
International Journal of Computer Applications (0975 – 8887) 

Volume 128 – No.3, October 2015 

7 

A New Approach to Collaborative Group Formation 

Anurag Sarkar 
St. Xavier’s College 

(Kolkata) 
 

Dibyabiva Seth 
St. Xavier’s College 

(Kolkata) 
 

Kaustav Basu 
St. Xavier’s College 

(Kolkata) 
 

Anal Acharya 
Assistant Professor 
St. Xavier’s College 

(Kolkata)  

 

ABSTRACT 
This paper implements a tool, referred to as the Automated 

Group Decomposition Program (AGDP), which divides a 

class of students into groups, using the k-means algorithm, 

for the purpose of collaborative learning, and then 

heterogenizes the groups based on a factor called the degree 

of heterogeneity (DOH). The tool takes as input two sets of 

scores and the students‟ roll numbers and outputs the 

required groups. The first score set scored students on 

communication skills, fluency in using computers and group 

work attitude. This score set was used to generate the 

homogeneous groups. The second score set scored students 

on their knowledge of the subject and was used to generate 

the heterogeneous groups. The tool can be used to generate 

homogeneous clusters, heterogeneous clusters and a mixture 

of both. This tool can not only be used by teachers but also 

by instructors with minimal computer experience wishing to 

form groups to maximize learning. 

Keywords 
collaborative learning, k-means, constraint satisfaction, 

degree of homogeneity, group learning, homogeneous 

groups, heterogeneous groups. 

1. INTRODUCTION 
Collaborative learning is a method of learning where two or 

more people learn together. Each individual in the group 

works off of their colleagues‟ knowledge and resources to 

broaden their own knowledge bases. According to Gerlach 

(1994), “Collaborative learning is based on the idea that 

learning is a naturally social act in which the participants talk 

among themselves. It is through the talk that learning 

occurs". Interaction is considered to be the integral part of 

collaborative learning. Participants in a group, with different 

knowledge levels, interact with each other and try to 

overcome their own shortcomings. People engaged in 

collaborative learning are exposed to other viewpoints which 

may significantly vary from their own. This enables them to 

come up with ways to defend their viewpoint(s) and ensures 

that they have a deeper understanding of the subject. Without 

collaborative learning, once a student takes up a method to 

tackle some problem, his/her mind becomes sidetracked from 

alternate solutions. As a result, if that method eventually 

fails, more often than not, the student fails to accomplish the 

task. This is where collaborative learning comes into play. In 

collaborative learning, the students are divided into groups, 

and each group is assigned a task. The members of a group 

can discuss the issue and each member can come up with an 

alternative suggestion to tackle the given problem. They can 

also point out the faults or problems with their colleagues‟ 

ideas and hence such problems can be avoided at an earlier 

stage. Now, if these groups are made heterogeneous i.e. each 

group consists of members having somewhat different 

knowledge bases and resources, then the members benefit 

even more. They are able to collaborate and learn new 

things, expand their knowledge bases, and tackle the given 

problem in an easier way by decomposing the problem into 

sub-problems among the members. This is absolutely not 

possible without collaborative learning. Studies 

([1],[2],[3],[4],[5],[6],[7],[8])  have shown that collaborative 

learning is more efficient than individual learning. 

In the Automated Group Decomposition Program, the final 

groups are formed in a heterogeneous manner such that the 

members of each group can share their experiences and skills 

in order to help build the skills of one another. The program 

asks the instructor whether he or she wants to enter the data 

manually or automatically by uploading files containing the 

data. If he or she chooses manual entry, the instructor is 

asked to enter the marks and relevant student information. 

Else, the instructor is asked to select the files that contain the 

required data. After this initial phase, the program then asks 

the instructor to enter the number of groups or clusters that 

he or she wants to divide the class into.  The instructor can 

also choose whether he or she wants to implement purely 

homogeneous clusters, purely heterogeneous clusters or a 

mixture of both. After providing the program with this 

information, the program then computes and displays the 

output based upon the choice of the user. 

