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ABSTRACT 

Mining frequent itemsets from massive datasets is always 

being a most important problem of data mining.  Apriori is the 

most popular and simplest algorithm for frequent itemset 

mining. To enhance the efficiency and scalability of Apriori, a 

number of algorithms have been proposed addressing the 

design of efficient data structures, minimizing database scan 

and parallel and distributed processing. MapReduce is the 

emerging parallel and distributed technology to process big 

datasets on Hadoop Cluster. To mine big datasets it is 

essential to re-design the data mining algorithm on this new 

paradigm. In this paper, we implement three variations of 

Apriori algorithm using data structures hash tree, trie and hash 

table trie i.e. trie with hash technique on MapReduce 

paradigm. We emphasize and investigate the significance of 

these three data structures for Apriori algorithm on Hadoop 

cluster, which has not been given attention yet. Experiments 

are carried out on both real life and synthetic datasets which 

shows that hash table trie data structures performs far better 

than trie and hash tree in terms of execution time. Moreover 

the performance in case of hash tree becomes worst.   
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1. INTRODUCTION 
We are surrounded with excessive amount of digital data but 

ravenous for potentially precise information. Data mining is 

the technique that finds hidden insight and unknown patterns 

from massive database, which are used as useful knowledge 

for decision making. Association Rule Mining (ARM) [1] is 

one of the most important functionality of data mining that 

comprises of two tasks; finding frequent itemsets and finding 

interesting correlation between set of frequent items. An 

itemset is said to be frequent if its support is greater than or 

equal to a user defined minimum support threshold. Support 

of an itemset is the percentage of transactions containing that 

itemset in database. The Apriori algorithm proposed by R. 

Agrawal and R. Srikant [2] is the most widely used algorithm 

for mining frequent itemset. Various data structures and a 

number of sequential and parallel algorithms have been 

designed to enhance the performance of Apriori algorithm.  

Big Data [3] technologies create a biggest hype just after its 

emergence. A new parallel and distributed computing 

paradigm has been introduced which is largely scalable and 

does not require high-end machines. Hadoop is such a large-

scale distributed batch processing infrastructure for parallel 

processing of big data on large cluster of commodity 

computers [4]. MapReduce is an efficient and scalable parallel 

programming model of Hadoop that process large volumes of 

data in parallel and distributed fashion. Traditional tools and 

techniques of data mining are not scalable and efficient to 

manage big data. Recent advances are porting data mining 

algorithms on this new paradigm. Many authors have re-

designed and implemented the Apriori algorithm on 

MapReduce framework in an efficient way but the impact of 

data structures on the efficiency of MapReduce based Apriori 

algorithm have not been yet evaluated. 

Data structures are the integral in designing of any algorithm. 

A well-organized data structure significantly reduces the time 

and space complexity. Apriori algorithm finds the frequent 

itemsets by generating a large number of candidate itemsets. 

Candidates are the itemsets containing all potentially frequent 

itemsets. To make candidate generation efficient and to 

optimize space for storing intermediate candidates various 

data structures have been designed by many authors; among 

them most eminent are Hash Tree, Trie (Prefix Tree) and 

Hash Table Trie [2] [5-6]. In the sequential implementation of 

Apriori, trie performs better than hash tree [5] but hash table 

trie does not perform faster than trie [6]. In this paper, we 

describe the implementations and evaluate the Apriori 

algorithms based on three data structures in MapReduce 

context. Experimental results on both real life and synthetic 

datasets show that hash table trie takes very less execution 

time as compared to trie. Also the execution times of trie and 

hash tree are of the same order as it was in sequential Apriori.  

The rest of the paper is organized as follows. Section 2 

describes the central data structures used in Apriori algorithm 

and also introduces the Hadoop system. Related works are 

summarized in section 3. Section 4 gives the implementation 

details of Apriori on MapReduce framework. Experimental 

results are evaluated in section 5. Finally section 6 concludes 

the paper.  

