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ABSTRACT
In a graph G = (V,E), a set M ⊆ V is called a monopoly set

of G if every vertex v ∈ V −M has at least d(v)
2 neighbors in

M . The monopoly size mo(G) of G is the minimum cardinality
of a monopoly set among all monopoly sets in G. In this paper,
the minimum monopoly distance energy EMd(G) of a connected
graphG is introduced and minimum monopoly distance energies of
some standard graphs are computed. Some properties of the char-
acteristic polynomial of the minimum monopoly distance matrix of
G are obtained. Finally. Upper and lower bounds for EMd(G) are
established.
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1. INTRODUCTION
In this paper, a graph G = (V,E) mean a connected simple

graph, that is nonempty, finite, having no loops no multiple and no
directed edges also there is a path between any pair of its vertices.
Let G be such a graph and let n and m be the number of its ver-
tices and edges, respectively. The degree of a vertex v in a graph
G, denoted by d(v), is the number of vertices adjacent to v. For
any vertex v of a graph G, the open neighborhood of v is the set
N(v) = {u ∈ V : uv ∈ E}. For a subset S ⊆ V the degree of a
vertex v ∈ V with respect to a subset S is dS(v) = |N(v) ∩ S|.
The distance d(u, v) between two vertices u and v of a graph G is
the minimum length of the paths connecting them (i.e., the number
of edges between them). For more terminologies and notations in
graph theory, the reader is referred to [12].

A subset M ⊆ G is called a monopoly set of G if for every ver-
tex v ∈ V −M has at least d(v)

2
neighbors in M . The monopoly

size of G is the smallest cardinality of a monopoly set in G, de-
noted by mo(G). A monopoly set of a graph G is minimum if for
any other monopoly set M

′
of G, |M | ≤ |M ′ |. In particular, mo-

nopolies are a dynamic monopoly (dynamos) that, when colored
black at a certain time step, will cause the entire graph to be col-
ored black in the next time step under an irreversible majority con-
version process. Dynamos were first introduced by Peleg [18]. For
more details in dynamos in graphs (see [4, 5, 8, 17]). In [14], the

author defined a monopoly set of a graphG, proved that themo(G)
for general graph is at least n

2
, discussed the relationship between

matchings and monopolies and he showed that any graph G admits
a monopoly with at most α

′
(G) vertices.

The concept of energy of a graph was introduced by I. Gutman
[9] in the year 1978. Let G be a graph with n vertices and m edges
and let A = (aij) be the adjacency matrix of the graph. The eigen-
values λ1, λ2, ..., λn of A, assumed in non increasing order, are
the eigenvalues of the graph G. Let λ1, λ2, ..., λt for t ≤ n be the
distinct eigenvalues of G with multiplicity m1,m2, ...,mt, respec-
tively, the multiset of eigenvalues of A(G) is called the spectrum
of G and denoted by

Spec(G) =

(
λ1 λ2 ... λt

m1 m2 ... mt

)
.

The energy E(G) of G is defined to be the sum of the absolute
values of the eigenvalues of G, i.e. E(G) =

∑n

i=1
|λi|. For more

details on the mathematical aspects of the theory of graph energy
see [2, 10, 16].

The distance matrix of G is the square matrix Ad(G) whose
(i, j) - entry is the distance between the vertices vi and vj . Let
ρ1, ρ2, ..., ρn be the eigenvalues of the distance matrix Ad(G) of a
graph G. The distance energy Ed(G) of a graph G is defined by

Ed(G) =

n∑
i=1

|ρi|.

For more studies on distance energy see [6, 7, 11, 13, 20].

