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ABSTRACT
The prime focus is on a Van der Pol-Duffing oscillator in this pa-
per. A newly proposed method, namely; the Perturbation Iteration
Algorithm (PIA) and an Alternative Variation Iteration Method
(AVIM) is used to solve governing equations. The study outlines
the significant features of the two methods. The beauty of the paper
lies in the error analysis between exact solutions and approximate
solutions obtained by these two methods which proves that approx-
imate solutions obtained by Alternative Variation Iteration Method
converge very rapidly to the exact solutions. Both methods provide
analytical solution in the form of a convergent series with compo-
nents that are easily computable, requiring no linearization or small
perturbation.
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1. INTRODUCTION
In the past few decades, chaos and chaotic systems have received a
flurry of research effort. Such systems are nonlinear by nature and
can be found in many natural and man made systems. These [1]
are recognized by their great sensitivity to initial conditions. The
evaluation of nonlinear vibrations and oscillations is essential in
every engineering science. These oscillator equations provide an
important mathematical model for dynamical systems having a
single unstable fixed point, along with a single stable limit cycle.
All natural and engineering sciences [2, 3], along with many
physical problems [4, 5] possess examples of phenomena like
these. Up until now, various aspects of this problem have been
analyzed by different authors; areas such as vibration amplitude
control, synchronization dynamics, and additive resonances [6–9].
Its uses include modeling optical disability in a dispersive medium,
the refractive index in which depends on the optical intensity [10].
Other applications may have certain flow induced structural
vibration problems [11]. Understanding of dynamical behaviors

becomes practical when dealing with nonlinear oscillations. There
is a whole world of literature on this topic and cannot possibly be
described here in detail. Some of the more recent works regarding
the Van der Pol–Duffing oscillator by eminent researchers, how-
ever, have been mentioned in the open literature [11–17].

Perturbation Iteration Algorithm are classical ones that have
been around for over a century to find approximate analytical
solutions. Several different Perturbation techniques and their
variants have developed; including the method of multiple scales,
the renormalization method, and the method of averaging, the
Lindstedt-Poincare method, and the method of matched asymp-
totic expansions [18, 19]. One major drawback of the Perturbation
Iteration Algorithm is the necessity of a small parameter; the
small parameter may also have to be artificially introduced into the
equations. The solutions, ergo, have a limited range of validity. The
solutions, although being valid for weak nonlinear problems, are
not admissible for strong nonlinear ones. Several new techniques
have been proposed to obtain admissible solutions that exclude
the small parameter assumption. Recently, a class of alternative
Perturbation Iteration Algorithms has been put forward. The
basics of the algorithms were drafted for the first-order differential
equations by Pakdemirli et al. [20]. Several iteration algorithms can
be derived by taking different number of terms in the perturbation
expansions and adopting different order of correction terms in the
Taylor Series expansions. The Perturbation Iteration Algorithm
is called PIA(n,m) where n represents the correction terms in
the perturbation expansion and m the highest order derivative
term in the Taylor Series. One main plus is no requirement of ini-
tial assumptions or transformation of the equations to another form.

Variational Iteration Method has been widely used to handle
linear and nonlinear models. The main property of the method is its
flexibility and ability to solve nonlinear equations accurately and
conveniently. Some modifications for improving the convergence
speed and lengthening the interval of convergence for VIM
series solutions were suggested in [21–24]. Such as, Abassy et
al. [21] proposed a modification of the VIM, which was used to
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obtain approximate solutions for some nonlinear problems. Their
proposed modification of the VIM reduces the computational
workload and improves the speed of convergence in an effective
manner [22]. Geng et al. proposed the piecewise VIM for solving
Riccati differential equations [23]. The solutions obtained using
the piecewise VIM provided good approximations for a larger
interval, rather than in the local vicinity of the initial position.
Ghorbani and Saberi-Nadjafi modified the VIM by constructing an
initial trial function without unknown parameters [24]. Odibat [25]
introduce an alternative approach of VIM to handle nonlinear
problems.

This paper outlines a reliable comparison between two pow-
erful methods that were recently developed. In this study,
Perturbation Iteration Algorithm and the Alternative Variational
Iteration Method are applied to obtain the approximate solution
of some nonlinear Duffing differential equations. In the present
study, we aim to extend the application of efficiency and accuracy
of the methods under discussion is shown by two examples, one
of them is the quadratic Duffing equation. The organization of the
paper is as follows. Begin by properly introducing the Perturbation
Iteration Algorithm and Alternative Variational Iteration Method
in section 2. In section 3, both methods are applied to the Duffing
differential equation. Two examples will be presented to show
the efficiency and ease with which the proposed methods may be
applied. A comparision and conclusion follows in Section 4.

2. THE METHODS
We will draw attention to briefly the main points of each of the two
methods as follows, where details can be found in [20–25].