2. BACKGROUND 
In this section we briefly describe the Apriori algorithm and a 

comparative overview of hash tree and trie data structures. We 

also discuss the MapReduce programming paradigm and 

Hadoop Distributed File System (HDFS) of Hadoop. 

2.1 Apriori Algorithm 
Apriori is an iterative algorithm which generates frequent 1-

itemsets L1 by scanning the whole database in first iteration. 

In kth iteration (k ≥ 2) it generates candidate k-itemsets Ck 

from frequent (k-1)-itemsets Lk-1 of last iteration. Again whole 

database is scanned to count the support of candidate itemsets 

by checking subset of each transaction to be candidate. 

Candidates having minimum support are resulted as frequent 

k-itemsets Lk. Generation of candidates Ck from frequent 

itemsets Lk-1 consists of two steps join and prune. In join step, 
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Lk-1 is joined with itself with condition that two itemsets of Lk-

1 are joined if their first (k-2) items are same and (k-1)th item 

of first itemset is lexicographically less than the respective 

item of second itemset. Prune step reduces the size of Ck using 

Apriori property. Apriori property states that any (k-1)-itemset 

that is not frequent cannot be a subset of a frequent k-itemset 

[2] [7].Joining and pruning of itemsets and checking subset of 

each transaction against candidates are very computation 

intensive process in Apriori algorithm. Also a large number of 

candidates require large memory during execution of 

algorithm. Therefore, an efficient data structure is required, 

which reduces the computation cost as well as organizes 

candidate itemsets in a compact way in memory. Hash Tree 

and Trie are the central data structure gratifying this 

requirement. In the next subsection we compare the three data 

structure in the context of their operations in Apriori 

algorithm. 

2.2 Hash Tree vs. Trie 
Hash tree and trie both are rooted (downward), directed tree. 

Hash tree contains two types of nodes, inner nodes and leaves. 

Leaves of hash tree contain a list which stores candidates. 

Every inner node stores a hash-table which directs to the 

nodes at next level downward applying a hash function. At the 

leaf nodes if the number of candidates exceeds a threshold 

value leaf_max_size, then leaf node is converted to an inner 

node. Trie does not differentiate between its inner node and 

leaves. It stores an itemset on a path form root to a particular 

node. There are links between nodes of two consecutive levels 

and each link is associated with an item. It requires less 

memory to store candidates since common prefixes are stored 

only once [5]. 

Let a set of items I = {i1, i2, i3, i4, i5}. Suppose all 3-itemsets 

generated from I as candidates, then C3 = {i1 i2 i3; i1 i2 i4; i1 

i2 i5; i1 i3 i4; i1 i3 i5; i1 i4 i5; i2 i3 i4; i2 i3 i5; i2 i4 i5; i3 i4 

i5}. Let child_max_size (maximum number of child nodes or 

table size) to be 3 and a hash function defined over items as h 

(item) = item % child_max_size. All items are assigned a 

corresponding numerical value so that hash function can be 

applied. Now the set of items I and candidates C3 can be 

represented as I = {1, 2, 3, 4, 5}and C3 = {1 2 3; 1 2 4; 1 2 5; 

1 3 4; 1 3 5; 1 4 5; 2 3 4; 2 3 5; 2 4 5; 3 4 5}. Figure 1(a) and 

(b) shows the hash tree and trie containing same number of 

candidates C3, represented differently. 

 

Fig 1(a): A Hash Tree with 10 candidates 

 

Fig 1(b): A Trie with 10 candidates 

Theoretically trie is faster and candidate generation is simple 

in comparison to hash tree. Hash tree is slow in retrieval 

operation due to two phases of operation. Particularly for the 

support counting, one first has to traverse to the leaf node and 

then search in the list of candidates at leaf node whereas in 

trie only need to traverse to the leaf node. Candidate 

generation is simple in trie since it is easy to find common (k-

1)-prefix to generate candidate k-itemsets. Hash tree needs 

two parameters (child_max_size and leaf_max_size) to be fine 

tuned for better performance and the same value of these 

parameters may not be suitable for different datasets and 

different minimum threshold [5]. 