Recently C. Adiga et al. [1] defined the minimum covering en-
ergy, EC(G) of a graph which depends on its particular minimum
cover set C. Kanna and et al. in [19] introduced minimum covering
distance energy of a graph. Motivated by these papers, minimum
monopoly distance energy, denotedEMd(G), of a connected graph
G is introduced and minimum monopoly distance energies of some
standard graphs are computed. Some properties of characteristic
polynomial of a minimum monopoly distance matrix of a graph
G are obtained. Finally, upper and lower bounds for EMd(G) are
established. It is possible that the minimum monopoly distance en-
ergy that is considering in this paper may be have some applications
in chemistry as well as in other areas.
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Fig. 1. A graph G

2. THE MINIMUM MONOPOLY DISTANCE
ENERGY OF A GRAPH

Let G be a graph of order n with vertex set V = {v1, v2, ..., vn}
and edge set E. Any monopoly set M of a graph G with minimum
cardinality is called a minimum monopoly set. Let M be a mini-
mum monopoly set of a graphG. The minimum monopoly distance
matrix ofG is the n×n- matrix, denotedAMd(G) = (aij), where

aij =

{
1, if i = j and vi ∈M ;
d(vi, vj), othewise.

The characteristic polynomial of AMd(G) is defined as

fn(G, ρ) = det (ρI −AMd(G)) .

The minimum monopoly distance eigenvalues of G are the eigen-
values of AMd(G). Since AMd(G) is real and symmetric, its
eigenvalues are real numbers and we label them in non-increasing
order ρ1 ≥ ρ2 ≥ ... ≥ ρn. The minimum monopoly distance en-
ergy of G is defined as:

EMd(G) =

n∑
i=1

|ρi|

To illustrious this concept, the minimum monopoly distance energy
of a graph G is computed as the following example.

EXAMPLE 1. Let G be a graph in Fig. 1 with vertices
{v1, v2, v3, v4} and let we chose the minimum monopoly setM1 =
{v1, v3} of G. Then

AM1d(G) =

 1 1 1 1
1 0 1 2
1 1 1 1
1 2 1 0


The characteristic polynomial of AM1d(G) is

fn(G, ρ) = ρ4 − 2ρ3 − 8λ2.

The minimum monopoly distance eigenvalues of G are ρ1 =
4, ρ2 = ρ3 = 0, ρ4 = −2. Therefore the minimum monopoly
distance energy of G is

EM1d(G) = 6.

Now, if we chose another minimum monopoly set of G, namely
M2 = {v2, v4}, then

AM2d(G) =

 0 1 1 1
1 1 1 2
1 1 0 1
1 2 1 1



The characteristic polynomial of AM2d(G) is

fn(G, ρ) = ρ4 − 2ρ3 − 8ρ2 − 6ρ− 1.

The minimum monopoly distance eigenvalues of G are ρ1 = 2 +√
5, ρ2 = 2 −

√
5, ρ3 = ρ4 = −1. Therefore the minimum

monopoly distance energy of G is

EM1d(G) = 2 + 2
√
5.

The examples above illustrate that the minimum distance monopoly
energy of a graph G depends on the choice of the minimum
monopoly set. i.e. the minimum monopoly distance energy is not
a graph invariant.

3. SOME PROPERTIES OF MINIMUM
MONOPOLY DISTANCE ENERGY OF GRAPHS

In this section, some properties of characteristic polynomials of
minimum monopoly distance matrix of a graph G are introduced.

THEOREM 1. Let G be a graph of order n, size m and
monopoly size mo(G) and let

fn(G, ρ) = c0ρ
n + c1ρ

n−1 + c2ρ
n−2 + ...+ cn

be the characteristic polynomial of a minimum monopoly distance
matrix of a graph G. Then

(1) c0 = 1.

(2) c1 = −mo(G).

(3) c2 =

(
mo(G)

2

)
−
∑

1≤i<j≤n d
2(vi, vj).

PROOF. (1) From the definition of fn(G, ρ).
(2) Since the sum of diagonal elements of AMd(G) is equal to
|M | = mo(G), where M is a minimum monopoly set in G,
and the sum of determinants of all 1× 1 principal submatrices
of AMd(G) is the trace of AMd(G) , which evidently is equal
to mo(G). Then (−1)1c1 = mo(G).