2. RELATED LITERATURE 
Graf and Bekele [1] have suggested that “A reasonably 

heterogeneous group refers to a group where student-scores 

reveal a combination of low, average and high student-

scores. This is justified by the recommendation of Slavin [2] 

who proposes that students should work in small, mixed-

ability groups of four members: one high achiever, two 

average achievers, and one low achiever.” Homogeneous 

grouping is not a very efficient method of decomposing a 

number of students into multiple groups because some 

groups tend to be very strong while other groups may be very 

weak at performing the given task. As a result, the stronger 

groups finish the task very easily, while the weaker groups 

fail to accomplish the goal. Heterogeneous grouping tries to 

eliminate this drawback and form groups of approximately 

similar abilities. The stronger members of a heterogeneous 

group are also able to share their knowledge among the 

weaker members of the group, thus helping them to learn 

more effectively. Wang, Lin and Sun [9] have proposed a 

computer-assisted grouping system called DIANA to form 

heterogeneous groups exhibiting “internal diversity” and 

“external balance with other groups”. They have performed 

the grouping based on student data collected via 

psychological questionnaires. They have then processed this 

data and used a genetic algorithm (GA) to form the optimal 

groups. Christodoulopoulos and Papanikolaou [10] have 

presented a web-based group formation tool which can form 

both homogeneous and heterogeneous groups automatically, 

and also allows the learner to negotiate the grouping if 

needed. They have used the Fuzzy C-Means algorithm to 

form homogeneous groups, and a standard random selection 

algorithm to form the heterogeneous groups. Redmond [11] 

has used a greedy search algorithm to form the optimal 

groups. He has allowed the students to express their project 

preferences as well, considering multiple project topics. His 
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program comprises 32 procedures and functions, spread over 

3250 lines of code. Gokhale [12] has undertaken two tests, 

drill-practice skills and critical thinking skills, to determine 

whether collaborative learning is more efficient than 

individual learning. She developed a nine item questionnaire 

and conducted the study on a total of 48 subjects. Her study 

shows that collaborative learning is more beneficial for 

enhancing critical thinking and problem solving skills. Alavi 

[13] has performed a study to investigate the enhancement of 

student learning on using a group decision support system 

(GDSS) in a collaborative learning process. Her study 

involved 127 MBA students and has determined that the use 

of a GDSS in collaborative learning leads to higher skill 

development and self-reported learning. 

3. AUTOMATED GROUP 

DECOMPOSITION PROGRAM 

3.1 Research Methodology 
In this paper, a method has been devised to implement 

collaborative learning using the k-means algorithm and the 

concept of constraint satisfaction to create groups 

intelligently.  

In order to perform the clustering, two sets of scores are 

used. The first set, referred to as the „A-scores‟, is the sum of 

scores obtained by the students in three categories – 

communication skills, fluency in computer usage and group 

work attitude. The second set, referred to as the „B-scores‟, is 

a measure of the subject knowledge possessed by each 

student. The program has been implemented using the Java 

programming language.First, a modified version of the k-

means algorithm is used to divide the students into k 

homogeneous clusters where k is supplied by the instructor 

and the homogenization is based on the A-scores. Then 

cluster equalization is performed to ensure that each cluster 

has an equal number of students. Following this, the clusters 

are heterogenized based on the B-scores using an algorithm 

that satisfies the degree of heterogeneity (DOH) constraint. 

The DOH value is defined for each cluster as: 

DOH of each cluster = (Number of ranges of B-scores 

present in that cluster) / Cluster size 

 

where the ranges of B-scores are the ranges 0-10, 11-20, 21-

30, …, up to the range where the upper limit is the maximum 

attainable B-score. This formula has been devised such that, 

for situations in which the number of members in a cluster is 

less than or equal to the total number of ranges of B-scores in 

the data, the maximum possible DOH value for a cluster is 

1.0, which represents the situation in which each member of 

a cluster belongs to a different 10-mark range of the B-

scores, and thus, it is impossible to further heterogenize the 

cluster. For situations in which the number of members in a 

cluster is greater than the total number of ranges of B-scores, 

it is impossible to attain a DOH value of 1.0 and the 

maximum attainable DOH value for each cluster depends on 

the difference between the cluster size and the total number 

of B-score ranges. 

The following algorithms have been used to form the 

required groups or clusters. 

