
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.7, October 2015

18

An Approach to Process Management using Process

Synchronization

Deepti Sindhu#1
Assistant Professor

NCIT
Israna

Anupma Sangwan*2
Assistant Professor

GJUS&T
Hisar

Kulbir Singh**3

Senior S/w Engineer
bebo Technologies

Chandigarh

ABSTRACT

The main goal of the study is to know how multiple processes

[1] of a computer system is managed. Early computers used to

work on uniprocessing while currently all computers work on

multiprocessing. Many programs could be executed at a time

concurrently, while earlier computers used to allow execution

of only one program at a time. Computers now can load and

execute multiple programs from different processes. These

tasks could be performed concurrently and managed properly.

A system consists of number of jobs and processes related to

operating system and user has to execute system code and

user code. Now the query is this- How all these processes are

managed along with management of Operating system? There

are numerous such queries which rise in one’s mind. A CPU

can be made more productive by any operating system if CPU

switches properly between processes. It is possible if CPU is

synchronized by synchronization of processes.

General Terms

Process management and synchronization are the general

terms for this paper.

Keywords

Process, Process States, Process Scheduling, Interprocess

Communication, Process Synchronization, Critical Section.

1. INTRODUCTION
In A process is simply a program to execute system related

operations. An operating system contains number of codes to

perform various operations. Some necessary resources are

required to execute any operating system’s operations and

jobs. These mandatory resources are: Memory, CPU time,

some related files and input output devices, which are used for

accomplishing OS tasks. The resources can be allocated either

at the time of process creation or while process execution. A

process is a unit of task. Any operating system consists of

number of processes.Operating System [11] processes and

user processes could be differentiated on the basis of their

tasks; i.e. former are used to execute system codes while later

are for user codes. These processes could be executed

individually and concurrently. All traditional operating

system’s processes used to contain single thread while all

modern OS processes contain multiple threads.

Operating system is managed properly only by process

management. Before studying how to manage process it is

necessary to study process and its states. Here process

synchronization [8] algorithms are implemented for process

management.

2. BASIC CONCEPTS OF PROCESS
Process if simply defined is an instance of a program to be

executed [4]. But a process is different from a program. From

operating system point of view, both are hard to differentiate,

once created, a process is activated to perform some tasks for

system and system’s resources. So it can be considered that

program is not a process itself, but is a passive entity of a

process. All programs are not processes but mostly processes

can be considered as programs. A process is an active concept

or entity while program is a passive concept or entity. One or

more than one process may be associated with a single

program which can be considered to different execution

sequences.

But question is that what all CPU activities should be called?

There are numerous batch process and user programs. A

single user system can run multiple program at a time, for

example: a user can run multiple programs using a single user

system such as Microsoft Windows. User can use a word

processor, e-mail and listen to music simultaneously. It seems

to execute many programs at a time, but operating system

executes programs in queues using memory management. A

process is a program in execution that is written in text code.

It is more than a program. After passing through text section a

process is represented by program counter value and registers.

A process also has a stack containing some temporary data

like functional parameters, variable and return addresses.

Global variable are contained in data section.

3. PROCESS STATES
A process before execution passes through various states as

shown in Figure 1. While passing these states if any interrupt

occurs, a process can terminate immediately instead of

running or execution.While execution, a process change its

state. States of a process are divided in parts. Each state, from

which a process passes, becomes its current state. A process

can be in one of following states. The state of a process may

be new, ready, running, waiting (suspend) and terminate.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.7, October 2015

19

Fig 1: States of Processes during execution

 New: The process and programs that have not yet been

created or entered into operating system.

 Ready: The process as soon as created, enter into ready

state. All ready process are listed and CPU selects one

for execution as per scheduling policy.

 Running: Only one process is executed by CPU at a

point of time. The process possesses all necessary

resources for its execution. In single processing system,

only one process is executed at a time, but in

multiprogramming system there may be multiple CPUs

with multiple running processes.

 Waiting: When a process is waiting for I/O operating

or some other event. This state is also called suspend

state.

 Terminate: When the process finish execution or exits

from final state.

