
International Journal of Computer Applications (0975 – 8887) 

Volume 128 – No.5, October 2015 

6 

Overcoming Singularity of Euler Angles in Robot Pose 

Estimation using Axis Rotation 

Mohammad Ehab Ragab 
The Electronics Research Institute  

Tahrir Street, Dokki,  
Giza, Egypt 

ABSTRACT 

In this paper, the singularity of Euler angles rotation 

representation in robot pose estimation is overcome. This is 

accomplished through coordinate system rotating and sign-

adjusting of the intrinsic parameter camera matrices. A stereo 

pair is attached to the robot and the extended Kalman filter is 

used as a recursive pose estimator. An extensive set of 

synthetic and real experiments have been carried out under 

various motion patterns in both singular and nonsingular 

settings. The approach has proved accurate in face of 

singularity and stable during Jacobian calculations as well.  
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1. INTRODUCTION 
Pose estimation is a classic problem in various engineering 

fields. To solve this problem, the location and orientation 

(rotation) of objects should be obtained. Many applications 

require solving this problem. For example, in [1] the location 

and speed of a vehicle are communicated in case of an 

accident. Pose estimation is used in [2] for optimizing the 

turning velocity of a robot. Unmanned aerial vehicle pose 

estimation is performed in [3] for live sports production. The 

three-dimensional model-based tracking of a tennis court is 

obtained using a monocular camera.Using computer vision in 

pose estimation is advantageous especially indoors where the 

global positioning system (GPS) is denied. Moreover, 

computer vision systems which use ordinary cameras as their 

sensors are less intrusive than most of the other systems. 

Additionally, they do not suffer from drift such as odometric 

systems [4]. 

To solve the pose estimation problem in real time (e.g. for a 

mobile vehicle), there is a need to adopt a recursive 

technique such as the extended Kalman filter (EKF) [5], [6], 

and [7]. The pose parameters (rotational and translational) 

are encoded in the state space vector of the EKF. Although 

there are various representations of the rotation, the Euler 

angles are more tangible. They describe the rotation angles 

around the chosen coordinate system axes. The first 

advantage of using them is that the axes are selected to be 

attached to a physical entity such as a reference camera or a 

mobile platform. This makes the Euler angles both 

meaningful and measurable. The second advantage is 

referring the rotation to the same axes used to measure the 

translation. However, the Euler angles representation of 

rotation suffers from certain singularities which will be 

described in section 2 below. These singularities are even 

aggravated when calculating the derivatives inside the EKF 

Jacobian. There are other rotation representations which do 

not suffer from singularities such as quaternions and axis-

angle. However, such representations do not offer the direct 

physical interpretation as Euler angles. Additionally, they are 

not minimal compared to Euler angles which use only three 

angles to describe the three degrees of freedom of the 

rotation. Moreover, they are not one-to-one mappings [5], 

and [8].In this work, the singularity of Euler angles rotation 

representation is overcome using axis rotation. This is 

particularly inspired by the nature of robot motion indoors or 

outdoors on nearly even surfaces. Accordingly, the robot 

holds an upright posture with hardly any rotation around the 

axes parallel to the ground plane. A stereo pair is used for 

obtaining the three dimensional (3D) structure, and for 

outlier feature rejection. Since the robot pose is estimated in 

real time, the EKF is utilized as a recursive estimator.  

The rest of this paper is organized as follows: the camera 

utilization, the EKF implementation, and the suggested 

rotation of coordinate axes are described in section 2. The 

simulation and real experiments are shown in section 3 while 

the results are discussed in section 4. The paper is concluded 

in section 5.  

2. METHOD 

2.1 EKF Implementation and Euler 

Angles 
The pose EKF has a state space vector composed of six pose 

parameters and their derivatives: 

𝑠 =   𝑡𝑥   𝑡 𝑥  𝑡𝑦   𝑡 𝑦  𝑡𝑧   𝑡 𝑧   𝛼 𝛼  𝛽 𝛽  𝛾 𝛾  
𝑇

                               (1) 

where  𝑡𝑥 , 𝑡𝑦 , and 𝑡𝑧  are the translations in the directions of 

coordinate axes emerging from the center of a reference 

camera atop the mobile robot. The rotation angles around 

these axes are: 𝛼, 𝛽, and 𝛾 respectively. The dotted 

parameters represent the derivatives with respect to time. 