3.2 Algorithms 
The following variables have been used in the algorithms: 

ascores  list of the summation of the marks obtained by the 

students according to the first 3 parameters 

bscores  list of the marks obtained by the students 

according to the fourth parameter 

roll  list of the roll numbers of all the students 

size  total number of students present 

centers  stores the centers of the clusters 

clusters  2D matrix storing the roll numbers of the 

members of the clusters 

k  number of groups/clusters to be formed 

m  size/k  (number of members in each group/cluster) 

rangeCount  2D matrix in which the element [i,j] stores the 

number of times a b-score in the jth range appears in the ith 

cluster 

//Create the clusters 

3.2.1 Algorithm makeClusters 
BEGIN 

 generateCenters() 

 WHILE true, DO 

  Clear all the clusters 

  LOOP through all the people i = 0 to 

size-1 

   PERSON = ith person 

   MARKS = 

marks_obtained_by_PERSON 

   Find the center i such that it is 

the center closest to MARKS 

   Add PERSON to the ith cluster 

  END LOOP 

  IF recalculateCenters() is true, then 

   EXIT WHILE 

  END IF 

 END WHILE 

 equalizeClusters() 

END 

//Generate initial cluster centers 

3.2.2 Algorithm generateCenters: 

BEGIN 

 Determine the minimum marks from ascores and 

store it in LO 

 Determine the maximum marks from ascores and 

store it in HI 

 Interval = (hi-lo)/k 

 Make (lo + Interval/2) as the first center 

 LOOP through all centers j = 1 to k-1 

  Make cluster j = cluster (j-1) + Interval 

 END LOOP 

 RETURN 

END 
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//Equalize the number of members in every cluster 

3.2.2 Algorithm equalizeClusters  
BEGIN 

 LOOP through all clusters i = k-1 to 1  

  IF cluster i has more than m number of 

members, then 

   EXTRA the extra members 

of cluster i which are closest to cluster (i-1) 

   Add all members of EXTRA to 

cluster (i-1) 

  END IF 

 END LOOP 

 recalculateCenters() 

  

LOOP through all clusters i=0 to k-2 

  IF cluster i has more than m number of 

members, then 

    EXTRA the extra 

members of cluster i which are closest to cluster (i+1) 

    Add all members of 

EXTRA to cluster (i+1) 

  END IF 

 END LOOP 

 recalculateCenters() 

 RETURN 

END 

//Recalculate the centers 

3.2.4 Algorithm recalculateCenters: 

BEGIN 

 Flag= true 

 LOOP through all clusters i = 0 to k-1 

  NEW_CENTER i = average of all the 

members of cluster i 

  IF NEW_CENTER i is different than 

center i, THEN 

   Center i = NEW_CENTER i 

   Flag = false 

  END IF 

 END FOR 

 RETURN Flag 

END 

 

//Heterogenize the clusters based on Degree of 

Heterogeneity 

3.2.5 Algorithm makeHet 
BEGIN 

Calculate the initial degree of heterogeneity (DOH) for each 

cluster 

Determine the frequency of occurrence of each range in each 

cluster 

LOOP through all clusters i = 0 to k-1 

 LOOP through all clusters j = i+1 to k-1 

  Record the initial DOH for both clusters i 

and j  

  IF DOH of both clusters equals 1.0 

THEN 

   The DOH cannot be optimized 

further, so break out of inner loop 

  END IF 

  Retrieve the b-scores of the students 

whose roll numbers are in cluster i 

  Determine the ranges for which there are 

no scores in the list of b-scores retrieved above. Call it needi 

  Also, determine the ranges for which 

there are scores in the list of b-scores above. Call it nonneedi 

  Do the same for cluster j, to obtain 

similar lists needj and nonneedj 

  Find the intersection of needj and 

nonneedi. This produces the ranges that are needed by j and 

not needed by i i.e. the ranges that can be transferred from i 

to j. Call it ITOJ. 

  Similarly, find the intersection of needi 

and nonneedj to obtain the ranges that can be transferred 

from j to i. Call it JTOI. 

