
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

7

A New Approach to Collaborative Group Formation

Anurag Sarkar
St. Xavier’s College

(Kolkata)

Dibyabiva Seth
St. Xavier’s College

(Kolkata)

Kaustav Basu
St. Xavier’s College

(Kolkata)

Anal Acharya
Assistant Professor
St. Xavier’s College

(Kolkata)

ABSTRACT
This paper implements a tool, referred to as the Automated

Group Decomposition Program (AGDP), which divides a

class of students into groups, using the k-means algorithm,

for the purpose of collaborative learning, and then

heterogenizes the groups based on a factor called the degree

of heterogeneity (DOH). The tool takes as input two sets of

scores and the students‟ roll numbers and outputs the

required groups. The first score set scored students on

communication skills, fluency in using computers and group

work attitude. This score set was used to generate the

homogeneous groups. The second score set scored students

on their knowledge of the subject and was used to generate

the heterogeneous groups. The tool can be used to generate

homogeneous clusters, heterogeneous clusters and a mixture

of both. This tool can not only be used by teachers but also

by instructors with minimal computer experience wishing to

form groups to maximize learning.

Keywords
collaborative learning, k-means, constraint satisfaction,

degree of homogeneity, group learning, homogeneous

groups, heterogeneous groups.

1. INTRODUCTION
Collaborative learning is a method of learning where two or

more people learn together. Each individual in the group

works off of their colleagues‟ knowledge and resources to

broaden their own knowledge bases. According to Gerlach

(1994), “Collaborative learning is based on the idea that

learning is a naturally social act in which the participants talk

among themselves. It is through the talk that learning

occurs". Interaction is considered to be the integral part of

collaborative learning. Participants in a group, with different

knowledge levels, interact with each other and try to

overcome their own shortcomings. People engaged in

collaborative learning are exposed to other viewpoints which

may significantly vary from their own. This enables them to

come up with ways to defend their viewpoint(s) and ensures

that they have a deeper understanding of the subject. Without

collaborative learning, once a student takes up a method to

tackle some problem, his/her mind becomes sidetracked from

alternate solutions. As a result, if that method eventually

fails, more often than not, the student fails to accomplish the

task. This is where collaborative learning comes into play. In

collaborative learning, the students are divided into groups,

and each group is assigned a task. The members of a group

can discuss the issue and each member can come up with an

alternative suggestion to tackle the given problem. They can

also point out the faults or problems with their colleagues‟

ideas and hence such problems can be avoided at an earlier

stage. Now, if these groups are made heterogeneous i.e. each

group consists of members having somewhat different

knowledge bases and resources, then the members benefit

even more. They are able to collaborate and learn new

things, expand their knowledge bases, and tackle the given

problem in an easier way by decomposing the problem into

sub-problems among the members. This is absolutely not

possible without collaborative learning. Studies

([1],[2],[3],[4],[5],[6],[7],[8]) have shown that collaborative

learning is more efficient than individual learning.

In the Automated Group Decomposition Program, the final

groups are formed in a heterogeneous manner such that the

members of each group can share their experiences and skills

in order to help build the skills of one another. The program

asks the instructor whether he or she wants to enter the data

manually or automatically by uploading files containing the

data. If he or she chooses manual entry, the instructor is

asked to enter the marks and relevant student information.

Else, the instructor is asked to select the files that contain the

required data. After this initial phase, the program then asks

the instructor to enter the number of groups or clusters that

he or she wants to divide the class into. The instructor can

also choose whether he or she wants to implement purely

homogeneous clusters, purely heterogeneous clusters or a

mixture of both. After providing the program with this

information, the program then computes and displays the

output based upon the choice of the user.

2. RELATED LITERATURE
Graf and Bekele [1] have suggested that “A reasonably

heterogeneous group refers to a group where student-scores

reveal a combination of low, average and high student-

scores. This is justified by the recommendation of Slavin [2]