The plant equation relates the current state space vector of 

equation (1) to the plant noise and to the previous state space 

vector: 

 𝑠𝑗 = 𝐴𝑠𝑗−1 + 𝑛𝑗                   (2) 

where 𝑠𝑗  and 𝑠𝑗−1 are the state space vectors at frame 𝑗, the 

current frame, and at frame 𝑗 − 1, the previous frame, 𝐴 is a 

12×12 matrix relating them according to a uniform speed 

model, and 𝑛𝑗  is the plant noise at the current frame assumed 

to be of normal distribution.  

On the other hand, the measurement equation relates the 2-D 

locations of tracked features to their corresponding camera 

coordinates functions, and to the measurement noise 

assumed to have a normal distribution as well: 

𝐼𝑗 = 𝑓(𝑃𝑖𝑗𝑘 ) + 𝜂𝑗                   (3) 

where 𝐼𝑗  is the measurement vector containing the 2-D pixel 

locations of the features across the stereo cameras, 𝑓(𝑃𝑖𝑗𝑘 ) is 
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a function of the camera coordinates and intrinsic parameters 

(e.g. focal lengths, and image centers) , 𝑖𝑗𝑘 refers 

respectively to the feature number, frame number, and 

camera number (either camera 1 or camera 2 of the stereo 

pair) , and 𝜂𝑗  is the measurement noise. The Jacobian of the 

EKF is composed of the derivatives of 𝑓 𝑃𝑖𝑗𝑘   with respect 

to the six pose parameters of equation (1). More about the 

EKF implementation can be found in [5], [6], and [7].  

The overall rotation resulting from the sequence of rotation 

angles 𝛼, 𝛽, and 𝛾 is given by the rotation matrix: 𝑅 

=  

cos𝛽 cos 𝛾 sin𝛼  sin𝛽 cos 𝛾 − cos𝛼 sin 𝛾 cos𝛼 sin𝛽 cos 𝛾 + sin𝛼 sin 𝛾
cos𝛽 sin 𝛾 sin𝛼 sin𝛽 sin 𝛾 + cos𝛼 cos 𝛾 cos𝛼 sin𝛽 sin 𝛾 − sin𝛼 cos 𝛾
− sin𝛽 sin𝛼 cos𝛽 cos𝛼 cos𝛽 

  

                  (4) 

It is noticed that 𝛽 is the only angle present at every element 

of the rotation matrix. The reason is that the overall rotation 

is the result of multiplication of three matrices. Each matrix 

of the three represents an individual angle having that 

representing 𝛽 in the middle (since it occurs around the Y-

axis, it is inserted between that occur around the X and Z-

axes). This is also true for the translations in the directions of 

these right-handed coordinate axes. Accordingly, there are 

singularities when 𝛽 = ±𝜋/2. For example: 

𝑅(𝛽 =
𝜋

2
) =  

0 sin(𝛼 − 𝛾) cos(𝛼 − 𝛾)
0 cos(𝛼 − 𝛾) −sin(𝛼 − 𝛾)
−1 0 0

               (5) 

Which means that we can obtain neither 𝛼 or 𝛾, but only 

their difference from the overall rotation matrix. 

2.2  Orientation of Coordinate Systems 
As shown in Figure 1: (A) the coordinate system used in [9] 

with the directions of its angles of rotations. This coordinate 

system has the directions of its X and Y axes corresponding 

to that of the image (see Figure 1 (F)). The advantage is 

having positive focal lengths in the matrix of intrinsic 

parameters. However, the angle 𝛽 of this coordinate system 

coincides with the directions of robot allowed rotations. 

Therefore singularities may be encountered. (B) The 

suggested coordinate system to overcome the singularity. 