2.3 Trie vs. Hash Table Trie 
Support counting with a trie becomes slower when one has to 

move downward from a node having many links to the nodes 

at next lower level. There is a need to make a linear search at 

each node to move downward which results into an increased 

counting time. So to accelerate the search time we employ 

hash table, an efficient searching technique. Each node 

maintains a hash table and in this way we require steps just 

equal to the size of an itemset to reach to the leaf node. A 

perfect hashing have to be maintained since a leaf in a trie 

represents exactly one itemset. We named a trie with hashing 

technique as a hash table trie [6]. 

2.4 Apache Hadoop and MapReduce 
The fundamental design principle of Hadoop is to distribute 

the computing power to where the data is. Moving data is 

much more costly than movement of computation as in well 

known parallel and distributed computing paradigm MPI 

(Message Passing Interface) data is being moved. Hadoop is 

extremely scalable and fault tolerant distributed system which 

minimizes the consumption of network bandwidth. It hides 

the parallelization, data distribution and load balancing [8-9]. 

Hadoop is as an open source project supported by Apache 

foundation [4] which is inspired by Google' File System 

(GFS) [10] and Google's MapReduce [11] programming 

model. 

Two major components of Hadoop are Hadoop Distributed 

File System (HDFS) and Hadoop MapReduce. Hadoop 

processes data residing in HDFS using MapReduce. HDFS 

architecture is based on GFS. It is a highly scalable storage 

and supports fast accessing to large datasets. It stores and files 

by breaking them into blocks and replicates the blocks across 

multiple nodes to facilitate high availability and fault 

tolerance. Default block size is 64 MB and default replication 

factor is 3 [9]. 

MapReduce is a programming paradigm of Hadoop for 

parallel and distributed computation on large datasets, which 

is based on the underlying ideas of Google’s MapReduce. To 

compute the problem using MapReduce one has to divide the 

computation into two tasks: a map and a reduce task. Input 

dataset is splitted into smaller chunks and assigned to mapper 

executing map task. Chunk size is customized by InputFormat 

class of MapReduce framework. Each chunk is assigned to an 

individual mapper. Mapper processes the assigned datasets 

and output a number of (key, value) pairs. MapReduce 

framework automatically sort and shuffle these (key, value) 

pairs for a number of Reducers to execute reduce task. In 

shuffling process a reducer is assigned key and list of values 

associated with that key. Reducer processes key and list of 

values and output new (key, value) pairs. An additional 

Combiner function may be used to reduce the data transfer 

from mappers to reducers. It works same as Reducer but only 

on (key, value) pairs generated by mappers on one node. 
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MapReduce framework allows a single time communication 

when outputs of mappers are transferred to reducers. All the 

mappers and reduces are executed independently without any 

communication between them [9]. 

3. RELATED WORKS 
A number of Apriori based algorithms have been proposed to 

reduce the computation time and to enhance the scalability. 

Among sequential algorithm most significant are based on 

efficient data structures. Parallel and distributed algorithms 

are developed to improve the scalability as well as efficiency. 

But these traditional parallel and distributed algorithms are 

not efficient and scalable to manage big data. Hadoop 

provides an extremely scalable and fault tolerant cluster 

system so it is unavoidable to re-design existing data mining 

algorithms on MapReduce framework in order to execute 

them on Hadoop cluster.  

The A number of MapReduce based Apriori algorithms have 

been proposed but most of them are simply straight forward 

implementation of Apriori [12-16]. Fixed Passes Combined-

counting (FPC) and Dynamic Passes Combined-counting 

(DPC) [17] are the two algorithms which significantly reduces 

the execution. These algorithms are based on combining 

multiple consecutive passes of Single Pass Counting (SPC) 

algorithm [17] in a single map-reduce phase. SPC is a straight 

forward implementation of Apriori. Algorithm proposed by F. 