who proposes that students should work in small, mixed-

ability groups of four members: one high achiever, two

average achievers, and one low achiever.” Homogeneous

grouping is not a very efficient method of decomposing a

number of students into multiple groups because some

groups tend to be very strong while other groups may be very

weak at performing the given task. As a result, the stronger

groups finish the task very easily, while the weaker groups

fail to accomplish the goal. Heterogeneous grouping tries to

eliminate this drawback and form groups of approximately

similar abilities. The stronger members of a heterogeneous

group are also able to share their knowledge among the

weaker members of the group, thus helping them to learn

more effectively. Wang, Lin and Sun [9] have proposed a

computer-assisted grouping system called DIANA to form

heterogeneous groups exhibiting “internal diversity” and

“external balance with other groups”. They have performed

the grouping based on student data collected via

psychological questionnaires. They have then processed this

data and used a genetic algorithm (GA) to form the optimal

groups. Christodoulopoulos and Papanikolaou [10] have

presented a web-based group formation tool which can form

both homogeneous and heterogeneous groups automatically,

and also allows the learner to negotiate the grouping if

needed. They have used the Fuzzy C-Means algorithm to

form homogeneous groups, and a standard random selection

algorithm to form the heterogeneous groups. Redmond [11]

has used a greedy search algorithm to form the optimal

groups. He has allowed the students to express their project

preferences as well, considering multiple project topics. His

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

8

program comprises 32 procedures and functions, spread over

3250 lines of code. Gokhale [12] has undertaken two tests,

drill-practice skills and critical thinking skills, to determine

whether collaborative learning is more efficient than

individual learning. She developed a nine item questionnaire

and conducted the study on a total of 48 subjects. Her study

shows that collaborative learning is more beneficial for

enhancing critical thinking and problem solving skills. Alavi

[13] has performed a study to investigate the enhancement of

student learning on using a group decision support system

(GDSS) in a collaborative learning process. Her study

involved 127 MBA students and has determined that the use

of a GDSS in collaborative learning leads to higher skill

development and self-reported learning.

3. AUTOMATED GROUP

DECOMPOSITION PROGRAM

3.1 Research Methodology
In this paper, a method has been devised to implement

collaborative learning using the k-means algorithm and the

concept of constraint satisfaction to create groups

intelligently.

In order to perform the clustering, two sets of scores are

used. The first set, referred to as the „A-scores‟, is the sum of

scores obtained by the students in three categories –

communication skills, fluency in computer usage and group

work attitude. The second set, referred to as the „B-scores‟, is

a measure of the subject knowledge possessed by each

student. The program has been implemented using the Java

programming language.First, a modified version of the k-

means algorithm is used to divide the students into k

homogeneous clusters where k is supplied by the instructor

and the homogenization is based on the A-scores. Then

cluster equalization is performed to ensure that each cluster

has an equal number of students. Following this, the clusters

are heterogenized based on the B-scores using an algorithm

that satisfies the degree of heterogeneity (DOH) constraint.

The DOH value is defined for each cluster as:

DOH of each cluster = (Number of ranges of B-scores

present in that cluster) / Cluster size

where the ranges of B-scores are the ranges 0-10, 11-20, 21-

30, …, up to the range where the upper limit is the maximum

attainable B-score. This formula has been devised such that,

for situations in which the number of members in a cluster is

less than or equal to the total number of ranges of B-scores in

the data, the maximum possible DOH value for a cluster is

1.0, which represents the situation in which each member of

a cluster belongs to a different 10-mark range of the B-

scores, and thus, it is impossible to further heterogenize the

cluster. For situations in which the number of members in a

cluster is greater than the total number of ranges of B-scores,

it is impossible to attain a DOH value of 1.0 and the

maximum attainable DOH value for each cluster depends on

the difference between the cluster size and the total number

of B-score ranges.

The following algorithms have been used to form the

required groups or clusters.

3.2 Algorithms
The following variables have been used in the algorithms:

ascores  list of the summation of the marks obtained by the

students according to the first 3 parameters

bscores  list of the marks obtained by the students

according to the fourth parameter

roll  list of the roll numbers of all the students

size  total number of students present

centers  stores the centers of the clusters

clusters  2D matrix storing the roll numbers of the

members of the clusters

k  number of groups/clusters to be formed

m  size/k (number of members in each group/cluster)

rangeCount  2D matrix in which the element [i,j] stores the

number of times a b-score in the jth range appears in the ith

cluster

//Create the clusters

3.2.1 Algorithm makeClusters
BEGIN

 generateCenters()

 WHILE true, DO

 Clear all the clusters

 LOOP through all the people i = 0 to

size-1

 PERSON = ith person

 MARKS =

marks_obtained_by_PERSON

 Find the center i such that it is

the center closest to MARKS

 Add PERSON to the ith cluster

 END LOOP

 IF recalculateCenters() is true, then

 EXIT WHILE

 END IF

 END WHILE

 equalizeClusters()

