy this kind of structures, increase 

the difficulty to identify their constitutive parameters in 

comparison usual materials such as metals. In this case, an 

effective parameter identification method for sandwich 

structures is highly desirable. 

A method using harmonic spatial field as primary input to 

identification of effective sandwich structural properties via 

an inverse wave approach was presented by Ichchou et al. 

[10]. The focus was on flexural vibration of symmetric 

honeycomb beam and panels. Another inverse parameter 

estimation method using an objective function taking acount 

the difference between numerical and experimental modal 

data was used by Matter et al. [11]. Damanpack et al. [12] 

presented a new finite element formulation for high-order 

impact analysis of sandwich beams with any boundary 

conditions subjected to simultaneous multiple small 

projectiles. The governing partial differential equations of 

motion are driven by Hamilton‟s principle. The elemental 

matrices are derived for a sandwich beam element that 

carrying four sprung masses on both face sheets. Alvelid [13] 

developed a 6th order differential equation for the dynamic 

analysis of the deflection of a three-layer sandwich beam 

with a viscoelastic middle layer. In this study are considered 

the transverse shear deformation and rotational inertia effects 

of the covering layers. The boundary conditions applied in 

the covering layers are the same the Euler–Bernoulli case.  

Damanpack and Khalili [14] investigated high-order free 

vibration of three-layered symmetric sandwich beam  using 

dynamic stiffness method. The formulation used to connect 

axial and bending deformations in equations that  

representing the motion of an element is derived of 

Hemilton's principle.  For the harmonic motion by 

considering the symmetrical sandwich beam, these equations 

were divided into two ordinary differential equations.Bekuit 

et al. [15] presented a quasi-two-dimensional finite element 

formulation for the static and dynamic analysis of sandwich 

beams. In this work, cubic Lagrange polynomial were used 

to interpolate the longitudinal and transverse displacement of 

each layer. The formulation was effective to evaluate the 

sandwich beam with viscoelastic core.  

Various authors (Singh et al. [16], Pintelon et al. [17], 

Caracciolo et al. [18], Yang et al. [19], Park [20], Kim and 

Kreider [21], Chang [22], Bakström and Nilsson [23], Zhen 

and Wanji [24], Tagarielli et al. [25], Ivañez et al. [26])   

have presented various experimental models and analysis to 

identify the physical parameters of a beam sandwich. 

2. THEORY 

2.1 Optimization Methods  
2.1.1 Genetic Algorithms (GA) 
The GA allows to reach the maximum of a function f(x(i,j)) 

subject to the following design constraints: 

miixxix UiL ,...,2,1)()(        (1) 

where xi is the individuals (particles) set of design variables 

x(i,j) which lower limit is xL(i) and the upper limit is xU(i) 

and m is the number of design variables to be defined. 

The GA represents the design variables as sets of binary 

numbers of nb bits that are called chromosomes. This way, 

the viable interval for each variable xi is divided into 2nb–1 

intervals. So, each variable xi can be represented by any 

discreet representation, for example, through a binary 

number: 11101. This number can be decoded as: 

iLi Sixx  )2120212121()( 01234   or  

iLi Sixx 29)(            (2) 

where Si is the variable interval xi defined by  

31/))()(( ixixS LUi            (3) 

This procedure defines the codification and decodification 

processes of the GA variables. The first step in the 

development of the GA is the creation of an initial 

population. Each individual i of the population is a set with 

mnb bits. The set of variables, xi, in the binary form, creates 

the genetic code for each individual.  An initial population 

with a z size is created by a random process. The second step 

is to decode the genetic code of each individual using the 

Eqn. (2) and verifying the value correspondent to its 

respective fitness, i.e., of its objective functions, given by 

Fobj1, Fobj2, …, Fobjz.  The most fit individuals, with higher 

Fobj values are considered most “optimal”. Their fitness value 

must reflect the design and the restrictions imposed on the 

problem being studied.  

The third step includes the selection and crossover phases. 

Here, the weaker individuals are replaced by the stronger 

ones. The selection enables the best individuals to survive 

and serve as parents for the next project generation, through 

the fitness calculation. In this phase, the individuals are 

shuffled and have their order changed. After shuffling, two 

individuals are chosen. These are called parents and the one 

with the best fitness will originate from a child and will have 

some of its chromosomes randomly changed. This procedure 

is carried out z times, generating the number of z children. 

