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ABSTRACT 
People of India are very susceptible to many infectious 

diseases like malaria, TB, HIV etc. There are many epidemic 

models that are used to predict new cases of disease. Some of 

the popular epidemic models are SI (Susceptible-Infectious), 

SIR (Susceptible-Infectious-Recovered), SIRS, SIS etc. 

In this research quarterly data of TB disease in Uttarakhand 

(India) for 7 years is collected and on the basis of this data  

new infected population in the next quarter is predicted using 

SIR epidemic model and data assimilation technique 

(Ensemble Kalman Filter). Analysis and implementation is 

done in MATLAB. Results show good agreement to 

measured values. 
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1. INTRODUCTION 
People of India are very susceptible to many infectious 

diseases like HIV, malaria, TB etc. Various mathematical 

models have been formulated to study disease dynamics to 

describe the spreading of disease in a population. This 

branch of science is popularly known as Epidemiology, and 

the models used to study disease dynamics are known as 

epidemiological models. Rise and fall of an epidemics 

depends upon the consideration of various parameters such 

as: biological, disease parameter (vaccination, infection 

parameters, population immigration, birth and death rates, 

gain of permanent, temporary or no immunity, latent period, 

dispersal, quarantine, treatment etc. A number of 

epidemiological model such as SI (Susceptible-Infectious), 

SIR (Susceptible-Infectious-Recovered), SIRS, SIS etc. are 

available to study and forecast the spread of a disease and 

predict an epidemic.[1-6] 

This paper is divided into five sections. Section 2 describe 

about the data assimilation method used in the 

implementation ie. Ensemble Kalman filter. The section 3 

focus on the study of epidemic model while mainly 

concentrated on SIR model. The fourth section is a 

discussion about the tool and the fifth section gives the 

Result and Analysis. 

1.1 Kalman filter as data assimilation 

technique 
We use a data assimilation method for statistical tracking of 

epidemics caused by infectious disease. This involves two 

basic components: a dynamic model to forecast the state of 

the epidemic between arrivals of new data, and observations 

that are used to update an ensemble of state estimates. Data 

assimilation requires estimating the uncertainty both for 

model and observations forecasts. The goal in this paper is to 

incorporate sparse and noisy observational epidemic data 

over space and time (for Uttrakhand, India) into a dynamic 

statistical model so as to produce an  estimate of the current 

state of the infected population, and to forecast the progress 

of the real epidemic. The data for simulation is taken from 

the website tbcindia.nic.in. There are a number of variants of 

kalman filter: Basic Kalman filter, Extended Kalman filter 

and Ensemble kalman filter. In this paper,  Ensemble Kalman 

filter is used for implementation.  

1.2 Ensemble Kalman Filter (EnKF) as the 

Data Assimilation Method. 
The Ensemble Kalman Filter (EnKF) belongs to a broader 

category of filters known as particle filters [7, 8]. Unlike 

Extended Kalman Filter (XKF) estimation and SDRE 

estimation, particle filters use neither the Jacobian of the 

dynamics nor frozen linear dynamics. The starting point for 

particle filters is choosing a set of sample points, that is, an 

ensemble of state estimates that captures the initial 

probability distribution of the state. These sample points are 

then propagated through the true nonlinear system and the 

probability density function of the actual state is 

approximated by the ensemble of the estimates. A brief 

overview of the technique is given in [9-12]. In the weather 

prediction literature, there exist a large numbers of papers 

that employ EnKF [11, 12].  

The Ensemble Kalman filter (EnKF) was introduced by 

Evensen. The Kalman filter formula operates directly on the 

mean and covariance of the model state to produce the exact 

filtering distribution. For completeness, major points in the 

development of the Kalman filter are derived here [8] [13]. 