END

//Generate initial cluster centers

3.2.2 Algorithm generateCenters:

BEGIN

 Determine the minimum marks from ascores and

store it in LO

 Determine the maximum marks from ascores and

store it in HI

 Interval = (hi-lo)/k

 Make (lo + Interval/2) as the first center

 LOOP through all centers j = 1 to k-1

 Make cluster j = cluster (j-1) + Interval

 END LOOP

 RETURN

END

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

9

//Equalize the number of members in every cluster

3.2.2 Algorithm equalizeClusters
BEGIN

 LOOP through all clusters i = k-1 to 1

 IF cluster i has more than m number of

members, then

 EXTRA the extra members

of cluster i which are closest to cluster (i-1)

 Add all members of EXTRA to

cluster (i-1)

 END IF

 END LOOP

 recalculateCenters()

LOOP through all clusters i=0 to k-2

 IF cluster i has more than m number of

members, then

 EXTRA the extra

members of cluster i which are closest to cluster (i+1)

 Add all members of

EXTRA to cluster (i+1)

 END IF

 END LOOP

 recalculateCenters()

 RETURN

END

//Recalculate the centers

3.2.4 Algorithm recalculateCenters:

BEGIN

 Flag= true

 LOOP through all clusters i = 0 to k-1

 NEW_CENTER i = average of all the

members of cluster i

 IF NEW_CENTER i is different than

center i, THEN

 Center i = NEW_CENTER i

 Flag = false

 END IF

 END FOR

 RETURN Flag

END

//Heterogenize the clusters based on Degree of

Heterogeneity

3.2.5 Algorithm makeHet
BEGIN

Calculate the initial degree of heterogeneity (DOH) for each

cluster

Determine the frequency of occurrence of each range in each

cluster

LOOP through all clusters i = 0 to k-1

 LOOP through all clusters j = i+1 to k-1

 Record the initial DOH for both clusters i

and j

 IF DOH of both clusters equals 1.0

THEN

 The DOH cannot be optimized

further, so break out of inner loop

 END IF

 Retrieve the b-scores of the students

whose roll numbers are in cluster i

 Determine the ranges for which there are

no scores in the list of b-scores retrieved above. Call it needi

 Also, determine the ranges for which

there are scores in the list of b-scores above. Call it nonneedi

 Do the same for cluster j, to obtain

similar lists needj and nonneedj

 Find the intersection of needj and

nonneedi. This produces the ranges that are needed by j and

not needed by i i.e. the ranges that can be transferred from i

to j. Call it ITOJ.

 Similarly, find the intersection of needi

and nonneedj to obtain the ranges that can be transferred

from j to i. Call it JTOI.

 For ITOJ, determine the range IJ that has

the most number of elements in cluster i

 Similarly, for JTOI, determine the range

JI that has the most number of elements in cluster j

 Temporarily transfer an element in the

range IJ from cluster i to cluster j

 Temporarily transfer an element in the

range JI from cluster j to cluster i

 Calculate the DOH values for these new

temporary clusters

 IF the sum of the new DOH values is

greater than the sum of the initial DOH values, then

 Make permanent the changes

to the clusters made above

 Set the new DOH value for

cluster i as the initial DOH value for cluster i for the next

iteration

 END IF

 END FOR

END FOR

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

10

END

 //Calculate degree of heterogeneity for a cluster

3.2.6 Algorithm calcDOH:
BEGIN

Initialize a set r to integers 0 to n-1 where n is the

number of ranges for the b-scores;

LOOP through all elements b of the cluster for

which DOH is to be calculated

 Determine the range k that b belongs to

 Remove k from set r

END LOOP

 Calculate number of ranges of B-scores in the

cluster as

(Total number of ranges of B-scores -

The number of integers remaining in set r)

Calculate DOH as (the number of ranges of B-

scores in the cluster) / (the size of the cluster)

Return DOH

END

//Returns a list of integers where the ith integer is the number

of times a number in the ith range appears in the input

cluster

3.2.7 Algorithm getRangeCounts:
BEGIN

Initialize a list rc to contain as many zeros as there

are ranges

LOOP through all members b of the cluster for

which range counts need to be computed

 Determine the range k that b belongs to

 Increment the kth element in the list rc

END LOOP

RETURN rc

END

3.3 Implementation
The program has been implemented using the Java

programming language and the GUI has been implemented

using the light-weight Java Swing GUI widget toolkit. When

the instructor runs this software, Figure 1 is the first screen

which is displayed. By clicking “About”, the user can view

what the software does. By clicking “Launch Program”,

Figure 2 is displayed, where the user chooses how he or she

shall input the required data. If the “Manual Entry” option is

selected, then the user is taken to Figure 3, where he or she

manually enters the data. After manual data entry has been

completed, the results are displayed (Figure 4). Otherwise, if

the user selects the option “Select Files”, the software

automatically reads data from the selected files and displays

output as shown in Figure 5.

