
International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.9, October 2015

45

Performance Analysis of Apriori Algorithm with Different

Data Structures on Hadoop Cluster

Sudhakar Singh
Dept. of Computer Science

Faculty of Science
Banaras Hindu University

Rakhi Garg
Dept. of Computer Science

Mahila Maha Vidyalaya
Banaras Hindu University

P.K. Mishra
Dept. of Computer Science

Faculty of Science
Banaras Hindu University

ABSTRACT

Mining frequent itemsets from massive datasets is always

being a most important problem of data mining. Apriori is the

most popular and simplest algorithm for frequent itemset

mining. To enhance the efficiency and scalability of Apriori, a

number of algorithms have been proposed addressing the

design of efficient data structures, minimizing database scan

and parallel and distributed processing. MapReduce is the

emerging parallel and distributed technology to process big

datasets on Hadoop Cluster. To mine big datasets it is

essential to re-design the data mining algorithm on this new

paradigm. In this paper, we implement three variations of

Apriori algorithm using data structures hash tree, trie and hash

table trie i.e. trie with hash technique on MapReduce

paradigm. We emphasize and investigate the significance of

these three data structures for Apriori algorithm on Hadoop

cluster, which has not been given attention yet. Experiments

are carried out on both real life and synthetic datasets which

shows that hash table trie data structures performs far better

than trie and hash tree in terms of execution time. Moreover

the performance in case of hash tree becomes worst.

General Terms

Data Mining; Association Rule Mining; Data Structure;

Algorithm; Big Data

Keywords

Frequent Itemset Mining; Apriori; Hash Tree; Trie; Hadoop;

MapReduce

1. INTRODUCTION
We are surrounded with excessive amount of digital data but

ravenous for potentially precise information. Data mining is

the technique that finds hidden insight and unknown patterns

from massive database, which are used as useful knowledge

for decision making. Association Rule Mining (ARM) [1] is

one of the most important functionality of data mining that

comprises of two tasks; finding frequent itemsets and finding

interesting correlation between set of frequent items. An

itemset is said to be frequent if its support is greater than or

equal to a user defined minimum support threshold. Support

of an itemset is the percentage of transactions containing that

itemset in database. The Apriori algorithm proposed by R.

Agrawal and R. Srikant [2] is the most widely used algorithm

for mining frequent itemset. Various data structures and a

number of sequential and parallel algorithms have been

designed to enhance the performance of Apriori algorithm.

Big Data [3] technologies create a biggest hype just after its

emergence. A new parallel and distributed computing

paradigm has been introduced which is largely scalable and

does not require high-end machines. Hadoop is such a large-

scale distributed batch processing infrastructure for parallel

processing of big data on large cluster of commodity

computers [4]. MapReduce is an efficient and scalable parallel

programming model of Hadoop that process large volumes of

data in parallel and distributed fashion. Traditional tools and

techniques of data mining are not scalable and efficient to

manage big data. Recent advances are porting data mining

algorithms on this new paradigm. Many authors have re-

designed and implemented the Apriori algorithm on

MapReduce framework in an efficient way but the impact of

data structures on the efficiency of MapReduce based Apriori

algorithm have not been yet evaluated.

Data structures are the integral in designing of any algorithm.

A well-organized data structure significantly reduces the time

and space complexity. Apriori algorithm finds the frequent

itemsets by generating a large number of candidate itemsets.

Candidates are the itemsets containing all potentially frequent

itemsets. To make candidate generation efficient and to

optimize space for storing intermediate candidates various

data structures have been designed by many authors; among

them most eminent are Hash Tree, Trie (Prefix Tree) and

Hash Table Trie [2] [5-6]. In the sequential implementation of

Apriori, trie performs better than hash tree [5] but hash table

trie does not perform faster than trie [6]. In this paper, we

describe the implementations and evaluate the Apriori

algorithms based on three data structures in MapReduce

context. Experimental results on both real life and synthetic

datasets show that hash table trie takes very less execution

time as compared to trie. Also the execution times of trie and

hash tree are of the same order as it was in sequential Apriori.