(3) (−1)2c2 is equal to the sum of determinants of all 2× 2 prin-
cipal submatrices of AMd(G), that is

c2 =
∑

1≤i<j≤n

∣∣∣∣ aii aij
aji ajj

∣∣∣∣
=

∑
1≤i<j≤n

(aiiajj − aijaji)

=
∑

1≤i<j≤n

aiiajj −
∑

1≤i<j≤n

a2ij

=

(
mo(G)

2

)
−

∑
1≤i<j≤n

d2(vi, vj).

THEOREM 2. LetG be a graph of order n and let ρ1, ρ2, ..., ρn
be the eigenvalues of AMd(G). Then

(i)
∑n

i
ρi = mo(G).

(ii)
∑n

i
ρ2i = mo(G) + 2m+ 2D, where

D =
∑

i<j, d(vi,vj) 6=1

d2(vi, vj).
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PROOF. (i) Since the sum of the eigenvalues of AMd(G) is the
trace of AMd(G), then

n∑
i=1

ρi =

n∑
i=1

aii = |M | = mo(G).

(ii) Similarly the sum of squares eigenvalues of AMd(G) is the
trace of (AMd(G))2. Then

n∑
i=1

ρ2i =

n∑
i=1

n∑
j=1

aijaji

=

n∑
i=1

a2ii +

n∑
i 6=j

aijaji

=

n∑
i=1

a2ii + 2

n∑
i<j

a2ij

= |M |+ 2
∑

1≤i<j≤n

d2(vi, vj)

= mo(G) + 2
∑

1≤i<j≤n

d2(vi, vj)

= mo(G) + 2m+ 2D,

where D =
∑

i<j, d(vi,vj)6=1
d2(vi, vj).

LEMMA 3. Let G be a graph with a minimum monopoly set
M . If the minimum monopoly distance energy EMd(G) of G is a
rational number, then

EMd(G) ≡ |M | (mod 2).

PROOF. Let ρ1, ρ2, ..., ρn be minimum monopoly distance
eigenvalues of a graph G of which ρ1, ρ2, ..., ρr are positive and
the rest are non-positive, then

n∑
i=1

|ρi| = (ρ1 + ρ2 + ...+ ρr)− (ρr+1 + ρr+2 + ...+ ρn).

= 2(ρ1 + ρ2 + ...+ ρr)− (ρ1 + ρ2 + ...+ ρn).

= 2q − |M |. Where q = ρ1 + ρ2 + ...+ ρr.

Since ρ1, ρ2, ..., ρr are algebraic integers, so is q. Therefore, (ρ1 +
ρ2 + ... + ρr) must be integer if EMd(G) is rational. Hence the
Theorem.

4. MINIMUM MONOPOLY DISTANCE ENERGY
OF SOME STANDARD GRAPHS

In this section, the exact values of the minimum monopoly distance
energy of some standard graphs are investigated.

THEOREM 4. For the complete graph Kn for n ≥ 2,

EMd(Kn) =

{
n−1
2

+
√
n2 − 1, if n is odd;

n−2
2

+
√
n2 − 1, if n is even.

PROOF. Let Kn be the complete graph with vertex set V =
{v1, v2, · · · , vn}. Then the minimum monopoly size of the com-
plete graph is

mo(Kn) =
⌊
n

2

⌋
=

{
n−1
2
, if n is odd;

n
2
, if n is even.

Hence the minimum monopoly set is {v1, v2, · · · , vn−1
2
} if n is

odd and {v1, v2, · · · , vn
2
} if n is even. Therefore, we consider the

following cases:

Case 1: n is odd,

AMd(Kn) =



1 1 · · · 1 1 1 · · · 1
1 1 · · · 1 1 1 · · · 1
...

...
. . .

...
...

...
. . .

...
1 1 · · · 1 1 1 · · · 1
1 1 · · · 1 0 1 · · · 1
1 1 · · · 1 1 0 · · · 1
...

...
. . .

...
...

...
. . .