The crossover transference makes parts of the parents‟ 

chromosomes to create the next generation of the project by 

combining features in such a way as to create better 



International Journal of Computer Applications (0975 – 8887) 

Volume 128 – No.3, October 2015 

37 

individuals in average, but not always. The fourth step may 

switch a chromosome bit of an individual to its opposite 

value (e.g..: 0 to 1). This step is called mutation and aims to 

introduce a new beneficial feature that does not exist in the 

current population. The mutation makes the fitness value of a 

child to suffer a change. This procedure is performed to 

avoid local optimum in search spaces induced by the random 

fitness change of the individual. The probability of a member 

bit to suffer mutation must vary between 0.005 and 0.1, 

which demonstrates that this will rarely occur in the nature.  

If the feature introduced is not beneficial to the individual 

that suffered such mutation, probably it will not survive a 

future transformation step [2].  

The fifth and last step verifies if the genetic code of the 

individual with the best fitness was replicated in any of the 

created children. If this does not happen, a child is randomly 

removed and the individual with the best fitness is added. 

This step improves the optimization accuracy. This operation 

is called elitist reproduction.  

In order to conclude this generation, the highest Fobj value 

and its respective set of chromosomes xi are stored. If the 

required number of generations in this project is reached, the 

evolution will be concluded; otherwise, a new decodification 

step will begin, and continue successively. All the described 

process transforms an initial randomly chosen population 

into a population that is more adapted to its environment, 

making them more optimal. 

2.1.2 Differential Evolution (DE)  
The DE method comprises to create a vector for the initial 

population x(i,j)g with j particles is randomly created and 

must be contained inside the solution space for the problem.  

x(i,j)g    with   i =1, 2, ... m;  j=1, 2,... z  and g=1, 2, ..., G     

(4) 

where i is the number of design variables and g is the number 

of generations to be evaluated. 

The DE creates a new parameters vector by adding the 

weighted difference between two particles of the population 

into a third. This operation is called mutation. The individual 

that comes from the mutation is mixed with the parameters 

from another predetermined particle called target vector, 

producing the trial vector. The parameters mixture is 

mentioned in the literature as crossover and will be explained 

in more details below.  If the trial vector produces an upper 

value for the Fobj than the target vector, then the trial vector 

will replace the target vector in the following generation. 

This last operation is called selection. Each population vector 

has to serve a target vector once, so that z competitions occur 

in a generation. The mutation and crossover strategies for the 

DE are described below.  

A mutant vector v(i,j)g+1 is created for each target vector 

x(i,j)g randomly chosen within the population z according to: 

),,(,),( 3211 gtggtggtgg xxFxjiv          (5)      

In Eqn. (5), xtg1,g is the target vector. The indexes tg1, tg2 and 

tg3{1, 2, ...z} are integral and different among themselves. 

The integral ones tg1, tg2 and tg3 randomly chosen are 

different from the index j in such a way that z must be larger 

or equal to 4 in order to allow for this condition. Factor F, 

called of mutant vector, controls the amplification of the 

differential variation (xtg2,gxtg3,g) is real and constant  [0,2], 

(see Ref. [27]).  

In order to increase the diversity of the particles, the 

crossover is introduced. For this purpose, the trial vector is: 

]),(,,),2(,),1([),( 1111   gggg jmujujujiu        (6) 

where  

)(or))((if),(),( 2111 jriCrirjivjiu gg    or (7a) 

)(and))((if),(),( 211 jriCrirjixjiu gg       (7b) 

In Eqn. (7ab) r1(i) is a real number chosen randomly  [0,1], 

Cr is a crossover rate  [0, 1] and r2(i) is a randomly chosen 

index  [1, 2, ..., m], which guarantees that u(i,j)g+1 receives 

at least a parameter of v(i,j)g+1, [27]. 