The EnKF algorithm can tackle the initial state uncertainties 

in the model. In the following, we account for this state-

dependent uncertainty by taking an ensemble approach to 

data assimilation. The EnKF is a popular sequential Bayesian 

data assimilation technique that uses a collection of almost-

independent simulations (known as an ensemble) to solve the 

covariance problem of Kalman filtering for systems with 

very high-dimensional state vectors. It does this using a 

mainly two-step process: estimate of the covariance matrix, 

followed by an ensemble update. The covariance of a single 

state estimate in the KF is replaced by the sample covariance 

computed from the ensemble members. This sample 

covariance of ensemble forecasts is then used to calculate the 

Kalman gain matrix. 

The ensemble Kalman filter (EnKF) is a suboptimal 

estimator, where the error statistics are predicted by using a 

Monte Carlo or ensemble integration to solve the Fokker- 

Planck equation. The Ensemble Kalman Filtering method is 

presented in three stages 
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1. Error statistics in fore cast step  

At time k, we have an ensemble of q forecasted state 

estimates with random sample errors. We denote this 

ensemble as Xf
k ∈ Rn ×q, where 

Xf
k  = (xf1

k,...,x
fq

k),            (1) 

and the superscript fi refers to the i-th forecast ensemble 

member. Then, the ensemble mean X
k

f
 ∈ Rn is defined by  

X
k

f
 =(1/q) Σ xfi

k.    

Since the true state xk is not known, we approximate Pf
xyk,   

Pf
xyk,  by using the ensemble members. 

We define the ensemble error matrix Ef
k∈ Rn× q around the 

ensemble mean by  

Ef
k  = [ xf1

k− X
k

f
 …………xfq

k− X
k

f]……….(2) 

and the ensemble of output error Ea
ky∈ Rp× q 

by  Ea
ky  = [ yf1

k− 
y

k
f
 …………yfq

k− 
y

k
f]……….(3) 

We then approximate Pf
k by ˆPf

k,  P
f
xyk  by  ˆPf

xyk, and Pf
yyk  

by  ˆ Pf
yyk  , respectively,  

where  ˆPf
k=(1/q-1) Ef

k  (E
f
k )

T 

ˆPf
kxy=(1/q-1) Ef

k  (E
f
ky )

T 

ˆPf
kyy=(1/q-1) Ef

ky  (E
f
ky )

T……………….(4) 

Thus, we interpret the forecast ensemble mean as the best 

forecast estimate of the state, and the spread of the ensemble 

members around the mean as the error between the best 

estimate and the actual state. 

The second step is the analysis step: To obtain the analysis 

estimates of the state, the EnKF performs an ensemble of 

parallel data assimilation cycles, where for i =1,...,q 

xai
k= xfi

k+ˆKk(y
i
k− h (xfi

k) )…………… (5) 

The perturbed observations Yi
k are given by 

Yi
k = yk + vi

k…………….. (6) 

where vi
k is a zero-mean random variable with a normal 

distribution and covariance Rk. The sample error covariance 

matrix computed from the vi
k converges to Rk as q →∞. 

We approximate the analysis error covariance Pa
k  by ˆPa

k, 

where  

ˆPa
k=(1/q-1) Ea

k(E
a
k)

T 

and  Ea
k is defined by (2) with xfi

k  replaced by xai
  and  xf

k 

replaced by the mean of the analysis estimate ensemble 

members. We use the classical Kalman filter gain expression 

and the approximations of the error covariances to determine 

the filter gain ^Kk  by 

ˆKk =ˆPfxy
k(ˆP

fyy
k)^(− 1)  …... (7) 

The last step is the prediction of error statistics in the forecast 

step: 

 

xfi
k +1 =  f (xai

k,uk )+ wi
k,…………………..(8) 

 

where the values wi
k are sampled from a normal distribution 

with average zero and covariance Qk. The sample error 

covariance matrix computed from the wi
k  converges to  Qk as 

q →∞. 