2.1 Perturbation Iteration Algorithm
In this section, a Perturbation Iteration Algorithm (PIA) proposed
by Aksoy et al [20] is discussed. Authors in [20] introduced one
correction term in the perturbation expansion, correction terms for
the first derivatives only in the Taylor Series expansion, i.e. n = 1,
m = 1. The algorithm is named PIA(1, 1). Consider a general
second order differential equation,

F (u
′′
, u
′
, u, ε) = 0 (1)

With u = u(t) and ε as the perturbation parameter. Only one cor-
rection term is taken in the perturbation expansion.

un+1 = un + ε(uc)n (2)

Upon substitution of Eq.(2) into Eq.(1) and expanding in a Tay-
lor Series with first derivatives, the following expression has been
obtained.

F (u
′′
n, u

′
n, un, 0) + Fu(u

′′
n, u

′
n, un, 0)ε(uc)n+

Fu′ (u
′′
n, u

′
n, un, 0)ε(u

′
c)n + Fu′′ (u

′′
n, u

′
n, un, 0)ε(u

′′
c)n+

Fε(u
′′
n, u

′
n, un, 0)ε = 0

(3)

where Fu = ∂F
∂u

, Fu′ =
∂F

∂u
′ , Fu′′ =

∂F

∂u
′′ , Fε = ∂F

∂ε
. Reorganizing

the equation, one can easily get

(u
′′
c)n +

Fu′

Fu′′
(u
′
c)n +

Fu
Fu′′

(uc)n = −
Fε +

F
ε

Fu′′
(4)

Keeping in mind that all derivatives are evaluated at ε = 0, it is
readily observed that the above equation is a variable coefficient
linear second-order differential equation. Starting with an initial

guess u◦, first (uc)◦ is calculated from Eq.(4) and then substituted
into Eq.(1) to calculate u1. The iteration procedure is repeated us-
ing Eq.(4) and Eq.(2) until a result we may call satisfactory is ob-
tained.
Note that for a more general algorithm, n correction terms in-
stead of one can be taken in expansion (2) which would then be
an PIA(n,m). The algorithm can also be generalized to a differ-
ential equation system having an arbitrary order of derivatives. In
this study, we only take into account one case n = m = 1 for the
sake of simplicity, so as to keep from involvement of more Algebra
in constructing iteration solutions for PIA(1, 2) and PIA(1, 3)
compared to PIA(1, 1).

2.2 Alternative Variational Iteration Method
Odibat [25] proposed an alternative approach of VIM. Consider a
equation in the form

Lu(t) +Nu(t) = g(t); t > 0 (5)

where the linear operator L is defined as L = dm

dtm
, n ∈ N , N is a

nonlinear operator and g(t) is known analytic function, subjects to
the initial function, subject to initial conditions,

u(k)(0) = ck; k = 0, 1, 2, ...,m− 1 (6)

where ck are real numbers. According to VIM, one can construct
the correcting functional for Eq.(5) as,

uk+1(t) = uk(t) +

∫ t

0

[
λ(τ)

(
Luk(τ)−Nũk(τ)− g(τ)

)]
dτ

(7)
where λ(τ) is a general Lagrange multiplier, which can be identi-
fied optimally via variational theory. In general, the following La-
grange multipliers, has been received.

λ =
(−1)m

(m− 1)!
(τ − t)m−1; m ≥ 1 (8)

Now, defines the operator A[u] as,

A[u] =

∫ t

0

[
λ(τ)

(
Luk(τ)−Nũk(τ)− g(τ)

)]
dτ (9)

Therefore, substituting Eq.(9) into Eq.(7), the following iteration
formula will be formed.

uk+1(t) = uk(t) +A[u] (10)

and define the components vk, k = 0, 1, 2, ... as

v0 =u◦

v1 =A[v◦]

v2 =A[v◦ + v1]

v3 =A[v◦ + v1 + v2]

.

.

.

vk+1 =A[v◦ + v1 + v2 + ...+ vk]

(11)

then consequently, u(t) = limk→∞ uk(t) =
∞∑
k=0

vk. Therefore as a

result, the solution of problem (5) can be derived using Eq.(10) and
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Eq.(11), in the series form,

u(t) =

∞∑
k=0

vk(t) (12)

3. NUMERICAL EXAMPLES
In order to show the effectiveness of these two algorithms for solv-
ing the Duffing equation, some numerical examples has been pre-
sented.