...
1 1 · · · 1 1 1 · · · 1
1 1 · · · 1 1 1 · · · 0


n×n

The respective characteristic polynomial is

fn(Kn, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ− 1 −1 · · · −1 −1 −1 · · · −1
−1 ρ− 1 · · · −1 −1 −1 · · · −1

...
...

. . .
...

...
...

. . .
...

−1 −1 · · · ρ− 1 −1 −1 · · · −1
−1 −1 · · · −1 ρ −1 · · · −1
−1 −1 · · · −1 −1 ρ · · · −1

...
...

. . .
...

...
...

. . .
...

−1 −1 · · · −1 −1 −1 · · · −1
−1 −1 · · · −1 −1 −1 · · · ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= ρ
n−3
2 (ρ+ 1)

n−1
2

(
ρ2 − (n− 1)ρ− n− 1

2

)
.

The spectrum of Kn is

MM Spec(Kn) =

(
0 −1 (n−1)+

√
n2−1

2

(n−1)−
√

n2−1
2

n−3
2

n−1
2

1 1

)

Hence, the minimum monopoly distance energy of a complete
graph of odd order is

EMd(Kn) =
n− 1

2
+
√
n2 − 1.

Case 2: n is even,

AMd(Kn) =



1 1 · · · 1 1 · · · 1
1 1 · · · 1 1 · · · 1
...

...
. . .

...
...

. . .
...

1 1 · · · 1 1 · · · 1
1 1 · · · 1 0 · · · 1
...

...
. . .

...
...

. . .
...

1 1 · · · 1 1 · · · 1
1 1 · · · 1 1 · · · 0


n×n

3
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The respective characteristic polynomial is

fn(Kn, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ− 1 −1 · · · −1 −1 · · · −1
−1 ρ− 1 · · · −1 −1 · · · −1

...
...

. . .
...

...
. . .

...
−1 −1 · · · ρ− 1 −1 · · · −1
−1 −1 · · · −1 ρ · · · −1

...
...

. . .
...

...
. . .

...
−1 −1 · · · −1 −1 · · · −1
−1 −1 · · · −1 −1 · · · ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

= ρ
n−2
2 (ρ+ 1)

n−2
2

(
ρ2 − (n− 1)ρ− n

2

)
.

The spectrum of Kn is

MM Spec(Kn) =

(
0 −1 (n−1)+

√
n2+1

2

(n−1)−
√

n2+1

2
n−2
2

n−2
2

1 1

)
Hence, the minimum monopoly distance energy of a complete
graph of even order is

EMd(Kn) =
n− 2

2
+
√
n2 + 1.

From cases (1) and (2) the result is hold.

THEOREM 5. For the complete bipartite graph Kr,s for r ≤ s

EMd(Kr,s) = (2s+r−3)+
√

(4rs)2 − 4rs+ 4r + 4s2 − 4s+ 1.

PROOF. For the complete bipartite graph Kr,s, (r ≤ s) with
vertex set V = {v1, v2, · · · , vr, u1, u2, · · · , us}. The minimum
monopoly set is M = {v1, v2, · · · , vr}. Then

AMd(Kr,s) =



1 2 · · · 2 1 1 · · · 1
2 1 · · · 2 1 1 · · · 1
...

...
. . .

...
...

...
. . .

...
2 2 · · · 1 1 1 · · · 1
1 1 · · · 1 0 2 · · · 2
1 1 · · · 1 2 0 · · · 2
...

...
. . .

...
...

...
. . .

...
1 1 · · · 1 2 2 · · · 0


(r+s)×(r+s)

The characteristic polynomial of AMd(Kr,s), where n = r + s is

fn(Kr,s, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ− 1 −2 · · · −2 −1 −1 · · · −1
−2 ρ− 1 · · · −2 −1 −1 · · · −1

...
...

. . .
...

...
...

. . .
...

−2 −2 · · · ρ− 1 −1 −1 · · · −1
−1 −1 · · · −1 ρ −2 · · · −2
−1 −1 · · · −1 −2 ρ · · · −2

...
...

. . .
...

...
...