  For ITOJ, determine the range IJ that has 

the most number of elements in cluster i 

  Similarly, for JTOI, determine the range 

JI that has the most number of elements in cluster j 

  Temporarily transfer an element in the 

range IJ from cluster i to cluster j  

  Temporarily transfer an element in the 

range JI from cluster j to cluster i 

   

  Calculate the DOH values for these new 

temporary clusters 

  IF the sum of the new DOH values is 

greater than the sum of the initial DOH values, then 

   Make permanent the changes 

to the clusters made above 

   Set the new DOH value for 

cluster i as the initial DOH value for cluster i for the next 

iteration 

  END IF 

 END FOR 

END FOR 
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END 

 //Calculate degree of heterogeneity for a cluster 

3.2.6 Algorithm calcDOH: 
BEGIN 

Initialize a set r to integers 0 to n-1 where n is the 

number of ranges for the b-scores; 

LOOP through all elements b of the cluster for 

which DOH is to be calculated 

  Determine the range k that b belongs to 

  Remove k from set r 

END LOOP 

 Calculate number of ranges of B-scores in the 

cluster as  

(Total number of ranges of B-scores - 

The number of integers remaining in set r) 

Calculate DOH as (the number of ranges of B-

scores in the cluster) / (the size of the cluster) 

Return DOH 

END 

//Returns a list of integers where the ith integer is the number 

of times a number in the ith range appears in the input 

cluster 

3.2.7 Algorithm getRangeCounts: 
BEGIN 

Initialize a list rc to contain as many zeros as there 

are ranges 

LOOP through all members b of the cluster for 

which range counts need to be computed 

  Determine the range k that b belongs to 

  Increment the kth element in the list rc 

END LOOP 

RETURN rc 

END 

3.3   Implementation 
The program has been implemented using the Java 

programming language and the GUI has been implemented 

using the light-weight Java Swing GUI widget toolkit. When 

the instructor runs this software, Figure 1 is the first screen 

which is displayed. By clicking “About”, the user can view 

what the software does. By clicking “Launch Program”, 

Figure 2 is displayed, where the user chooses how he or she 

shall input the required data. If the “Manual Entry” option is 

selected, then the user is taken to Figure 3, where he or she 

manually enters the data. After manual data entry has been 

completed, the results are displayed (Figure 4). Otherwise, if 

the user selects the option “Select Files”, the software 

automatically reads data from the selected files and displays 

output as shown in Figure 5. 

In this study, a total of 24 students were divided into 6 

groups (each containing 4 members). The scores obtained by 

the students were given as file-inputs to the program (figure 

5), as well as manual inputs to the program (figure 3). The 

proposed groups were given as output by the program as 

shown in figure 4 and figure 5. The groups were made as a 

mixture, that is, homogeneous on the basis of the students‟ 

ASCORES and heterogeneous based on the students‟ 

BSCORES.  

 

Fig 1: The welcome screen 

 

Fig 2: Data-entry option 

 

Fig 3: Manual data-entry option 
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Fig 4: Resulting group decomposition after manual data entry 

 

Fig 5: Resulting group decomposition after file selection 
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4. COMPARATIVE STUDY 
In this section, a comparative study has been presented 

between the AGDP tool that has been developed and three 

other grouping tools as presented in [9], [10] and [11]. The 

comparison has been made based on the methodology used, 

the nature of the experiment, the parameters that were used 

to group the students and how heterogeneity has been 

implemented in each system.  

4.1 Method 
In [9], Wang, Lin and Sun have used a variant of the 

Random Mutation Hill Climbing (RMHC) algorithm to 

group students based on “shape”. The original RMHC 

algorithm grouped students based on distances between 

points denoting individual scores. Here, the authors 

modified this algorithm to attain higher levels of 

heterogeneity. Their ultimate aim was to achieve internal 

diversity and external balance. “DIANA” also uses a 

genetic algorithm to optimize its groups. 

Christodoulopoulos and Papanikolaou [10] have used a 

number of algorithms to create their final group formation 

tool. They have used the Fuzzy C Means algorithm to 

calculate homogeneous groups. To compute the 

heterogeneous groups, they have used the Random 

Algorithm, which uses randomization as part of its logic. 

Finally, they employed PHP and MySQL to develop the 

Group Formation Tool. 