The reason for this is having the angle 𝛼 (not 𝛽) 

corresponding to the robot allowed rotations. This comes at 

the expense of negating the focal length in the horizontal 

direction of the camera. (C) A coordinate system which is 

likely to encounter singularities like (A). (D) A coordinate 

system that overcomes singularity as (B). (E) The coordinate 

system used in [10]. This is (contrary to the previous ones) a 

left-handed which can be dealt with by negating the depth (Z 

coordinate). However, it is likely to encounter singularities 

for the same reason as (A), and (C). (F) The robot platform 

with a camera attached showing the camera coordinates and 

allowed directions of robot rotations. Any shaking due to an 

uneven terrain would only produce vibrations of small 

magnitudes in the two other directions of rotations. 

 

Fig 1: Orientation of coordinate systems, camera 

coordinates, and angles of rotations 

The coordinate systems of (C), (D), and (E) are included 

only for the sake of completeness. From now on, only the 

coordinates of (A), and (B) will be considered which are 

adequate for explaining the rationale. 

3. EXPERIMENTS 

3.1 Simulations 
A robot carrying eight cameras forming four stereo pairs 

moved with random translations (tx, ty, and tz) and random 

rotation angles (α, β, and γ) in the directions of and around 

the X, Y, and Z axes respectively. The translations were 

taken randomly from ±0.005 to ±0.025 meter, and the 

rotation angles were taken randomly from ±0.005 to ±0.03 

radian. The first stereo pair was oriented initially parallel to 

the reference coordinate system with all angles of rotations 

equal to zero. The second pair had initially the angle α equal 

to 𝜋/2. The third pair had initially the angle β equal to 𝜋/2. 

The last pair had initially the angle γ equal to 𝜋/2. All 

cameras had a 6 mms focal length, and a 640×480 resolution. 

The baseline between each stereo pair was 0.1 meter. A 

random noise was added to the 2-D measurements with a 

normal distribution of zero mean and a 0.5 pixel standard 

deviation. The motion took place inside a spherical shell with 

one meter outer radius and 2/3 meter inner radius. The 

spherical shell was centered at the origin of the coordinate 

axes. Twenty thousand feature points were distributed 

randomly within. A sequence of 100 frames was taken 

simultaneously by each pair. We compared the pose obtained 

by each stereo pair. The comparison was carried out 500 

times under a motion pattern composed from mixed rotation 

and translation. Table1 shows the average of absolute errors 

for the six pose parameters in each case. All absolute errors 

are given in (meter/radian). 

Table 1. Average absolute errors of pose (simulation) 

Initial tx ty tz α β γ 

0 angles  0.020 0.008 0.006 0.008 0.020 0.003 

α= 𝜋/2 0.003 0.007 0.013 0.014 0.003 0.003 

β= 𝜋/2 1.1e5 1.9e5 1.3e5 2.0e4 1.3e4 1.7e4 

γ= 𝜋/2 0.070 0.067 0.065 0.081 0.078 0.086 
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3.2 Real Experiments 
A mobile robot had a stereo pair of two calibrated Canon 

PowerShot G9 cameras aboard. The cameras had a resolution 

of 1600×1200. The baseline between them was 0.14 m. Four 

sequences of about 200 frames were taken simultaneously by 

each camera in an ordinary lab scene. The sequences were 

captured under: pure translation, mixed rotation and 

translation, pure rotation, and curve motion patterns. The 

mobile robot and cameras along with samples of the 

sequence are shown in Figure 2. The coordinate systems (A) 

and (B) of Figure 1 and subsection 2.2 are used for obtaining 

the pose parameters under the different motion patterns and 

compared with the ground truth in in Figure 3, Figure 4, 

Figure 5, and Figure 6.  

4. DISCUSSIONS 
For the simulations, it is obvious from Table 1 that around 

the (β= 𝜋/2) , the singularity is devastating. The 

performances around zero angles of rotation and around 

(α= 𝜋/2) are accurate and close to each other. On the other 

hand, the performance around (γ= 𝜋/2) is slightly degraded. 