3.1 Example
Consider the following nonlinear oscillator differential equation

d2u

dx2
− u+ u2 +

(du
dx

)2
− 1 = 0 (13)

with initial conditions, u(0) = 2, u
′
(0) = 0. The exact solution

of the above problem is u(x) = 1 + cosx. By applying the PIA,
Eq.(13) reduce to

üc =
−ü+ 1

ε
+ u− u2 − u̇2 (14)

An initial guess satisfying the initial condition should be selected.
So, selecting u◦ = 2−x2. Using the algorithm of PIA with Eq.(14)
and initial guess, the approximate solution at each step are:

u11 = 2− 1

2
x2 − 1

12
x4 − 1

30
x6

u12 =2− 1

2
x2 +

1

24
x4 − 1

45
x6 − 89

10080
x8 − 5

2592
x10−

41

118800
x12 − 1

163800
x14

u13 =2− 1

2
x2 +

1

24
x4 − 1

720
x6 − 67

20160
x8 − 1901

1814400
x10−

241

935550
x12 − 255553

2179457280
x14 − 51665461

1307674368000
x16−

2892761

224550144000
x18 − 61778699

22817583360000
x20−

11765053

29875329792000
x22 − 590337809

14887872679680000
x24−

1092437

834809976000000
x26 − 1457

95623688160000
x28−

1

23342482800000
x30

and so on. Using the algorithm of AVIM with Eq.(13) and initial
guess u◦ = 2− x2, the approximate solution at each step are

v10 = 2− 1

2
x2 − 1

12
x4 − 1

30
x6

v11 =2− 1

2
x2 +

1

24
x4 − 1

45
x6 − 89

10080
x8 − 5

2592
x10−

41

118800
x12 − 1

163800
x14

Table 1. Average relative error of Example 1
comparision with PIA(1, 1) and AV IM

x Exact PIA u13 AV IM v12

0.0 2.000000000 2.000000000 2.000000000
0.1 1.995004165 1.995004165 1.995004165
0.2 1.980066578 1.980066569 1.980066569
0.3 1.955336489 1.955336263 1.955336263
0.4 1.921060994 1.921058685 1.921058685
0.5 1.877582562 1.877568389 1.877568389
0.6 1.825335615 1.825272379 1.825272379
0.7 1.764842187 1.764615066 1.764615066
0.8 1.696706709 1.696008265 1.696008265
0.9 1.621609968 1.619694242 1.619694242
1.0 1.540302306 1.535476244 1.535476244

Average

Relative 0.000445311 0.000445311
Error

Fig. 1. Comparison of Exact and Numerical solution of PIA and AV IM

of Example 1
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and so on.
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Table 2. Average relative error of Example 2 comparison
with PIA(1, 1) and AV IM

x Exact PIA u12 AV IM v11

0.1 0.099833416647 0.092743898932 0.099833503766
0.2 0.198669330795 0.185346581859 0.198672306412
0.3 0.295520206661 0.277631575109 0.295544761414
0.4 0.389418342309 0.369359701789 0.389532415382
0.5 0.479425538604 0.460217050481 0.479813376489
0.6 0.564642473395 0.549825131026 0.565724718495
0.7 0.644217687238 0.637777849823 0.646848217682
0.8 0.717356090900 0.723705739802 0.723119718202
0.9 0.783326909627 0.807361162309 0.794955142884
1.0 0.841470984808 0.888709214275 0.863375606677

Average

Relative 0.042209072029 0.005611138306
Error

3.2 Example
Consider the following nonlinear oscillator differential equation

d2u

dx2
+
du

dx
+ u+ u2 du

dx
= 2cosx− cos3 x (15)

with initial conditions, u(0) = 0, u
′
(0) = 1, which has the follow-

ing analytical solution u(x) = sinx. By applying the PIA reduce
Eq.(15) into

üc + uc =
−ü− u

ε
− u̇(u2 + 1) + cosx(2− cos2 x) (16)

which is the determining iteration equation for the perturbation cor-
rection term. Assuming an initial solution, successive iteration can
be determined. An initial trial function u10 = x, which satisfies
the initial condition is selected. Substituting this trial function into
Eq.(16), solving for the correction term. The following successive
iterations has been obtained

u10 = x

u11 = 1− x2 − 33

32
cosx+

1

32
cos 3x+ sinx+

5

8
x sinx

and so on. Using the algorithm of AVIM with Eq.(15) and initial
guess u◦ = x, the approximate solution at each step are

v10 = x− 4

3
cosx+

1

9
cosx3 − 1

2
x2 − 1

6
x3 − 1

12
x4 +

11

9

and so on.

4. DISCUSSION OF RESULTS AND CONCLUSION
The main goal of this work is to conduct a comparative study be-
tween Alternative Variational Iteration Method and the Perturba-
tion Iteration Algorithm. The two methods are powerful and ef-
ficient methods that both give approximations of higher accuracy
and closed form solutions if existing but AVIM converges fastly as
compared to PIA. Two examples of nonlinear Duffing differential
equation in the form of relevant literature are presented to prove
its effectiveness and efficiency. All these calculation can easily be
performed through software Mathematica 9.0.

Fig. 2. Comparison of Exact and Numerical solution of PIA and AV IM

of Example 2
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