Kovacs and J. Illes [18] is most likely to be SPC except 

candidates are generated inside reducer as it is kept inside 

mapper traditionally in most of the algorithms. Authors also 

used triangular matrix data structure to count 1 and 2-itemsets 

in a single step. L. Li and M. Zhang [19] proposed a one 

phase map-reduce algorithm to generate frequent itemsets. It 

generates frequent 1 to k-itemsets in a single map-reduce 

phase. This algorithm does not strictly follow Apriori 

algorithm since using one map-reduce completely skips 

pruning steps based on Apriori property. Pruning steps 

reduces the set of candidates by checking against frequent 

itemsets of last iteration. But authors proposed a dataset 

distribution method for heterogeneous Hadoop cluster.  

Honglie Yu et al. [20] proposed an algorithm based on 

Boolean matrix and applied AND operation on it. In this 

algorithm transactional database is replaced by Boolean 

matrix and divide the matrix on various DataNodes of Hadoop 

cluster. The PARMA, a parallel randomized algorithm on 

MapReduce is proposed by Matteo Riondato et al. [21], which 

is independent from dataset size. It discovers approximate 

frequent itemsets from a small sample of datasets. A 

comprehensive and more descriptive literature review of 

MapReduce based Apriori algorithm can be found in [22].  

In order to implement Apriori algorithm on MapReduce 

framework, role of data structures have not been evaluated in 

MapReduce context. Hash tree and trie are the central data 

structures for Apriori algorithm [2] [5]. F. Bodon and L. 

Rónyai [5] proposed the trie data structure and also proved 

theoretically and experimentally that trie is faster, consumes 

less memory and simpler to generate candidates in 

comparison to hash tree. Christian Borgelt [23] efficiently 

implemented Apriori algorithm using trie. He represented the 

transactions in a trie to reduce the support counting cost. He 

also proposed the idea of transaction filtering by removing 

infrequent items from transactions. F. Bodon proposed a 

number of strategies to improve the performance of sequential 

Apriori using trie data structure [24-25]. He proposed many 

routing strategies at the nodes, storing frequent and candidate 

itemsets in a single trie. F. Bodon and L. Schmidt-Thieme 

[26] proposed an efficient intersection-based pruning method 

which saves superfluous traversal of some part of trie. Trie 

with hashing technique has been proposed by F. Bodon [6] to 

speed up the search time in trie. Theoretically hashing 

technique in trie seems to accelerate the support counting but 

the experimental results have not shown any improvement. 

Author left this technique for further investigation. 

4. IMPLEMENTATIONS 
A computational problem is submitted as a MapReduce Job 

on Hadoop cluster. A job is configured using a Driver class. A 

driver class is defined with a Mapper class, a Reducer and an 

optional Combiner class of MapReduce framework. Also 

input/output directory in HDFS, input split size and other 

problem specific parameters are specified in driver class. To 

implement Apriori algorithm on MapReduce framework we 

have to split it into two independent sub-problems 

corresponding to map and reduce tasks. We define two sub-

problems candidate itemsets generation and frequent itemsets 

generation and assigned them to Mapper and Reducer 

respectively. Each mapper processes a chunk of input datasets 

and generates local candidates with local support count. Each 

reducer receives local candidates and sums up the local count 

to generate frequent itemsets.  Number of mappers depends on 

the number of chunks so if we reduce the chunk size there will 

be more mappers. Number of reducers is specified in driver 

class and does not depend on input size. All the mappers and 

reducers execute in parallel across different nodes of cluster 

but final result cannot be obtained until all reduce tasks are 

not completed. Apriori is an iterative algorithm so we have to 

submit job each time a new iteration starts. 