The selection, the last step of the process, decides if the trial 

vector u(i,j)g+1 should or not become a member of the 

generation g+1. In this step u(i,j)g+1 is compared to the target 

vector x(i,j)g using the best fitness criterion, i.e.: 

)),(( )),((if),(),( 111 gobjgobjgg jixFjiuFjiujix  

(8a) 

or )),(( )),((if),(),( 11 gobjgobjgg jixFjiuFjixjix  

(8b) 

2.1.3 Particle Swarm Optimization (PSO) 

The first step for the implementation of the PSO consists of 

randomly generating a population with m particles and their 

corresponding initial speeds: 

x0= x(i,j)0 with  i=1,2,...m     and j = 1,2,...z (9) 

v0= v(i,j)0              (10) 

where m is the number of design variables and j is the 

number of particles or population size.  

The initial population, x0, may be conveniently randomly 

chosen by employing the lower limit and the upper limit for 

each design variable the following way: 

))()(()()(),( 0 ixixirixjix LUL     with j = 1,2,...z (11) 

where xL(i) denotes the lower limit for the design variable i, 

xU(i) denotes the upper limit and r(i) indicates a randomly 

chosen number [0,1] for each particle j. 

The vector initial speed can be randomly created for each 

particle of this population according to the expression: 

 /))()(()(),( 0 ixixirjiv LU       (12) 

where  is a scale factor to be determined with the aim of 

limiting the size of the initial speed.   

The original proposition of the PSO was also used in this 

work to compute the speeds of the particles at the instant 

g+1, v(i,j)g. Its mathematical expression is: 

gkbgibgwg jivjivjivjiv ),(),(),(),( 1     (13) 

where 

ggw jivirwjiv ),()(),(          (14) 

)),(),(()(),( kibgib jixjixirjiv      (15) 

)),(),(()(),( kgbgkb jixjixirjiv      (16) 
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w  is the inertia parameter, xib(i,j) is the best location for the 

particular i up to the last iteration z (best particle), xgb(i,j) is 

the best result of all till the last iteration z (global best),  

and β are two selected parameters  [0,1]. The parcels that 

compose the speed at the instant g+1 are interpreted as 

follows [28]:   

vw(i,j)g  represents its tendency to continue moving along 

the same direction of the previous iteration; 

vib(i,j)g  represents the tendency of the individual to return 

to its best location so far; 

vkb(i,j)g  represents the tendency of the particle to move 

towards the position of the best results of all the particles till 

the previous iteration. 

Although directions are well defined in the PSO, the random 

character of their magnitudes has ensured search paths are 

able to avoid local maxima even when using relatively small 

populations [6]. New populations are created as the number 

of iterations increase. The particles that are converging 

towards the problem solution have their speeds converging 

towards the null value. 

The new position x(i,j)g+1 of each particle of the new 

population is calculated by employing the position x(i,j)g  at 

the previous instant, and the speed v(i,j)g+1. This new 

position is given by: 

 11 ),(),(),(   ggg jivjixjix       (17) 

For each new position of the particle is necessary to verify if 

the particle is located within the design region, i.e., if xL(i) 

x(i,j)g+1xU(i). If the new particle is not within the design 

region, a new position for this particle is randomly created 

using Eq. (11). 

2.2  Two-dimensional elastic model 
The two-dimensional elastic analysis of sandwich beam was 

performed taking the assumptions that the materials are 

homogeneous with linear behavior and that in the interfaces 

the materials are perfectly bonded. The continuity of the 

displacements at the interfaces of the materials that make up 

the sandwich beam (continuous and fully glued interfaces) 

allows assemble the finite elements in the conventional way, 

even with different materials.  In this work cubic Lagrangian 

Finite Element (16 nodes) for analyzes and the elastic 

components of the displacement u=(u,v) can interpolated as 

follows: 
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where  „x‟  is the coordinate along  the beam axis  

{q}={u1,v1, …, u16, v16}
T are the pairs (uk,vk) that 

representing the displacement components at node k of the 

element and Nk(x) represent the Lagrange interpolation 

functions, well-known in the classical books of finite 

elements [29-30]. In this case, the Lagrange interpolations 

function for two dimensional cubic element with n and m 

nodes in  and  directions, respectively. 