3.1 Process Control Block
Process Control Block that abbreviated as PCB represents

each process in any operating system [4][11]. It is also called

Task Control Block. See Figure 2 for PCB.The main

objective of using multiprogramming OS is to run multiple

processes simultaneously. A process is represented

physically in the memory of a computer in a proper data

structure that includes some elements:

Pointer States (Process)

 Number (Process)

Program Counter

CPU Registers

Memory Limits

List of Open Files

:

 Fig 2: Process Control Block

This system maximizes the CPU utilization by frequently

switching the CPU among the processors so that user can

interact with all running programs [2]. CPU executes the

jobs on some scheduling criteria. Before uniprocessor OS

could run only one job at a time, but by multiprocessing

operating system CPU can run many processes concurrently.

Scheduling process is decided by scheduling policies and

methods.

4. PROCESS SCHEDULING
Each process is put into job queue after entering into the

system. All processes are queued which enter the system.

These processes pass through process execution cycle one by

one according to their performance and scheduling criteria.

Each process first enters into ready queue and wait for

execution. This task is performed in main memory. The job

that needs to be executed is swapped into main memory in

form of stack and pointer points to the process to be

executed currently. After execution process quits the queue

and next process enter that was in waiting state.

4.1 Schedulers

An operating system will select the scheduler or scheduling

criteria. There can be many processors that need to be

executed immediately. This can be performed by proper

schedulers. There are mainly two types of schedulers:

 Long Term Scheduler or Job Scheduler

 Short Term Scheduler or CPU Scheduler

The main difference between two schedulers is the execution

frequency. A short term scheduler or CPU scheduler selects

a process for the CPU very frequently while long term

scheduler or job scheduler executes less frequently.The

scheduling or performance depends upon some criteria:

 CPU Utilization

 Throughput

 Waiting Time

 Response Time

 Turnaround Time

4.2 Process Operations:
Multiple processes run concurrently in most modern

computer system and create and terminate process frequently

[6]. As soon as a process is executed successfully is deleted

from queue from main memory and the next process is

created by CPU. A process can create many other processes.

Wait

Created

 Interrupt

Run

I/O or Event
Completion

Exit

I/O or Event
Waiting

Scheduled

Ready

Terminate New

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.7, October 2015

20

Here the creator is called Parent process and new processes

are called Children processes.

Some necessary resources, as discussed earlier section are

required for accomplishing its job. Children processes are

sub processes. There are some possibilities related to these

processes.

 The parent process waits until children processes

terminate.

 Parent process also execute simultaneous as child

process executes.

After completion of execution, the process terminates using

exit system call.

5. INTERPROCESS

COMMUNICATION
Interprocess communication or IPC is the facility to

exchange information or data among threads in one or more

processes. IPC also provides the facility to synchronize the

actions of processes during communication without sharing

same address space.Cooperating process communicate in

shared memory environment. On the other hand interprocess

communication works in distributed memory environment

where the processes can be on different system. Process

synchronization is useful to maintain consistency among

processes. Methods of IPC are:

 Message Passing System

 Process Synchronization

 Buffering

5.1 Message Passing System
This system provides the facility of message passing to

communicating processes without sharing data and variable.

Communication is performed by passing of message among

various communicating process. Message of communication

can be fixed or variable size. System level implementation of

fixed size message is simple and on the other hand system

level implementation of various size messages is more

complex.

Suppose P and Q are two processes to communicate. They

will send and receive messages to and from each other via a

communication link.

Various methods for implementation of Send/Receive

operations are:

 Direct and Indirect Communication Method

 Symmetric and Asymmetric Communication

Method

 Send by Copy and Send by Reference Method

 Fixed Sized and Variable Sized Communication

Method

5.2 Synchronization
Process synchronization is a method to provide consistency.

While sharing data with other processes may result

inconsistency. Race condition occurs while two or more

process read or writes some share data. Result depends who

run last precisely.

There are different design options of message passing i.e.

blocking or non-blocking sending and receiving or their

different combinations.

5.3 Buffering
Messages are exchanged while communication of processes,

reside temporarily in some queues. These queues can be

implemented according to their queue length capacity in

three ways, which are:

 Zero Capacity- Queue Max length 0.

 Bounded Capacity- Queue has finite length n.

 Unbounded Capacity- Queue has infinite length.