. . .
...

−1 −1 · · · −1 −2 −2 · · · ρ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (ρ+1)r−1(ρ+2)s−1

[
ρ2 − (2r + 2s− 3)ρ− (3rs− 4r − 2s+ 2)

]
.

Hence, the minimum monopoly distance eigenvalues of Kr,s are
ρ1 = −2[(s − 1) times], ρ2 = −1[(r − 1) times], ρ3 =
(2r+2s−3)±

√
(4rs)2−4rs+4r+4s2−4s+1

2
[one time each]. Therefore

EMd(Kr,s) = (2s+r−3)+
√

(4rs)2 − 4rs+ 4r + 4s2 − 4s+ 1.

THEOREM 6. For n ≥ 2, the minimum monopoly distance en-
ergy of a star graph K1,n−1 is equal to 4n− 7.

PROOF. Let K1,n−1 be a star graph with vertex set V =
{v0, v1, v2, · · · , vn−1}, where v0 is the center vertex, and the min-
imum monopoly set is M = {v0}. Then

AMd(K1,n−1) =


1 1 1 · · · 1
1 0 2 · · · 2
1 2 0 · · · 2
...

...
...

. . .
...

1 2 2 · · · 0


n×n

The characteristic polynomial of AMd(K1,n−1) is

fn(K1,n−1, ρ) =

∣∣∣∣∣∣∣∣∣
ρ− 1 −1 −1 · · · −1
−1 ρ −2 · · · −2
−1 −2 ρ · · · −2

...
...

...
. . .

...
−1 −2 −2 · · · ρ

∣∣∣∣∣∣∣∣∣
= (ρ+ 2)n−2(ρ2 − (2n− 3)ρ+ (n− 3)).

Then MM Spec(K1,n−1) is(
−2 (2n−3)+

√
4n2−16n+21

2

(2n−3)+
√

4n2−16n+21

2
n− 2 1 1

)
Therefore EMd(K1,n−1) = 4n− 7.

DEFINITION 7. The double star graph Sn,m is the graph con-
structed from union K1,n−1 and K1,m−1 by join whose centers v0
with u0. A vertex set is V (Sn,m) = V (K1,n−1)∪V (K1,m−1) and
edge set is E(Sn,m) = {v0u0, v0vi, u0uj : 1 ≤ i ≤ n− 1, 1 ≤
j ≤ m− 1}. Therefore, double star graph is bipartite graph.

THEOREM 8. For the double star graph Sm,m for m ≥ 3

EMd(Sm,m) = (9m− 13) +
√
m2 + 6m− 3.

PROOF. For the double star graph Sn,n with vertex set V =
{v0, v1, ..., vm−1, u0, u1, ..., um−1} the minimum monopoly set is
M = {v0, u0}. Then

AMd(Sm,m) =



1 1 · · · 1 1 2 · · · 2
1 2 · · · 2 2 3 · · · 3
...

...
. . .

...
...

...
. . .

...
1 2 · · · 2 2 3 · · · 3
1 2 · · · 2 1 1 · · · 1
2 3 · · · 3 1 2 · · · 2
...

...
. . .

...
...

...
. . .

...
2 3 · · · 3 1 2 · · · 2


m×m

The characteristic polynomial of AMd(Sm,m) is

fn(Sm,m, ρ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ρ− 1 −1 · · · −1 −1 −2 · · · −2
−1 ρ− 2 · · · −2 −2 −3 · · · −3

...
...

. . .
...

...
...

. . .
...

−1 −2 · · · ρ− 2 −2 −3 · · · −3
−1 −2 · · · −2 ρ− 1 −1 · · · −1
−2 −3 · · · −3 −1 −2 · · · −2

...
...

. . .
...

...
...

. . .
...