)()(][  bak LLN          (19) 
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The linear strain vector is related to the generalized 

displacement vector in the following manner: 
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where [B] is a (3x32) matrix relating the three strains to the 

generalized displacements and is given by: 
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The element stiffness matrix, [K], is obtained by integration 

and its expression is provided by Eq. (24), see Refs. [29-30]. 

dAte
A

]][[][][ T
BDBK         (24) 

where te denotes the thickness of the element, A denotes the 

area of the element and [D] is the (3x3) matrix called 

constitutive matrix, which relates three stresses and three 

strains, 
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In Eqn. (26) E is the modulus of elasticity and  is Poisson‟s 

ratio. The [D] matrix is written as a function of the elastic 

material parameters and the adjustment of these parameters 

as a function of angular frequency () was the main 

objective of this work.  The mass matrix is obtained using 

the following integral: 

    dAteA  
T

][M        (27) 

where  is the material density and [N] is a matrix with order  

(232) of Eq. (18).  

For punctual external forces as F(x,t)=F0 sin(t)  acting on 

node k and the balance of the element to the harmonic 

analysis can be written in the following form [29-30]: 

}{})]{,([ FqK Ee         (28)  

where 

][)]([)],([ 2
MKK e ,      (29) 

 T0 0......0}{ FF         (30) 
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and the position is not equal to zero at 2k when the force is 

applied in the „y‟ direction and 2(k1) when the force is 

applied in the „x‟ direction. 

The detail of how the boundary condition (clamped) was 

imposed in the end of sandwich beam is showed in Figure 1. 

As can be seen, this condition is much better represented 

with two-dimensional elements, because null displacements 

are imposed only on the nodes in contact with the rigid base. 

The Figure 2 shows the pattern construction of the 

homogeneous finite element mesh (shown only a band of 3 

mm thickness along the height of the beam). Note that 

elements with a length of 3 mm were used to keep the aspect 

ratio limited to 5 for the elements of the steel sheet. 

 

Fig. 1: Boundary conditions for the clamped end. 

 

Fig. 2:Construction pattern mesh along the thickness of 

the beam (rotated 90º) and cubic Lagrangian element 

used in the analysis. 

3. RESULTS 
The main objective of this work is evaluating the quality of 

the solutions obtained with the parametric optimization to 

estimate the core shear modulus (Gp) and the core loss factor 

(p) of the PRF and the elasticity modulus (Eh) and the loss 

factor (h) of the HIP. The physical parameters are correlated 

by the complex elasticity modulus by: 

)j1(*  EE
         (31) 

According Backström and Nilsson [23], the PRF does not 

has significant influence on the dynamic behavior of 

sandwiches beams, it is assumed that the classical 

relationship between E and G given by Eq. (32) is valid. 

GE )1(2 
         (32) 

where  is the Poisson coefficient and its value is 0,3.  

The optimization methods applied in this work are: GA, DE 

and PSO. The strategy of evaluation these properties will be 

conducted in 2 steps: a) Step I - Experimental evaluation of 

the FRF and b) Step II - Optimization of the physical 

parameters. The present methodology is applied two 

sandwich beams, one without and another with superficial 

modification. The experimental sandwich beam structure 

used in this work is made with the association of hot-rolled 

steel, PRF and HIP with thickness of 0.6 mm, 38.25 mm and 

1.25 mm, respectively, (see Fig. 3). The beam width is 39.18 

mm. 

3.1  Step I–Experimental evaluation of 

FRF 
The first step of this methodology is to evaluate 

experimentally the FRF of the sandwich beam denoted by 

FRFexp. This is done with the evaluation of FRF between an 

impulsive signal and its vibrational response. The 

experimental data are obtained using the impact hammer and 

four accelerometers displaced along the sample (A1, A2, A3 

and A4), Fig. 3. The impact force was applied in the position 

of the accelerometer A2 on the steel side and Fig. 4 shows the 

FRF curve obtained.  Table 1 shows the values of these 

parameter to the accelerometer A2 and the natural 

frequencies obtained using 2D elasticity theory.  

 

Fig. 3:Beam Structure (Dimensions in mm). 

3.2  Step II – Optimization of the Fobj 
The mathematical model is obtained using 2D elasticity 

theory and the physical parameters (Gp, Eh, p and h), are 

estimated through the adjustment of the numerical FRF 

(FRFnum) generated by computer simulation of the finite 

element model coupled to methods GA, PSO and DE. The 

parameters were optimized considering three different 

frequency ranges around the natural frequencies (fn) of the 

the first three modes of vibration. The parameters used in this 

application by three methods of optimization are showed in 

Table 2. The finite element mesh is composed by 775 nodes 

and 80 elements. The objective function Fobj is evaluated in 

frequency range defined between f1 and f2, denote by 

 
2

1

f

f
expnumobj FRFFRFF       (33) 

 

Fig. 4:FRF curve of accelerometer A2. 