Counter is incremented each time an item is added to the

buffer and decremented when removed from the buffer. Data

mining is considered as container of business

6. SOME ISSUES IN PROCESS

SYNCHRONIZATION

6.1 Critical Section Problem
A system can have number of processes. Suppose a system

with n processes, Critical Section is the segment of code

where shared memory is accessed, exchange common

variable, write file etc. At most one process can execute in

critical section of a system. No other process can enter in

critical section until a program execute. Process is based on

mutual exclusion [10][12] and used for cooperation of

communicating processes. Each system has an entry section

and an exit section.

The process need to be executed request the entry section

(Critical Section) after execution exits through exit section.

Other processes reside in remainder section.

 do

{

critical section

 remainder section

}

 while(1);

Fig 3: General Structure of Process

There are some algorithms to solve Critical Section

problems. Algorithm 1, 2 and 3 give solution for Two

Processes. Bakery algorithm gives solutions to Multiple

Process. For solving the critical section problem some

requirements must be fulfilled:

 Mutual Exclusion: Is a process is being executed in CS

then no other process will be executed in that CS.

 Bounded Waiting: Other processes can enter into their

CS after a process has made a request enter to into CS

and before request is guaranteed.

exit section

entry section

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.7, October 2015

21

 Progress: If no process is there in CS for execution then

some other requesting process that is not executing in

remainder section can enter into CS for execution after

get selected to be entered in CS.

Here the purpose of solution algorithms is synchronization.

7. CLASSICAL PROBLEMS OF

PROCESS SYNCHRONIZATION
There are some synchronization problems which are used for

testing newly proposed synchronization.

7.1 Bounded Buffer Problem
It is also called Producer-Consumer problem. It is called so

because of dealing with two processes; one is producer and

other is consumer. Both share a common buffer and run

concurrently. Bounded buffer means each buffer contains

one record at a time.A producer process generates a single

record at a time and sends to the buffer. Consumer process

also consumes a single record at a point of time. More record

can’t be written in buffer if buffer is full and record can’t be

copied out if buffer is empty means no record in buffer.

Some necessary constraints for solution of producer

consumer are as below:

 A producer process cannot write if a buffer is full.

 A consumer cannot consume a record if buffer is

empty.

 Producer and consumer follow mutual exclusion.

 The record entered or produced first, will be

consumed first; means FIFO manner.

Producer consumer process performs in critical section. A

producer process produces after entering in CS if buffer is

empty else exits from critical section. Example of this

problem is message inbox. No message can enter into inbox

if inbox is full and no message can be read if message inbox

is empty. It is called Bounded buffer because of its bounded

or fixed size.

Structure of Producer

 while produced = false

 {

 if buffer is empty

 then

 {

 produce in buffer

 }

 produced = true;

 }

Structure of Consumer

 while consumed = false

 {

 if there exists a buffer

 then

 {

 consume from buffer

 }

 consumed = true;

 }

The mutual exclusion semaphores will not allow two

processes to use a buffer concurrently.

7.2 Readers Writers Problem
Reader-writer is a problem in which number of concurrently

executing processes want to access some particular object

[9]. The process that extracts or reads shared information is

reader process and another process that inserts or edits some

data is writer information. Some rules on reader-writer

problem are:

 No of readers can read concurrently but at most one

writer can write at a point of time.

 Reading and writing process cannot perform

simultaneously. Reader has to wait until writing.

 Process is accessing any data due to mutual exclusion.

On the other hand if reader is performing on any object

and writer wants to access that object, he will get the

permission. Priority is given to writer process.

Structure of Reader Process

 begin

 if writer is processing

 then

 {wait};

 {read};

 if writer is waiting

 then

 {write};

 end;

Structure of Reader Process:

 writer process

 while(true)

 {

 wait(writing)

 when writer is waiting

 signal(writing)

 }

7.3 Dining Philosophers Problem
Consider 5 philosophers are sitting on a dining with chairs,

who want to eat a tasty dish kept in the centre of the table.

Five plates are arranged in front of each chair. But there are

only 5 chopsticks. Each person wants to eat with two

chopsticks so everyone can’t eat simultaneously. So each

person has to wait for his left and right closest chopstick to

get free. So each person eats for some time and sits idle and

start thinking. Others wait for the chopsticks to become free

that is already in his left and right neighbor’s hands. If a

philosopher does not release chopstick and keeps eating

continuously for long time then deadlock like situation

occurs. If he does not release chopstick until his dish

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.7, October 2015

22

finished others have to wait for infinite time and other can

get starved.