In this study, a total of 24 students were divided into 6

groups (each containing 4 members). The scores obtained by

the students were given as file-inputs to the program (figure

5), as well as manual inputs to the program (figure 3). The

proposed groups were given as output by the program as

shown in figure 4 and figure 5. The groups were made as a

mixture, that is, homogeneous on the basis of the students‟

ASCORES and heterogeneous based on the students‟

BSCORES.

Fig 1: The welcome screen

Fig 2: Data-entry option

Fig 3: Manual data-entry option

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

11

Fig 4: Resulting group decomposition after manual data entry

Fig 5: Resulting group decomposition after file selection

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

12

4. COMPARATIVE STUDY
In this section, a comparative study has been presented

between the AGDP tool that has been developed and three

other grouping tools as presented in [9], [10] and [11]. The

comparison has been made based on the methodology used,

the nature of the experiment, the parameters that were used

to group the students and how heterogeneity has been

implemented in each system.

4.1 Method
In [9], Wang, Lin and Sun have used a variant of the

Random Mutation Hill Climbing (RMHC) algorithm to

group students based on “shape”. The original RMHC

algorithm grouped students based on distances between

points denoting individual scores. Here, the authors

modified this algorithm to attain higher levels of

heterogeneity. Their ultimate aim was to achieve internal

diversity and external balance. “DIANA” also uses a

genetic algorithm to optimize its groups.

Christodoulopoulos and Papanikolaou [10] have used a

number of algorithms to create their final group formation

tool. They have used the Fuzzy C Means algorithm to

calculate homogeneous groups. To compute the

heterogeneous groups, they have used the Random

Algorithm, which uses randomization as part of its logic.

Finally, they employed PHP and MySQL to develop the

Group Formation Tool.

In [11], Redmond has used the Pascal programming

language to develop the group formation tool. The

algorithm is based on greedy search with the aim being to

find the student with the tightest time constraint and assign

higher priority to said student. AGDP has been developed

using the Java programming language. As stated earlier, it

takes as input two sets of scores for the students and uses a

modified k-means algorithm to form clusters. The clusters

are then equalized to ensure that each group has the same

number of students and finally heterogenized based on the

degree of heterogeneity factor as defined earlier.

4.2 Experiment
“DIANA” [9] was designed to work as follows. Firstly,

data was loaded based on student characteristics collected

via psychological questionnaires. After determining

optimal group size based on instructional and classroom

management objectives, teachers could use a report

generated by DIANA that listed student characteristic(s)

and team numbers for composing heterogeneous groups.

Teachers or instructors could load different psychological

variables according to task requirements or instructional

goals. DIANA can consider a maximum of seven different

variables to form groups comprising of 3–7 members.

In [10], Christodoulopoulos and Papanikolaou have

implemented a web based Group Formation Tool using

PHP. Their experiment rotated around the usage of low

complexity algorithms for the homogeneous and

heterogeneous grouping.

[11] involves a computer program that aids the assignment

of students into groups. The program searches for group

assignments that result in compatible schedules and helps

to achieve the desirable goal of heterogeneous groups,

which leads to more learning for all members of the group.

As stated earlier, AGDP takes two sets of scores as input.

The k means algorithm and an equalization process is

performed on the first score set. This ensures homogeneous

group formation. The second score set is used to perform

the heterogeneous group division, which finally ensures

collaborative learning. The front end of this tool was

developed using Java Swing and has been discussed

previously.

4.3 Parameters
In [9], students are grouped based on thinking styles i.e. the

methods by which an individual uses his or her intelligence.

The authors here have employed three thinking styles for

grouping – legislative style thinkers (those who are

innovative and like to do things based on their own rules),

executive style thinkers (those who like to follow the rules

that have been prescribed) and judicial style thinkers (those

who do not pay a lot of attention to rules and instead prefer

to make judgments and compare ideas based on their

benefits and deficiencies).