Again we have to define two types of jobs, one for frequent 1-

itemset generation and other for frequent k-itemset (k ≥ 2) 

generation. In both type of jobs the functionality of combiner 

and reducer remains same since they only make sums up the 

local count. We define two mappers corresponding to 1-

itemsets and k-itemsets. Algorithm 1 depicts the pseudo code 

for the driver class of the Apriori algorithm. Job1 is executed 

only once to generate frequent 1-itemsets and Job2 is 

executed iteratively to generate frequent k-itemsets, until 

further candidate generation are not possible. Here 

OneItemsetMapper generates candidate 1-itemsets and K-

ItemsetMapper generates candidate k-itemsets. Pseudo code 

for OneItemsetMapper and K-ItemsetMapper are shown in 

Algorithm 2 and 3.  ItemsetCombiner makes the local sum of 

the local candidates on one node. ItemsetReducer sums up the 

local count of the candidates obtained from all the nodes and 

check against minimum support threshold. Candidates 

satisfying minimum support threshold are produced as 

frequent itemsets. Algorithm 4 depicts the pseudo code for 

ItemsetCombiner and ItemsetReducer. Pseudo code of 

ItemsetCombiner and ItemsetReducer are same except latter 

one make use of minimum support threshold. 

 

Algorithm 1. DriverApriori 

// Find frequent 1-itemset L1 

   Job1: //submitted single time 

         OneItemsetMapper 

         ItemsetCombiner 

         ItemsetReducer 

   end Job1 

// Find frequent k-itemset Lk 

   for (k = 2; Lk-1 ≠ ϕ; k++) 

         Job2: // submitted multiple times 

              K-ItemsetMapper 

              ItemsetCombiner 
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              ItemsetReducer 

         end Job2 

  end for 

 

Algorithm 2. OneItemsetMapper, k = 1 

Input: a block bi of database 

key: byte offset of the line,  

value: a transaction ti 

for each ti ∈ bi do 

      for each item i ∈ ti do 

            write (i, 1); 

      end for 

end for 

 

Algorithm 3. K-ItemsetMapper, k ≥ 2 

Input: a block bi of database and Lk-1  

key: byte offset of the line,  

value: a transaction ti 

// Lk-1 may be a Hash Tree, Trie or Hash Table Trie 

read (k-1)-itemsets from cache file in Lk-1 

// Ck may be a Hash Tree, Trie or Hash Table Trie 

Ck = apriori-gen(Lk-1); 

for each ti ∈ block bi do 

      Ct = subset(Ck , ti);   // Ct may be a List 

      for each candidate c ∈ Ct do 

            write (c, 1); 

      end for 

end for 

 

Algorithm 4. ItemsetCombiner and ItemsetReducer 

ItemsetCombiner 

key: itemset,  

value: key's value list 

for each key k do 

      for each value v of k's value list 

            sum += v; 

      end for 

      write(k, sum) 

end for 

ItemsetReducer 

key: itemset,  

value: key's value list 

for each key k do 

      for each value v of k's value list 

            sum += v; 

      end for 

      if sum >= min_supp_count 

            write(k, sum) 

      end if 

end for 

Algorithm for K-ItemsetMapper is central to our discussion. 

We have implemented three variants of K-ItemsetMapper for 

hash tree, trie and hash table trie. The algorithm remains 

unchanged and we have simply changed the data structure 

each time as shown in Algorithm 3. Method apriori-gen() and 

subset() are the most computation intensive steps, which 

generate candidates and count support respectively using 

considered data structure. So operation cost of apriori-gen() 

and subset() methods are greatly affected by the data structure 

used. 

We have implemented the three data structures in Java to be 

used in MapReduce code. To implement hash tree, we have 

defined two classes named as InnerNode and LeafNode for 

inner node and leaf node of hash tree. InnerNode contains a 

list of size child_max_size, which contains child nodes. These 

child nodes may be inner node or leaf node. LeafNode 

contains a list of size child_max_size, which again contains a 

list of candidates. Thus candidates are stored at leaf node. 

Candidate generation and support counting using hash tree are 

implemented following the techniques mentioned in original 

works. 

All nodes in a trie have same structure. We have defined a 

class TrieNode for the node of trie. TrieNode contains a 

String object to store item label of a link, address of parent 

node and a list of child nodes. For a given itemset, we traverse 

downward in a trie by searching item label of links at each 

node. Again methods for candidate generation and support 

counting using trie are followed as it is in [5].Hash table trie is 

implemented using perfect hashing at each node. We just 

modified the class TrieNode of trie and added a hash table in 

it. Because of that we have used hashing technique instead of 

searching item label linearly at each node. 