The rest of the paper is organized as follows. Section 2

describes the central data structures used in Apriori algorithm

and also introduces the Hadoop system. Related works are

summarized in section 3. Section 4 gives the implementation

details of Apriori on MapReduce framework. Experimental

results are evaluated in section 5. Finally section 6 concludes

the paper.

2. BACKGROUND
In this section we briefly describe the Apriori algorithm and a

comparative overview of hash tree and trie data structures. We

also discuss the MapReduce programming paradigm and

Hadoop Distributed File System (HDFS) of Hadoop.

2.1 Apriori Algorithm
Apriori is an iterative algorithm which generates frequent 1-

itemsets L1 by scanning the whole database in first iteration.

In kth iteration (k ≥ 2) it generates candidate k-itemsets Ck

from frequent (k-1)-itemsets Lk-1 of last iteration. Again whole

database is scanned to count the support of candidate itemsets

by checking subset of each transaction to be candidate.

Candidates having minimum support are resulted as frequent

k-itemsets Lk. Generation of candidates Ck from frequent

itemsets Lk-1 consists of two steps join and prune. In join step,

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.9, October 2015

46

Lk-1 is joined with itself with condition that two itemsets of Lk-

1 are joined if their first (k-2) items are same and (k-1)th item

of first itemset is lexicographically less than the respective

item of second itemset. Prune step reduces the size of Ck using

Apriori property. Apriori property states that any (k-1)-itemset

that is not frequent cannot be a subset of a frequent k-itemset

[2] [7].Joining and pruning of itemsets and checking subset of

each transaction against candidates are very computation

intensive process in Apriori algorithm. Also a large number of

candidates require large memory during execution of

algorithm. Therefore, an efficient data structure is required,

which reduces the computation cost as well as organizes

candidate itemsets in a compact way in memory. Hash Tree

and Trie are the central data structure gratifying this

requirement. In the next subsection we compare the three data

structure in the context of their operations in Apriori

algorithm.

2.2 Hash Tree vs. Trie
Hash tree and trie both are rooted (downward), directed tree.

Hash tree contains two types of nodes, inner nodes and leaves.

Leaves of hash tree contain a list which stores candidates.

Every inner node stores a hash-table which directs to the

nodes at next level downward applying a hash function. At the

leaf nodes if the number of candidates exceeds a threshold

value leaf_max_size, then leaf node is converted to an inner

node. Trie does not differentiate between its inner node and

leaves. It stores an itemset on a path form root to a particular

node. There are links between nodes of two consecutive levels

and each link is associated with an item. It requires less

memory to store candidates since common prefixes are stored

only once [5].

Let a set of items I = {i1, i2, i3, i4, i5}. Suppose all 3-itemsets

generated from I as candidates, then C3 = {i1 i2 i3; i1 i2 i4; i1

i2 i5; i1 i3 i4; i1 i3 i5; i1 i4 i5; i2 i3 i4; i2 i3 i5; i2 i4 i5; i3 i4

i5}. Let child_max_size (maximum number of child nodes or

table size) to be 3 and a hash function defined over items as h

(item) = item % child_max_size. All items are assigned a

corresponding numerical value so that hash function can be

applied. Now the set of items I and candidates C3 can be

represented as I = {1, 2, 3, 4, 5}and C3 = {1 2 3; 1 2 4; 1 2 5;

1 3 4; 1 3 5; 1 4 5; 2 3 4; 2 3 5; 2 4 5; 3 4 5}. Figure 1(a) and

(b) shows the hash tree and trie containing same number of

candidates C3, represented differently.

Fig 1(a): A Hash Tree with 10 candidates

Fig 1(b): A Trie with 10 candidates

Theoretically trie is faster and candidate generation is simple

in comparison to hash tree. Hash tree is slow in retrieval

operation due to two phases of operation. Particularly for the

support counting, one first has to traverse to the leaf node and

then search in the list of candidates at leaf node whereas in

trie only need to traverse to the leaf node. Candidate

generation is simple in trie since it is easy to find common (k-

1)-prefix to generate candidate k-itemsets. Hash tree needs

two parameters (child_max_size and leaf_max_size) to be fine

tuned for better performance and the same value of these

parameters may not be suitable for different datasets and

different minimum threshold [5].