Christodoulopoulos and Papanikolaou [10] have also

performed the grouping based on a maximum of three

aspects but have not explicitly specified what those aspects

have to be, though they have suggested knowledge level

and learning styles as appropriate example aspects that may

be used for grouping.

In [11], the grouping has been done based on the schedules

of the students to be grouped. The students are asked to rate

the different possible time slots from best to worst and are

also asked for project preferences. It then uses this

scheduling information to assign the students to the

different groups, starting by assigning the students with the

fewest number of favorable time slots to a group and

continuing until all students are assigned to some group.

In AGDP, three parameters are used to form the initial

homogeneous groups of students. These are communication

skills, fluency in computer usage and attitude towards

group work. The sum of these 3 parameters, referred to in

this tool as the A-score, is used for forming the initial

homogenized and equalized grouping of students. This is

followed by heterogenization which is done based on the

subject knowledge marks obtained by each student. These

marks are referred to as the B-scores.

4.4 Heterogeneity
Owing to the benefits that heterogeneous groups have to

offer with respect to collaborative learning, AGDP as well

as the three other tools, implement heterogeneity as part of

the group formation process. In this section, a comparison,

on how heterogenization of the groups has been achieved in

the case of each tool, has been made.

In [9], Wang, Lin and Sun used a modified version of the

RMHC algorithm to form heterogeneous groups. This

algorithm groups students based on the distances between

points that denote the individual scores of the students and

considers as a single group those students whose scores

form a triangular shape. While the original RMHC

algorithm focuses on distance between points, the DIANA

tool focuses on the similarities in shape of the triangles that

are identified during grouping, which results in the

formation of heterogeneous groups.

In [10], Christodoulopoulos and Papanikolaou implemented

heterogeneity with the help of a random selection

algorithm. This algorithm has the benefit of being fast and

simple to implement while providing the required amount

of heterogeneity as desired by the authors. In this case, a

heterogeneous group has been defined to be one that

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

13

contains all possible values based on the data that is

available. The random selection algorithm works based on

the assumption that all the values have the same probability

to belong to a certain group.

In [11], the grouping is done based on the preferences of

students with respect to the different time slots in which

they are able and willing to work. It starts with the student

with the fewest preferred time slots and attempts to find a

group for that student. It keeps repeating this until all the

students have been assigned to groups. This process results

in the formation of groups that are more heterogeneous in

terms of gender and ethnicity than groups that would be

formed by self-selection of the students. However, unlike

AGDP and the other tools discussed here, there is no

explicit heterogenization in this system based on a specific

skill or characteristic of the students.

Finally, in AGDP, to obtain heterogeneous groups, for each

iteration of the algorithm, members between any two

clusters are exchanged if that exchange results in an

increase in the DOH value of at least one of the two

clusters, without decreasing the DOH value of either

cluster. Thus, the constraint that each iteration of the

algorithm must result in an increase in the sum of the DOH

values of all clusters is enforced. This results in final

groups that are adequately heterogeneous. Conceptually,

the goal is to obtain results in which each group has a DOH

value of greater than 0.5, which represents an adequate

amount of heterogenization. However, explicitly adding

this constraint to the program resulted in sub-optimal

outputs in which fewer groups had a DOH value of 1.0 and

many further optimizations that hadn‟t been performed by

the program were clearly possible. This was because

groups that satisfied the constraint of having a DOH value

of greater than 0.5 were left untouched even though they

could contribute in increasing the DOH value of other

groups that were inadequately heterogenized. Removing

this constraint, but satisfying the constraint pertaining to

the exchanging of cluster members, provided better results

since it allowed groups with DOH values of greater than

0.5 to be involved in the process of exchanging members as

discussed previously. The details of this heterogenization

methodology have been provided in the listing of the

makeHet() algorithm in the „Algorithms‟ section.

5. CONCLUSION AND FUTURE

WORK
In this paper, the Automated Group Decomposition

Program (AGDP) is presented which is a tool that can be

used to form fully homogeneous, fully heterogeneous or a

mixture of homogeneous and heterogeneous groups of

students for the purpose of effective collaborative learning.

The familiar concepts of k-means clustering and constraint

satisfaction are employed to achieve the goal which is to

form adequately heterogeneous groups which, as the

studies referenced previously have shown, offer many

benefits in a collaborative learning environment.