The reason for this is that each camera of the stereo pair has 

its short side (480 pixels) attached to the robot while its long 

side (640 pixels) erected upright. In this setting, the 

corresponding features of the stereo pair are mostly 

distributed along the vertical direction within narrow 

horizontal band for each camera. Therefore, an approximate 

small aperture effect appears causing such slight degradation. 

For the real experiments, both coordinate systems (A), and 

(B) nearly coincide for the pure translation pattern as shown 

in Figure 3. The same is true for the mixed rotation and 

translation pattern of Figure 4 since the range of rotations are 

small. As the range increases for the pure rotation pattern 

(Figure 5), and the curve pattern (Figure 6), coordinate 

system (A) diverges since its β angle corresponds to the 

direction of robot rotation (see Figure 1). In contrast, 

coordinate system (B) remains close to the ground truth since 

its angle α is that varies with the robot rotation. Accordingly, 

the differences of coordinate systems are taken into 

considerations in the figures. For example, both β of 

coordinate system (A), and -α of coordinate system (B) are 

compared to β of the ground truth (robot motion obtained 

from the computer steering it). The corresponding pose 

parameters between coordinate systems (A), and (B) are 

mentioned in figure captions. They are also clear from Figure 

1.There are three main reasons for the singularity which 

causes the divergence of pose estimation approaches. The 

first (and the less probable) is having the angle β exactly 

equal to ±𝜋/2. The second is having the angle β in the 

vicinity of ±𝜋/2 (i.e. within 0.2 rad from either side). This 

situation is not a precise singularity from the mathematical 

point of view. However, the two other estimated angles (α, 

and γ) suffer from abrupt changes from frame to frame due to 

any small perturbation in β. The third is the derivative 

calculations (e.g. within the EKF Jacobian). The angle β is 

present in all entries of the rotation matrix (see equation (4)). 

Therefore, the instability due to the derivative taking is 

exaggerated as the magnitude of β increases (even to ±0.4 or 

±0.5 rad which is far less than ±𝜋/2, see Figure 5). 

5. CONCLUSIONS 
An approach is proposed to overcome the singularity of the 

popular and physically tangible Euler angles rotation 

representation. The reference coordinate system is rotated to 

have the angle α corresponding to the robot direction of 

rotation. In this way, the variation of the angle β is kept 

within a small magnitude due to the robot shaking during its 

motion. Therefore, the causes of singularity and 

mathematical instability are avoided. For the future work, 

overcoming the Euler angles singularities for flying objects 

such as the quadcopters will be studied. 

 

Fig 2: Robot, stereo pair, and samples of the sequences 
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7. APPENDIX 

 

Fig 3: Real experiment (pure translation), Coord. A , and Coord. B are the coordinate systems (A), and (B) of  Figure 1. It 

is noted that: (tx, ty, tz, α, β, and γ) of Coord. A correspond respectively to (-ty, tx, tz, -β, α, and γ) of Coord. B. Coord. A and 

Coord. B nearly coincide for this sequence 
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Fig 4: Real experiment (mixed rotation and translation), Coord. A , and Coord. B are the coordinate systems (A), and (B) 

of Figure 1. It is noted that: (tx, ty, tz, α, β, and γ) of Coord. A correspond respectively to (-ty, tx, tz, -β, α, and γ) of Coord. B. 

Coord. A and Coord. B nearly coincide for this sequence 
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Fig 5: Real experiment (pure rotation), Coord. A , and Coord. B are the coordinate systems (A), and (B) of Figure 1. It is noted 

that: (tx, ty, tz, α, β, and γ) of Coord. A correspond respectively to (-ty, tx, tz, -β, α, and γ) of Coord. B. Coord. A diverges while 

Coord. B nearly coincides with the ground truth for this sequence
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.  

Fig 6: Real experiment (curve), Coord. A , and Coord. B are the coordinate systems (A), and (B) of Figure 1. It is noted that: 

(tx, ty, tz, α, β, and γ) of Coord. A correspond respectively to (-ty, tx, tz, -β, α, and γ) of Coord. B. Coord. A diverges while Coord. 

B remains close to the ground truth for this sequence.  
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