Table 1. Experimental and numeric natural frequencies 

Mode 

shape 

Natural Frequencies  (fn) in  [Hz] 

Experimental A2 2D elasticity  Error (%) 

1 24.76 24.50 1.06 

2 104.34 107.36 +2.81 

3 221.87 228.50 +2.90 
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Table 2. GA, DE and PSO parameters. 

Parameter GA DE PSO 

Population size 20 20 20 

Number of evaluation of the 

Fobj 
3000 3000 3000 

Crossover rate 0.9 0.85 - 

Mutation rate 0.02 - - 

Number of Cromossomes 12 - - 

Aplification Factor (F) - 0.5 - 

Inertia weight (w) - - 0.01 

 /  /  - - 0.9/0.6/0.5 

 

Pritz [31] in the study of damping behavior of the solid 

material used for sound and vibration control verified that E, 

G and  are frequency dependents and  is more susceptible 

to frequency variation. Fact also observed by Barbieri et al. 

[32] when evaluated statically and dynamically the 

parameters of one specimen made of the HIP and another the 

PRF in three frequency bands.  Furthermore, the authors 

evaluated dynamically a sandwich beam excited by a mini 

shaker and the physical parameters of the HIP and PRF were 

estimated using the Timoshenko beam theory and two 

optimization methods: amplitude correlation coefficient 

(ACC) and GA, Table 3. Based on these studied, the lower 

and upper limit of the parameters E and G are determined as 

±30% of the GA results and the lower and upper limit of the 

parameter  are ±70% of the results. 

The design constraints applied in the optimizations are 

shown in Table 4. The physical parameters are adjusted for 

the first three vibration modes separately. The frequency 

range in parameter adjustment is chosen as being 

approximately ±10 Hz of the fn values obtained in Step 1, 

Table 5. The frequency increment used in all adjustments is 

0.25 Hz.  Figures 5-7 show the curves of the adjusted FRF 

(FRFnum) and a comparison with the experimental FRF 

(FRFexp) for three first vibration modes. Figures 8-10 show 

the converge behavior of the function objective for each 

analysis.  

Table 3. Parameter obtained by Barbieri et al. [32]. 

Method 
   HIP  PRF 

Eh[GPa] h Gp[MPa]   Ep[MPa] p 

GA 1.583 0.045 3.287 3.292 0.064 

ACC 1.580 0.047 8.55 8.56 0.063 

 

Table 4. Design constraints. 

Material 
Physical 

Parameter 

Lower Limit 

xL(i) 

Upper Limit 

xU(i) 

HIP 
Eh [Gpa] 1.11 1.79 

h 0.014 0.076 

PRF 
Ep [Mpa] 5.98 11.11 

p 0.019 0.110 

 

In all cases, the PSO method presented faster convergence 

than the other methods. The PSO method has been more 

efficient for this type of problem. However, all methods 

converged on a similar value of the objective function. There 

are not many works in the literature of parameters 

identification applied for sandwich beams which compare the 

efficiency of these three methods.  

Table 5. Frequency range in [Hz]. 

Mode shape f1 fn f2 

1st 14.0 24.76 34.0 

2
nd

 94.0 104.34 114.0 

3rd 212.0 221.87 332.0 

 

Fig. 5: FRFnum for first mode. 

 

Fig. 6: FRFnum for second mode. 

 

Fig. 7:FRFnum for third mode. 
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Fig. 8:Convergence behavior for first mode. 

 

Fig. 9:Convergence behavior for second mode. 

 

Fig. 10: Convergence behavior for third mode. 

Table 6 shows the values of the optimal physical parameters 

for the HIP and PRF. It can be noted that the loss factor () 

of the two materials presented large differences for 

adjustment around the regions of the second and third 

vibration modes.  The largest variations of Young's modulus 

of the PRF values were obtained for the region of the third 

vibration mode.  

Table 6. Optimal Results. 