5. EXPERIMENTAL RESULTS 
In this section we have observed the execution time of 

algorithms when it uses hash tree, trie and hash table trie for 

different minimum support value. Also execution times for 

different sizes of input split are also evaluated. We have 

analyzed the execution time on varying minimum support 

values and with increasing number of mappers. 

5.1 Cluster Setup and Datasets 
A small Hadoop-2.6.0 cluster is installed with five nodes, all 

are running Ubuntu 14.04. One node is dedicated as 

NameNode and other four nodes serve as DataNodes. 

NameNode is configured with 4 cores and 4 GB memory 

running in the virtualized environment on window host. Two 

DataNodes are running on separate physical machine each 

with 4 cores and 2 GB memory. Other two DataNodes with 4 

cores and 4 GB memory are running in the virtualized 

environment on another same window host. All algorithms are 

implemented in Java and used MapReduce 2.0 library. 

Experiments were carried out on both real life and synthetic 

datasets. Two real life datasets BMS_WebView_1 and 

BMS_WebView_2 are click-stream data from a web store 

used in KDD-Cup 2000 [27]. The synthetic dataset 

T10I4D100K is generated by IBM generator [28]. 

BMS_WebView_1 contains 59602 transactions with 497 

items and BMS_WebView_2 contains 77512 transactions 

with 3340 items. 

5.2 Execution Time for different Minimum 

Support Values 
We have observed the execution time of algorithms on the 

above three datasets for different minimum support values. 

We have used 4 reducers in all algorithms. The number of 

mappers is dependent on the number of input split since for 

each split one mapper is assigned. As the chunk size i.e. the 

number of lines of input per split decreases, the number of 

splits increases. We have set 5K and 6.5K as chunk size for 

BMS_WebView_1 and BMS_WebView_2 respectively, 

which results 12 mappers. Chunk size for T10I4D100K 

dataset was 5K, which results 20 mappers. Figure 2, 3 and 4 

shows the execution time on datasets BMS_WebView_1, 

BMS_WebView_2 and T10I4D100K respectively for varying 

value of minimum support. The performance of hash table trie 

is outstanding in comparison to trie and hash tree on all 

datasets. The performance of trie is far better than hash tree on 
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BMS_WebView_1 dataset but it is not in the case of 

BMS_WebView_2. Also on T10I4D100K dataset, trie 

performs nearly same as hash tree. 

Fig 2: Execution time of Apriori using three data 

structures on dataset BMS_WwbView_1 

 
Fig 3: Execution time of Apriori using three data 

structures on dataset BMS_WwbView_2 

 Fig 4: Execution time of Apriori using three data 

structures on dataset T10I4D100K 

In hash tree we have only considered the parameter 

child_max_size with value 20. We have ignored the second 

parameter leaf_max_size for simplicity of implementation. As 

we have discussed in earlier section that performance of hash 

tree depends on these two parameters and its major downside 

is that value of parameters suitable for one datasets may not 

be for others. This can be observed form the Figure 2, 3 and 4 

for three datasets. Hash tee performs worst on dataset 

BMS_WebView_1 while its performance is competing trie on 

BMS_WebView_2 and T10I4D100K. We have explored this 

case iteration-wise for dataset BMS_WebView_2. All 

algorithms made 7 iterations (jobs) for minimum support 

0.003 on this dataset. Table 1 compares the execution time of 

these 7 iterations of hash tree and trie based algorithms. Here 

we observed that the performance of trie deteriorates when we 

generate 2-itemsets in iteration 2 whereas in other iterations it 

performs better than or equivalent to hash tree. 

Table 1. Execution time (sec.) of respective iterations for 

hash tree and trie 

Iteration 1 2 3 4 5 6 7 

No. 