2.3 Trie vs. Hash Table Trie
Support counting with a trie becomes slower when one has to

move downward from a node having many links to the nodes

at next lower level. There is a need to make a linear search at

each node to move downward which results into an increased

counting time. So to accelerate the search time we employ

hash table, an efficient searching technique. Each node

maintains a hash table and in this way we require steps just

equal to the size of an itemset to reach to the leaf node. A

perfect hashing have to be maintained since a leaf in a trie

represents exactly one itemset. We named a trie with hashing

technique as a hash table trie [6].

2.4 Apache Hadoop and MapReduce
The fundamental design principle of Hadoop is to distribute

the computing power to where the data is. Moving data is

much more costly than movement of computation as in well

known parallel and distributed computing paradigm MPI

(Message Passing Interface) data is being moved. Hadoop is

extremely scalable and fault tolerant distributed system which

minimizes the consumption of network bandwidth. It hides

the parallelization, data distribution and load balancing [8-9].

Hadoop is as an open source project supported by Apache

foundation [4] which is inspired by Google' File System

(GFS) [10] and Google's MapReduce [11] programming

model.

Two major components of Hadoop are Hadoop Distributed

File System (HDFS) and Hadoop MapReduce. Hadoop

processes data residing in HDFS using MapReduce. HDFS

architecture is based on GFS. It is a highly scalable storage

and supports fast accessing to large datasets. It stores and files

by breaking them into blocks and replicates the blocks across

multiple nodes to facilitate high availability and fault

tolerance. Default block size is 64 MB and default replication

factor is 3 [9].

MapReduce is a programming paradigm of Hadoop for

parallel and distributed computation on large datasets, which

is based on the underlying ideas of Google’s MapReduce. To

compute the problem using MapReduce one has to divide the

computation into two tasks: a map and a reduce task. Input

dataset is splitted into smaller chunks and assigned to mapper

executing map task. Chunk size is customized by InputFormat

class of MapReduce framework. Each chunk is assigned to an

individual mapper. Mapper processes the assigned datasets

and output a number of (key, value) pairs. MapReduce

framework automatically sort and shuffle these (key, value)

pairs for a number of Reducers to execute reduce task. In

shuffling process a reducer is assigned key and list of values

associated with that key. Reducer processes key and list of

values and output new (key, value) pairs. An additional

Combiner function may be used to reduce the data transfer

from mappers to reducers. It works same as Reducer but only

on (key, value) pairs generated by mappers on one node.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.9, October 2015

47

MapReduce framework allows a single time communication

when outputs of mappers are transferred to reducers. All the

mappers and reduces are executed independently without any

communication between them [9].

3. RELATED WORKS
A number of Apriori based algorithms have been proposed to

reduce the computation time and to enhance the scalability.

Among sequential algorithm most significant are based on

efficient data structures. Parallel and distributed algorithms

are developed to improve the scalability as well as efficiency.

But these traditional parallel and distributed algorithms are

not efficient and scalable to manage big data. Hadoop

provides an extremely scalable and fault tolerant cluster

system so it is unavoidable to re-design existing data mining

algorithms on MapReduce framework in order to execute

them on Hadoop cluster.

The A number of MapReduce based Apriori algorithms have

been proposed but most of them are simply straight forward

implementation of Apriori [12-16]. Fixed Passes Combined-

counting (FPC) and Dynamic Passes Combined-counting

(DPC) [17] are the two algorithms which significantly reduces

the execution. These algorithms are based on combining

multiple consecutive passes of Single Pass Counting (SPC)

algorithm [17] in a single map-reduce phase. SPC is a straight

forward implementation of Apriori. Algorithm proposed by F.

Kovacs and J. Illes [18] is most likely to be SPC except

candidates are generated inside reducer as it is kept inside

mapper traditionally in most of the algorithms. Authors also

used triangular matrix data structure to count 1 and 2-itemsets

in a single step. L. Li and M. Zhang [19] proposed a one

phase map-reduce algorithm to generate frequent itemsets. It

generates frequent 1 to k-itemsets in a single map-reduce

phase. This algorithm does not strictly follow Apriori

algorithm since using one map-reduce completely skips

pruning steps based on Apriori property. Pruning steps

reduces the set of candidates by checking against frequent

itemsets of last iteration. But authors proposed a dataset

distribution method for heterogeneous Hadoop cluster.