In [11], Redmond has used the Pascal programming 

language to develop the group formation tool. The 

algorithm is based on greedy search with the aim being to 

find the student with the tightest time constraint and assign 

higher priority to said student. AGDP has been developed 

using the Java programming language. As stated earlier, it 

takes as input two sets of scores for the students and uses a 

modified k-means algorithm to form clusters. The clusters 

are then equalized to ensure that each group has the same 

number of students and finally heterogenized based on the 

degree of heterogeneity factor as defined earlier. 

4.2  Experiment 
“DIANA” [9] was designed to work as follows. Firstly, 

data was loaded based on student characteristics collected 

via psychological questionnaires. After determining 

optimal group size based on instructional and classroom 

management objectives, teachers could use a report 

generated by DIANA that listed student characteristic(s) 

and team numbers for composing heterogeneous groups. 

Teachers or instructors could load different psychological 

variables according to task requirements or instructional 

goals. DIANA can consider a maximum of seven different 

variables to form groups comprising of 3–7 members. 

In [10], Christodoulopoulos and Papanikolaou have 

implemented a web based Group Formation Tool using 

PHP. Their experiment rotated around the usage of low 

complexity algorithms for the homogeneous and 

heterogeneous grouping.  

[11] involves a computer program that aids the assignment 

of students into groups. The program searches for group 

assignments that result in compatible schedules and helps 

to achieve the desirable goal of heterogeneous groups, 

which leads to more learning for all members of the group.  

As stated earlier, AGDP takes two sets of scores as input. 

The k means algorithm and an equalization process is 

performed on the first score set. This ensures homogeneous 

group formation. The second score set is used to perform 

the heterogeneous group division, which finally ensures 

collaborative learning. The front end of this tool was 

developed using Java Swing and has been discussed 

previously.  

4.3  Parameters 
In [9], students are grouped based on thinking styles i.e. the 

methods by which an individual uses his or her intelligence. 

The authors here have employed three thinking styles for 

grouping – legislative style thinkers (those who are 

innovative and like to do things based on their own rules), 

executive style thinkers (those who like to follow the rules 

that have been prescribed) and judicial style thinkers (those 

who do not pay a lot of attention to rules and instead prefer 

to make judgments and compare ideas based on their 

benefits and deficiencies). 

Christodoulopoulos and Papanikolaou [10] have also 

performed the grouping based on a maximum of three 

aspects but have not explicitly specified what those aspects 

have to be, though they have suggested knowledge level 

and learning styles as appropriate example aspects that may 

be used for grouping. 

In [11], the grouping has been done based on the schedules 

of the students to be grouped. The students are asked to rate 

the different possible time slots from best to worst and are 

also asked for project preferences. It then uses this 

scheduling information to assign the students to the 

different groups, starting by assigning the students with the 

fewest number of favorable time slots to a group and 

continuing until all students are assigned to some group. 

In AGDP, three parameters are used to form the initial 

homogeneous groups of students. These are communication 

skills, fluency in computer usage and attitude towards 

group work. The sum of these 3 parameters, referred to in 

this tool as the A-score, is used for forming the initial 

homogenized and equalized grouping of students. This is 

followed by heterogenization which is done based on the 

subject knowledge marks obtained by each student. These 

marks are referred to as the B-scores. 

4.4  Heterogeneity 
Owing to the benefits that heterogeneous groups have to 

offer with respect to collaborative learning, AGDP as well 

as the three other tools, implement heterogeneity as part of 

the group formation process. In this section, a comparison, 

on how heterogenization of the groups has been achieved in 

the case of each tool, has been made. 

In [9], Wang, Lin and Sun used a modified version of the 

RMHC algorithm to form heterogeneous groups. This 

algorithm groups students based on the distances between 

points that denote the individual scores of the students and 

considers as a single group those students whose scores 

form a triangular shape. While the original RMHC 

algorithm focuses on distance between points, the DIANA 

tool focuses on the similarities in shape of the triangles that 

are identified during grouping, which results in the 

formation of heterogeneous groups. 

In [10], Christodoulopoulos and Papanikolaou implemented 

heterogeneity with the help of a random selection 

algorithm. This algorithm has the benefit of being fast and 

simple to implement while providing the required amount 

of heterogeneity as desired by the authors. In this case, a 

heterogeneous group has been defined to be one that 
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contains all possible values based on the data that is 

available. The random selection algorithm works based on 

the assumption that all the values have the same probability 

to belong to a certain group. 