M
o
d
e 

sh
ap

e 

O
p
ti

m
iz

at
io

n
 

M
et

h
o
d
 

High Impact Polystyrene 

 (HIP) 

Polyurethane rigid foam 

 (PRF) 

Timoshenko 

beam theory* 
2D elasticity 

Timoshenko 

beam theory* 
2D elasticity 

Eh 

GPa 
h 

Eh 

GPa 
h 

Ep 

MPa 
p 

Ep 

MPa 
p 

1st 

GA 

1.40 0.044 

1.28 0.042 

9.47 0.064 

8.79 0.063 

PSO 1.28 0.046 8.71 0.051 

DE 1.30 0.048 8.26 0.048 

2nd 

GA 

1.40 0.044 

1.42 0.023 

9.47 0.064 

9.49 0.044 

PSO 1.40 0.023 9.63 0.043 

DE 1.43 0.020 9.43 0.047 

3rd 

GA 

1.40 0.044 

1.38 0.016 

9.47 0.064 

7.03 0.025 

PSO 1.38 0.016 7.03 0.025 

DE 1.39 0.016 7.01 0.025 

* Reference value (see Table 3). 

Figures 11 to 13 shows the three mode shapes (displacement 

in the x direction) of the system using the numeric 2D 

elasticity model. It is possible to notice, mainly in the Figs. 

11 and 13, regions where the thickness are extended and 

compressed. This type of behavior is not possible to be 

obtained with the Thimoshenko beam model. 

 

Fig. 11:First mode shape. 

 

 

Fig. 12:Second mode shape. 

 

Fig. 13: Third mode shape. 

3.3  Sandwich beam with local modification 
Finally, the methodology is used to optimize the parameters 

of a sandwich beam with local modification. The 

modification (perturbation) was introduced into the system 

by removing 2 mm from the face of polystyrene at the 

position of 75 mm from the rigid base. The finite element 

mesh is refined at modification region and it formed by 

27,931 nodes and 3,000 elements. Figure 14 shows the 

experimental FRF curves of the system without and with 

modification. Notes a great variation in the first natural 

frequency and little variation in the third natural frequency. 

The second natural frequency practically was not changed.  

Table 7 shows the value of the three first natural frequencies 

to the system without  and with modification. In this 

example, the parameters are adjusted only for the first natural 

frequency with PSO. The results obtained after 3,000 

evaluations of the Fobj are showed in Table 8. Figure 15 

shows the curves of the adjusted FRF (FRFnum) and a 

comparison with the experimental FRF (FRFexp) for the first 

vibration mode. Figure 16 shows the converge behavior of 

the function objective for PSO optimization. This example 

was intentionally included to show that the present 

methodology is efficient to evaluate the physical properties 

of the solid structures by parameter optimization. 

Table 7. Experimental frequencies with and without 

modification. 

Mode shape 
Experimental fn [Hz] 

Without With 

1st 24.76 13.40 

2nd 104.34 104.96 

3rd 221.87 219.50 
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Table 8. Optimal results for sandwich beam without and 

with modification. 
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High Impact Polystyrene 

 (HIP) 

Polyurethane rigid foam 

 (PRF) 

Without With Without With 

Eh 

GPa 
h 

Eh 

GPa 
h 

Ep 

MPa 
p 

Ep 

MPa 
p 

1st PSO 1.28 0.046 1.45 0.040 8.71 0.051 8.89 0.058 

 

Fig. 15:FRFnum and FRFexp for first mode. 

 

Fig. 16:Convergence behavior. 

4. CONCLUSIONS 
Based on the results it is possible to ensure that the 

mathematical model obtained with 2D elasticity is a good 

tool for representing the dynamic behavior of sandwich 

beams with and without local modifications.The 2D 

elasticity theory was used to update the values of physical 

parameters of mathematical models of sandwich beam made 

with the association of Hot-Rolled Steel, Polyurethane Rigid 

Foam and High Impact Polystyrene. The physical parameters 

estimated were the Young‟s modulus and loss factor of the of 

the Polyurethane Rigid Foam and the High Impact 

Polystyrene and was verified that the parameters are 

frequency dependent.  

All optimization methods (Genetic Algorithm, Differential 

Evolution and Particle Swarm Optimization) presented good 

agreement when compared the optimized  and experimental 

FRF curves. The Particle Swarm Optimization have shown 

faster convergence than others methods for this application.  
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