Honglie Yu et al. [20] proposed an algorithm based on

Boolean matrix and applied AND operation on it. In this

algorithm transactional database is replaced by Boolean

matrix and divide the matrix on various DataNodes of Hadoop

cluster. The PARMA, a parallel randomized algorithm on

MapReduce is proposed by Matteo Riondato et al. [21], which

is independent from dataset size. It discovers approximate

frequent itemsets from a small sample of datasets. A

comprehensive and more descriptive literature review of

MapReduce based Apriori algorithm can be found in [22].

In order to implement Apriori algorithm on MapReduce

framework, role of data structures have not been evaluated in

MapReduce context. Hash tree and trie are the central data

structures for Apriori algorithm [2] [5]. F. Bodon and L.

Rónyai [5] proposed the trie data structure and also proved

theoretically and experimentally that trie is faster, consumes

less memory and simpler to generate candidates in

comparison to hash tree. Christian Borgelt [23] efficiently

implemented Apriori algorithm using trie. He represented the

transactions in a trie to reduce the support counting cost. He

also proposed the idea of transaction filtering by removing

infrequent items from transactions. F. Bodon proposed a

number of strategies to improve the performance of sequential

Apriori using trie data structure [24-25]. He proposed many

routing strategies at the nodes, storing frequent and candidate

itemsets in a single trie. F. Bodon and L. Schmidt-Thieme

[26] proposed an efficient intersection-based pruning method

which saves superfluous traversal of some part of trie. Trie

with hashing technique has been proposed by F. Bodon [6] to

speed up the search time in trie. Theoretically hashing

technique in trie seems to accelerate the support counting but

the experimental results have not shown any improvement.

Author left this technique for further investigation.

4. IMPLEMENTATIONS
A computational problem is submitted as a MapReduce Job

on Hadoop cluster. A job is configured using a Driver class. A

driver class is defined with a Mapper class, a Reducer and an

optional Combiner class of MapReduce framework. Also

input/output directory in HDFS, input split size and other

problem specific parameters are specified in driver class. To

implement Apriori algorithm on MapReduce framework we

have to split it into two independent sub-problems

corresponding to map and reduce tasks. We define two sub-

problems candidate itemsets generation and frequent itemsets

generation and assigned them to Mapper and Reducer

respectively. Each mapper processes a chunk of input datasets

and generates local candidates with local support count. Each

reducer receives local candidates and sums up the local count

to generate frequent itemsets. Number of mappers depends on

the number of chunks so if we reduce the chunk size there will

be more mappers. Number of reducers is specified in driver

class and does not depend on input size. All the mappers and

reducers execute in parallel across different nodes of cluster

but final result cannot be obtained until all reduce tasks are

not completed. Apriori is an iterative algorithm so we have to

submit job each time a new iteration starts.

Again we have to define two types of jobs, one for frequent 1-

itemset generation and other for frequent k-itemset (k ≥ 2)

generation. In both type of jobs the functionality of combiner

and reducer remains same since they only make sums up the

local count. We define two mappers corresponding to 1-

itemsets and k-itemsets. Algorithm 1 depicts the pseudo code

for the driver class of the Apriori algorithm. Job1 is executed

only once to generate frequent 1-itemsets and Job2 is

executed iteratively to generate frequent k-itemsets, until

further candidate generation are not possible. Here

OneItemsetMapper generates candidate 1-itemsets and K-

ItemsetMapper generates candidate k-itemsets. Pseudo code

for OneItemsetMapper and K-ItemsetMapper are shown in

Algorithm 2 and 3. ItemsetCombiner makes the local sum of

the local candidates on one node. ItemsetReducer sums up the

local count of the candidates obtained from all the nodes and

check against minimum support threshold. Candidates

satisfying minimum support threshold are produced as

frequent itemsets. Algorithm 4 depicts the pseudo code for

ItemsetCombiner and ItemsetReducer. Pseudo code of

ItemsetCombiner and ItemsetReducer are same except latter

one make use of minimum support threshold.