So, the main equations for EnKF[13] are: 

Forecast to Analysis of that time after getting data Step: 

X
k

f
 =(1/q) Σxfi

k.   [i=1(1)q] 

Ef
k  = [ xf1

k− X
k

f
 …………xfq

k− X
k

f] 

Ea
ky  = [ yf1

k− 
y

k
f
 …………yfq

k− 
y

k
f] 

ˆPf
kxy=(1/q-1) Ef

k  (E
f
ky )

T 

ˆPf
kyy=(1/q-1) Ef

ky  (E
f
ky )

T 

ˆK k =ˆPfxy
k  [(ˆP

fyy
k)^(− 1)] 

xai
k= xfi

k+ˆKk(y
i
k− h (xfi

k) ) 

Analysis to forcast for next time step: 

xfi
k +1 =  f (xai

k,uk )+ wi
k 

Generally Enkf needs much little time & computational 

resources as it solves the storage-and-retrieval problem of 

covariance matrix for high dimensional state space problem 

by calculating the covariance from the members of the 

ensemble as they are needed. The result is an elegant 

Bayesian update algorithm with dramatically improved 

efficiency and storage requirements.  

Though Ensemble Kalman Filter was developed for non 

linear system, but it can also be used for Linear system 

because it needs much less calculation & memory & 

computational resources  & still giving a good 

estimate.Though it may not give the optimal estimate (least 

mean squared error) like Kalman Filter but it can give about 

optimal estimate using less computer resources & taking less 

time & thus more suitable for practical implementation.By 

increasing the no. of Ensembles we can increase the accuracy 

though it may take much time. So considering both time & 

accuracy we should take a suitable no. of ensembles. 

1.3  Epidemic models 
There are many epidemic models used in prediction of a 

disease spread according to geographic and physical 

conditions. In this research SIR epidemic model is used for 

Analysis and prediction of disease spread. SIR is a 

compartmental model initially studied in depth by Kermack 

and McKendrick [7]. In SIR model we divide the whole 

population into three compartments 

 1) Susceptible     2) Infected     3) Removed 

Three variables are used to define the state of the epidemic 

[8] as  

S(x,y,t)=density (per unit area) of the susceptible population 

I(x,y,t)=density of the Infected population 

R(x,y,t)=density of the Removed population 

Thus each of these variables evolves with time. In 

continuous time the epidemic dynamics are defined by a 

system of three partial differential equations for the state 

variables. These equations are given by 

1) dS/dt=-Bst 

2) dI/dt=Bst-YI 
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3) dR/dt=YI 

where 

B=probability of disease transmission 

Y=Recovery rate coefficeient 

The assumptions taken for this model are: 

-closed environment 

-No emigration/Immigration 

-No birth/death 

ie. Constant total population 

1.4  Tool 
The code is implemented in Matlab. It is choosen for 

implementation because it is a language that has a wide user 

base and is familiar to a lot of programmers. Matlab is 

particularly popular for implementing numerical and 

scientific applications. It is an array language. Matlab is used 

as a programming language to write various types of 

simulations in the areas like image processing, 

communication and control engineering. Matlab is a high-

level language developed by mathworks. It has grown into a 

diverse and vast language over the years. Matlab programs, 

at a basic level are similar to programs written in language 

like c++. Each program uses set of variables that can be 

manipulated using operators and function calls. Matlab 

supports variables of several primitive types like int, 

complex, string, real. In matlab all variables are matrices. 

Scalrs are single element matrices. In matlab, a variable 

does’t need to be defined to be of particular type its type is 
determined only at runtime. Matlab provides a rich set of 

operators to operate on matrices. It supports most of the 

common control flow structures. It has support for if-else 

statements and while, do-until, for loops. Matlab has a wide 

variety of toolsets for domain specific functionality. For 

example:-image processing toolbox provides API s to several 

commonly used image processing functions. 

2. RESULT ANALYSIS 
In this research, data of total no of TB patients registered for 

treatment quarterly in Uttrakhand is taken and then using SIR 

epidemic model and ensemble Kalman filter new cases of TB 

are predicted. it can be observed from the data that there is a 

seasonal variation in TB infection different quarters in the 

study represents different seasons of the year the 

computational model presented in this research is able to 

capture this seasonal variation of TB infection very well.  