In [11], the grouping is done based on the preferences of 

students with respect to the different time slots in which 

they are able and willing to work. It starts with the student 

with the fewest preferred time slots and attempts to find a 

group for that student. It keeps repeating this until all the 

students have been assigned to groups. This process results 

in the formation of groups that are more heterogeneous in 

terms of gender and ethnicity than groups that would be 

formed by self-selection of the students. However, unlike 

AGDP and the other tools discussed here, there is no 

explicit heterogenization in this system based on a specific 

skill or characteristic of the students. 

Finally, in AGDP, to obtain heterogeneous groups, for each 

iteration of the algorithm, members between any two 

clusters are exchanged if that exchange results in an 

increase in the DOH value of at least one of the two 

clusters, without decreasing the DOH value of either 

cluster.  Thus, the constraint that each iteration of the 

algorithm must result in an increase in the sum of the DOH 

values of all clusters is enforced. This results in final 

groups that are adequately heterogeneous. Conceptually, 

the goal is to obtain results in which each group has a DOH 

value of greater than 0.5, which represents an adequate 

amount of heterogenization. However, explicitly adding 

this constraint to the program resulted in sub-optimal 

outputs in which fewer groups had a DOH value of 1.0 and 

many further optimizations that hadn‟t been performed by 

the program were clearly possible. This was because 

groups that satisfied the constraint of having a DOH value 

of greater than 0.5 were left untouched even though they 

could contribute in increasing the DOH value of other 

groups that were inadequately heterogenized. Removing 

this constraint, but satisfying the constraint pertaining to 

the exchanging of cluster members, provided better results 

since it allowed groups with DOH values of greater than 

0.5 to be involved in the process of exchanging members as 

discussed previously. The details of this heterogenization 

methodology have been provided in the listing of the 

makeHet() algorithm in the „Algorithms‟ section. 

5. CONCLUSION AND FUTURE 

WORK 
In this paper, the Automated Group Decomposition 

Program (AGDP) is presented which is a tool that can be 

used to form fully homogeneous, fully heterogeneous or a 

mixture of homogeneous and heterogeneous groups of 

students for the purpose of effective collaborative learning. 

The familiar concepts of k-means clustering and constraint 

satisfaction are employed to achieve the goal which is to 

form adequately heterogeneous groups which, as the 

studies referenced previously have shown, offer many 

benefits in a collaborative learning environment.  

The key to this tool achieving heterogeneity in student 

groups is defining the „Degree of heterogeneity‟ (DOH) 

value for each cluster. Implementing an algorithm that 

ensures that each iteration produces an improvement in the 

overall DOH values of all the clusters led to an increase in 

the level of heterogeneity as much as could be possible 

given the various parameters that were used to assess and 

group the students. Thus, this method of attaining 

heterogeneous groups strikes a balance in complexity 

between the more complex RMHC algorithm employed by 

[9] and the simpler random selection and implicit 

heterogenization employed in [10] and [11] respectively. 

This tool also features a simple GUI and can easily be used 

by any instructor, regardless of their familiarity with 

computers. Instructors can enter the required information 

about the students through either manual entry via the 

application interface or by uploading text files, as is more 

convenient. 

These benefits notwithstanding, the following are possible 

improvements that can be made to the AGDP tool in the 

future: 

 At present, the parameters used to form 

homogeneous clusters are fixed and are likely to 

not be applicable in diverse group learning 

situations. Thus, the tool could, in the future, 

allow the instructors to define their own 

parameters. 

 Unlike in [10], where the group formation tool 

allows students to negotiate which groups they 

may be assigned to, in this tool, the students have 

no say in the group formation process. This could 

be addressed in future versions of the tool by 

implementing a simple feedback system, for 

example. 

 While Wang, Lin and Sun [9] conducted a 

comprehensive experiment by employing their 

tool in a real-world setting, there was less 

opportunity to test out the effectiveness of this 

tool in a real classroom group project 

environment. Given the opportunity, this program 

can be tested to assign students into groups for an 

actual academic project and compare their 

performance with students assigned to random or 

self-selected groups over the course of an entire 

college semester. 
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