Hash 

Tree 
23 2078 164 300 252 66 26 

Trie 37 2432 39 38 32 28 23 

The most important reason behind outstanding performance of 

hash table trie may be the memory it requires during 

execution. MapReduce starts a new job each time a next 

iteration of Apriori starts. In kth iteration there are only 

frequent (k-1)-itemsets and candidates k-itemsets reside in the 

memory and other itemsets of previous iterations are 

discarded. Reason for unsuccessfulness of hash table trie in 

sequential Apriori discussed by the author [6] is as follows. 

Using hash table enlarges the size of a node, which could not 

be cached in and may be moved into memory. Linear search is 

fast in cache and reading operation is slower for memory. 

Since in MapReduce iteration, there is lesser number of nodes 

in memory. Therefore, searching and reading operations will 

be faster for small number of nodes. 

5.3 Execution Time for Increasing Number 

of Mappers 
In MapReduce framework, degree of parallelism can be 

increased in two ways, either by increasing DataNodes or by 

increasing mappers. Number of DataNodes can be controlled 

by editing list of slaves in slave file on NameNode. Number 

of mappers can be controlled directly in MapReduce code 

using NLineInputFormatClass which set the chunk size 

(number of lines per split). A smaller chunk size results a 

larger number of mappers. Table 2 shows the execution times 

of three algorithms on dataset T10I4D100K with minimum 

support 0.02, for increasing number of mappers. 

Table 2. Execution time of Apriori using hash tree, trie 

and hash table trie for different chunk size 

Chunk 

Size 

Number of 

Mappers 

Execution Time (sec.) 

Hash 

Tree 
Trie 

Hash 

Table Trie 

100K 1 2907 2892 1124 

50K 2 1649 1442 584 

20K 5 720 657 293 

10K 10 425 430 214 

5K 20 350 349 200 

From Table 2 it is clear that as the number of mappers 

increases the execution time for all data structures decreases.  

But reduction in execution time also turns to lower with 

increasing number of mappers. For example, the difference in 

execution time for 10 and 20 mappers is not significant. 

Increasing the number of mappers does not work after a 

particular point since communication and scheduling 

overhead have been increased along with. We can also 

represent it in terms of the speedup using multiple mappers. 

Speedup is the ratio of execution time without improvement 

and improved execution time. We defined the speed up in our 

case as following. 

Speed up = Execution time with 1 mapper / Execution time 

with N mappers 

Figure 5 shows the speedup calculated from Table 2, of 

Apriori using hash tree, trie and hash table trie, for varying 
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number of mappers. We can see that up to 10 mappers we 

have achieved a good speedup but after that increasing the 

number of mappers have shown no significant achievement in 

speedup. 

 Fig 5: Speedup for different number of Mappers 

6. CONCLUSIONS 
Frequent itemset mining algorithms are the most researched 

field of data mining. Re-designing data mining algorithms on 

MapReduce framework to analyze big data is the new drift in 

research. We have identified and filled up the gap between 

effects of data structures on traditional Apriori and on 

MapReduce based Apriori. We have implemented the Apriori 

algorithm on MapReduce framework, for the central data 

structures hash tree, trie and hash table trie and evaluated the 

execution time of Apriori algorithms for these data structures 

in MapReduce context. In sequential computing environment, 

trie outperformed hash tree experimentally as well as 

theoretically. Hash table trie theoretically accelerates the 

Apriori algorithm but experimentally could not success. In our 

experiment on Hadoop cluster, trie outperforms hash tree as 

usual but hash table trie is outstanding among the three data 

structures for both real-life and synthetic datasets. Reason 

behind it may be the lesser number nodes residing in memory 

since in MapReduce itemsets of previous iterations are 

discarded. For small number of nodes, searching and reading 

operations will be faster. Further possible implementations 

can be checked in order to improve the performance of 

MapReduce based Apriori. One can implement the existing 

idea of using mixed of simple trie node and hash table trie 

node, and also deploying a joint trie for both frequent and 

candidate itemsets. 
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