Dining philosopher problem is like classical synchronization

problem that is equal to concurrency control [8] problem.

Some simple solutions for such problems can be:

 By allowing four persons to sit on dining

 Philosophers should be allowed to pick two chopsticks

if both of his sides are free.

 Use even or odd formula, means at a time either all

even philosophers should be allowed to pick chopsticks

or odd one.

8. VARIOUS APPROACHES OR

SOLUTION TO CRITICAL

SECTION PROBLEM

8.1 Semaphores
Semaphore [7] is a tool for solving the difficulties of critical

section problem which are very complex and not easy to

generalize. Sem is a variable that can be accessed through

two atomic operations which are wait and signal. These

operations originally were termed as P for wait (from the

Dutch Problem to test) and V for signal (from Verhogen, to

increment).

The pseudo-code for semaphores:

 wait operation (Sem)

 {

 while(Sem ≤ 0)

 Sem- -; //Decrement Semaphore

 }

 signal operation (Sem)

 {

 Sem++; //Increment Semaphore

 }

 Both operations will synchronize their execution and will

modify according o each other. No two processes can

modify simultaneously same Semaphore.

8.2 Mutex Locks
Mutex Locks [3] is software that is an approach to

synchronize hardware. A lock is acquired in critical section

where resources are acquired and lock is released at the exit.

The lock is used to proper execution of a process in critical

section and when the process is executed properly the lock is

released.

9. CONCLUSION
Hence from the above study it is concluded that no OS can

be managed without proper management of processor and

processes. Different algorithms and approaches have been

used to solve difficulties of critical section where all the

processes are executed. Some approaches which are used for

synchronization problems are Semaphores, Mutex Locks etc

[14]. These approaches make the implementation of critical

section efficient and hardware support for atomic operations

but if these approaches are not used properly can create

problem. Implementation of mutual exclusion is also

necessary to avoid deadlock like situations. Process

synchronization makes multiprogramming and

multiprocessing very efficient.

10. ACKNOWLEDGMENTS
Our thanks to all the experts who have contributed towards

development of this paper.

11. REFERENCES
[1] Ben M. and Ari 1990, Principles of Concurrent and

Distributed Program. Prentice Hall.

[2] Jahorjan J. and McCann C. 1990 Processor Scheduling

in Shared Memory Multiprocessors. Proceedings of the

Conference on the Measurement and Modeling of

Computer Systems.

[3] Keag M. and Wilson R. 1976 Studies in Operating

System. Academic Press.

[4] Knuth E. 1966 Additional Comments on a Problem in

Concurrent Program Control. Comm. of ACM, Vol.

9(5): 321-322.

[5] Kosaraju S. 1973 Limitation of Dijkstra’s Semaphore

Primitives and Petri Nets. Operating System Rev.,

Vol.7(4): 122-126.

[6] Lamport L. 1976 Synchronization of Independent

Processes. Acta Informatica, Vol. 7(1): 15-34.

[7] Lamport L. 1977 Concurrent Reading and Writing.

Comm. of ACM, Vol. 20(11): 806-811.

[8] Lamport L. 1986 The Mutual Exclusion Problem.

Comm. of ACM, Vol. 33(2): 313-348.

[9] Lamport L. 1991 The Mutual Exclusion Problem has

been Solved. Comm. of ACM, Vol. 34(1): 110.

[10] Raynal M. 1986 Algo. for Mutual Exclusion. MIT

Press.

[11] Silberscartz, A. Galvin, B. and Gagne 2003 Operating

System Concepts. 6th Edition, John Wiley.

[12] Tanenbaum, A. 2001 Modern Operating System. 2nd

Edition, Prentice Hall.

[13] Tucker A. and Gupta A. 1989 Process Control and

Scheduling Issues for Multiprogrammed Shared

Memory Multiprocessors. Proc. of ACM Symposium

on OS Principles.

[14] William Stallings 2000 Operating Systems. 4th Edition,

Prentice Hall.

IJCATM : www.ijcaonline.org