The percentage variance/error value varies from 1.56% to 

36.66%. It is also observed from the results that the 

computational model is predicting below the observed value 

in quarter 1 and quarter 2 and over prediction in quarter 3 

and quarter 4 the reason for this discrepancy is that fixed beta 

is taken for all the quarters while infection rate varies season 

to season. No significant effect of ensemble size is observed 

in the study. To improve the accuracy of results the infection 

rate beta should vary quarter to quarter. 

 

Table 1. Data of TB patients with their observed and predicted values 

Sno Quarter Observed value Predicted value 

(EnsembleSize100) 

Error(Variance 

in %) 

1 2005Q3 3096 3096 0    

2 2005Q4 2378 3155   24.7111  

3 2006Q1 2695 2438 -10.5131  

4 2006Q2 3253 2753   -18.0506   

5 2006Q3 3136 3318 5.3516   

6 2006Q4 2569 3197    19.7642  

7 2007Q1 3002 2629   -13.9802   

8 2007Q2 4190 3065    -36.6671    

9 2007Q3 3374 4253 20.6260    

10 2007Q4 2840 3437    17.3641  

11 2008Q1 3132 2902 -7.8711   

12 2008Q2 3806 3193    -19.1024   

13 2008Q3 3432 3866 11.2822 

14 2008Q4 2961 3496  15.2360    

15 2009Q1 3181 3021 -5.2856 

16 2009Q2 3960 3242 -22.0942 

17 2009Q3 4083 4022   -1.5657   

18 2009Q4 3076 4144 25.8155  

19 2010Q1 3592 3142   -14.5115   

20 2010Q2 4461 3654 -22.0523   

21 2010Q3 3566 4527 21.1672    

22 2010Q4 3136 3629   13.5728   

23 2011Q1 3453 3197 -8.1117  

24 2011Q2 4338 3514   -23.4063    

25 2011Q3 4014 4397 8.8155   

26 2011Q4 3078 4077 24.4567 
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Fig 1: Percentage error/variance between predicted and observed values on each quarter 

 

 

Fig 2: Predicted and observed value of patients on each quarter ensemble size 100 

 

Table 2. Data of TB patients with their observed and predicted values for different Ensemble size 

Sno Actual 50 Ensemble 100 Ensemble 150 Ensemble 200 Ensemble 

1 3096 3096 3096 3096 3096 

2 2378 3156 3155 3158 3158 

3 2695 2440 2438 2441 2438 

4 3253 2757 2753 2757 2761 

5 3136 3314 3318 3314 3316 

6 2569 3197 3197 3198 3198 

7 3002 2629 2629 2631 2632 

8 4190 3064 3065 3063 3063 

9 3374 4251 4253 4250 4251 

10 2840 3435 3437 3438 3436 

11 3132 2903 2902 2901 2902 

12 3806 3191 3193 3197 3193 

13 3432 3865 3866 3868 3868 

14 2961 3497 3496 3493 3493 

15 3181 3022 3021 3024 3020 

16 3960 3239 3242 3244 3244 

17 4083 4017 4022 4022 4020 

18 3076 4146 4144 4145 4148 

19 3592 3134 3142 3135 3138 
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20 4461 3654 3654 3654 3653 

21 3566 4523 4527 4524 4523 

22 3136 3632 3629 3626 3626 

23 3453 3195 3197 3195 3201 

24 4338 3517 3514 3515 3518 

25 4014 4340 4397 4402 4399 

26 3078 4074 4077 4078 4075 

 

 

        Fig 2: Predicted  value of patients on each quarter with different ensemble size 

 

3. CONCLUSION AND FUTURE SCOPE  
Quarterly data of people infected from TB disease in 

uttrakhand (INDIA) is taken and using SIR epidemic model 

and ensemble Kalman filter new cases of TB are predicted. 

First Ensemble kalman filter with 100 ensemble size is used 

for prediction then different no of ensembles is tried. It is 

found that the predicted values are almost same for all 

ensemble size. There are some variations in our predicted 

value and observed values. In every model there are some 

known and unknown limitations/errors. In future more 

sophisticated program/model can be developed that take care 

of those limitations so that the system could predict the exact 

value. 
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