The key to this tool achieving heterogeneity in student

groups is defining the „Degree of heterogeneity‟ (DOH)

value for each cluster. Implementing an algorithm that

ensures that each iteration produces an improvement in the

overall DOH values of all the clusters led to an increase in

the level of heterogeneity as much as could be possible

given the various parameters that were used to assess and

group the students. Thus, this method of attaining

heterogeneous groups strikes a balance in complexity

between the more complex RMHC algorithm employed by

[9] and the simpler random selection and implicit

heterogenization employed in [10] and [11] respectively.

This tool also features a simple GUI and can easily be used

by any instructor, regardless of their familiarity with

computers. Instructors can enter the required information

about the students through either manual entry via the

application interface or by uploading text files, as is more

convenient.

These benefits notwithstanding, the following are possible

improvements that can be made to the AGDP tool in the

future:

 At present, the parameters used to form

homogeneous clusters are fixed and are likely to

not be applicable in diverse group learning

situations. Thus, the tool could, in the future,

allow the instructors to define their own

parameters.

 Unlike in [10], where the group formation tool

allows students to negotiate which groups they

may be assigned to, in this tool, the students have

no say in the group formation process. This could

be addressed in future versions of the tool by

implementing a simple feedback system, for

example.

 While Wang, Lin and Sun [9] conducted a

comprehensive experiment by employing their

tool in a real-world setting, there was less

opportunity to test out the effectiveness of this

tool in a real classroom group project

environment. Given the opportunity, this program

can be tested to assign students into groups for an

actual academic project and compare their

performance with students assigned to random or

self-selected groups over the course of an entire

college semester.

6. REFERENCES
[1] Graf, S., and Bekele, R., “Forming Heterogeneous

Groups for Intelligent Collaborative Learning Systems

with Ant Colony Optimization”, Lecture Notes in

Computer Science Volume 4053, 2006, pp 217-226.

[2] Slavin, R.E, “Developmental and Motivational

Perspectives on Cooperative Learning: A

Reconciliation”, Child Development, Vol. 58, No. 5,

Special Issue on Schools and Development (1987)

1161–1167.

[3] Ames, C., and Ames, R. (eds.),“Research on Motivation

in Education”, Academic Press Inc., Orlando, USA

(1985).

[4] Dansereau, D., and Johnson, D., “Cooperative learning.

In: Druckman, D., Bjork, R.A.: Learning,

Remembering, Believing: Enhancing Human

Performance”, National Academy Press, Washington,

D.C. (1994) 83–111.

[5] Jacobs, G., “Cooperative Goal Structure: A Way to

Improve Group Activities”, ELT Journal. Vol. 42, No.

2 (1988) 97–100.

[6] Johnson, D.W., and Johnson, R.T., “Cooperative

Classrooms. In: Brubacher, M. (eds.): Perspectives on

Small Group Learning: Theory and Practice”, Rubican

Publishing Ind., Ontario (1990).

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.3, October 2015

14

[7] Krejins, K., Kirschner, P.A., and Jochems, W., “The

Sociability of Computer-Supported Collaborative

Learning Environments. Educational Technology and

Society”, Vol. 5, No. 1 (2002) 26–37.

[8] Augustine, D. et al, “Cooperation works! Cooperative

Learning can benefit all students”, Educational

Leadership 7 (1989).

[9] Dai-Yi Wang, Sunny S.J. Lin, and Chuen-Tsai Sun,

“DIANA: A Computer-Supported heterogeneous

grouping system for teachers to conduct successful

small learning groups”, Computers in Human

Behavior, Volume 23, Issue 4, July 2007, Pages 1997–

2010.

[10] Christodoulopoulos, C.E., and Papanikolaou, K.A., “A

Group Formation Tool in an E-Learning Context”,

19th IEEE International Conference on Tools with

Artificial Intelligence (ICTAI 2007), Vol. 2, pp. 117-

123, Oct. 2007.

[11] Redmond, M.A., “A Computer Program to Aid

Assignment of Student Project Groups”, ACM

SIGCSE Conference, 2001, pp. 134-138.

[12] Gokhale, A.A., “Collaborative Learning Enhances

Critical Thinking”, Journal of Technology Education

Fall 1995, Vol. 7, Number 1.

[13] Alavi, M., “Computer-Mediated Collaborative

Learning: An Empirical Evaluation”, Management

Information Systems Research Center, University of

Minnesota, Vol. 18, No. 2 (Jun., 1994), pp. 159-174.

IJCATM : www.ijcaonline.org