−2 −3 · · · −3 −1 −2 · · · ρ− 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4



International Journal of Computer Applications (0975 - 8887)
Volume 128 - No.3, October 2015

= (ρ+2)2m−4[ρ2+(m+1)ρ−(m−1)][ρ2−(5m−5)ρ+(m−5)].
Hence, the minimum monopoly distance eigenvalues
of Sm,m are ρ1 = −2[(2m − 4) times], ρ2 =
−(m+1)±

√
m2+6m−3

2
[one time each], and ρ3 =

(5m−5)±
√

25m2−54m+24

2
[one time each].

Therefore, EMd(Sm,m) = (9m− 13) +
√
m2 + 6m− 3.

5. BOUNDS FOR MINIMUM MONOPOLY
DISTANCE ENERGY OF A GRAPH

In this section, some upper and lower bounds for minimum
monopoly distance energy of graphs are established.

THEOREM 9. Let G be a graph of order n and size m. Then√
mo(G) + 2m+ 2s ≤ EMd(G) ≤

√
n [mo(G) + 2m+ 2s].

Where s =
∑

i<j, d(vi,vj)6=1
d2(vi, vj).

PROOF. Consider the Couchy-Schwartiz inequality(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2i

)(
n∑

i=1

b2i

)
.

By choose ai = 1 and bi = |ρi|, we get

(EMd(G))2 =

(
n∑

i=1

|ρi|

)2

≤

(
n∑

i=1

1

)(
n∑

i=1

ρ2i

)
≤ n [mo(G) + 2m+ 2s] .

Where s =
∑

i<j, d(vi,vj)6=1
d2(vi, vj). Therefore, the upper

bound is hold.
Now, since (

n∑
i=1

|ρi|

)2

≥
n∑

i=1

ρ2i .

Then

(EMd(G))2 ≥
n∑

i=1

ρ2i = mo(G) + 2m+ 2s.

Therefore.

EMd(G) ≥
√
mo(G) + 2m+ 2s.

where s =
∑

i<j, d(vi,vj)6=1
d2(vi, vj).

THEOREM 10. Let G be a graph of order n, size m and
monopoly size mo(G). If D = det(AMd(G)), then

EMd(G) ≥
√
mo(G) + 2m+ 2s+ n(n− 1)D2/n.

Where s =
∑

i<j, d(vi,vj)6=1
d2(vi, vj).

PROOF. Since

(EM (G))2 =

(
n∑

i=1

|ρi|

)2

=

(
n∑

i=1

|ρi|

)(
n∑

i=1

|ρi|

)

=

n∑
i=1

|ρi|2 + 2
∑
i 6=j

|ρi||ρj |.

Employing the inequality between the arithmetic and geometric
means, we get

1

n(n− 1)

∑
i6=j

|ρi||ρj | ≥

(∏
i 6=j

|ρi||ρj |

)1/[n(n−1)]

.

Thus

(EM (G))2 ≥
n∑

i=1

|ρi|2 + n(n− 1)

(∏
i 6=j

|ρi||ρj |

)1/[n(n−1)]

≥
n∑

i=1

|ρi|2 + n(n− 1)

(∏
i=j

|ρi|2(n−1)
)1/[n(n−1)]

=

n∑
i=1

|ρi|2 + n(n− 1)

∣∣∣∣∣∏
i 6=j

ρi

∣∣∣∣∣
2/n

= mo(G) + 2m+ 2s+ n(n− 1)D2/n.

Where s =
∑

i<j, d(vi,vj)6=1
d2(vi, vj).

6. CONCLUSION
In this paper, the minimum monopoly distance energy of a con-

nected graph is studied. The exact value of the minimum monopoly
distance energies of some standard graphs and also Some proper-
ties of characteristic polynomial of a minimum monopoly distance
matrix of a graph are obtained. Upper and lower bounds for mini-
mum monopoly distance energy of a graph are established. For the
Path and the cycle graphs, computing the exact value of their min-
imum monopoly distance energy is completed and hence it is still
open problem.
The minimum monopoly distance energy of several other families
of graphs and binary operations of two graphs are open problems.
The relationships between the minimum monopoly distance energy
and the minimum distance (resp. minimum dominating distance)
energy of a graph are also open problems.
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