Algorithm 1. DriverApriori

// Find frequent 1-itemset L1

 Job1: //submitted single time

 OneItemsetMapper

 ItemsetCombiner

 ItemsetReducer

 end Job1

// Find frequent k-itemset Lk

 for (k = 2; Lk-1 ≠ ϕ; k++)

 Job2: // submitted multiple times

 K-ItemsetMapper

 ItemsetCombiner

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.9, October 2015

48

 ItemsetReducer

 end Job2

 end for

Algorithm 2. OneItemsetMapper, k = 1

Input: a block bi of database

key: byte offset of the line,

value: a transaction ti

for each ti ∈ bi do

 for each item i ∈ ti do

 write (i, 1);

 end for

end for

Algorithm 3. K-ItemsetMapper, k ≥ 2

Input: a block bi of database and Lk-1

key: byte offset of the line,

value: a transaction ti

// Lk-1 may be a Hash Tree, Trie or Hash Table Trie

read (k-1)-itemsets from cache file in Lk-1

// Ck may be a Hash Tree, Trie or Hash Table Trie

Ck = apriori-gen(Lk-1);

for each ti ∈ block bi do

 Ct = subset(Ck , ti); // Ct may be a List

 for each candidate c ∈ Ct do

 write (c, 1);

 end for

end for

Algorithm 4. ItemsetCombiner and ItemsetReducer

ItemsetCombiner

key: itemset,

value: key's value list

for each key k do

 for each value v of k's value list

 sum += v;

 end for

 write(k, sum)

end for

ItemsetReducer

key: itemset,

value: key's value list

for each key k do

 for each value v of k's value list

 sum += v;

 end for

 if sum >= min_supp_count

 write(k, sum)

 end if

end for

Algorithm for K-ItemsetMapper is central to our discussion.

We have implemented three variants of K-ItemsetMapper for

hash tree, trie and hash table trie. The algorithm remains

unchanged and we have simply changed the data structure

each time as shown in Algorithm 3. Method apriori-gen() and

subset() are the most computation intensive steps, which

generate candidates and count support respectively using

considered data structure. So operation cost of apriori-gen()

and subset() methods are greatly affected by the data structure

used.

We have implemented the three data structures in Java to be

used in MapReduce code. To implement hash tree, we have

defined two classes named as InnerNode and LeafNode for

inner node and leaf node of hash tree. InnerNode contains a

list of size child_max_size, which contains child nodes. These

child nodes may be inner node or leaf node. LeafNode

contains a list of size child_max_size, which again contains a

list of candidates. Thus candidates are stored at leaf node.

Candidate generation and support counting using hash tree are

implemented following the techniques mentioned in original

works.

All nodes in a trie have same structure. We have defined a

class TrieNode for the node of trie. TrieNode contains a

String object to store item label of a link, address of parent

node and a list of child nodes. For a given itemset, we traverse

downward in a trie by searching item label of links at each

node. Again methods for candidate generation and support

counting using trie are followed as it is in [5].Hash table trie is

implemented using perfect hashing at each node. We just

modified the class TrieNode of trie and added a hash table in

it. Because of that we have used hashing technique instead of

searching item label linearly at each node.

5. EXPERIMENTAL RESULTS
In this section we have observed the execution time of

algorithms when it uses hash tree, trie and hash table trie for

different minimum support value. Also execution times for

different sizes of input split are also evaluated. We have

analyzed the execution time on varying minimum support

values and with increasing number of mappers.

5.1 Cluster Setup and Datasets
A small Hadoop-2.6.0 cluster is installed with five nodes, all

are running Ubuntu 14.04. One node is dedicated as

NameNode and other four nodes serve as DataNodes.

NameNode is configured with 4 cores and 4 GB memory

running in the virtualized environment on window host. Two

DataNodes are running on separate physical machine each

with 4 cores and 2 GB memory. Other two DataNodes with 4

cores and 4 GB memory are running in the virtualized

environment on another same window host. All algorithms are

implemented in Java and used MapReduce 2.0 library.

Experiments were carried out on both real life and synthetic

datasets. Two real life datasets BMS_WebView_1 and

BMS_WebView_2 are click-stream data from a web store

used in KDD-Cup 2000 [27]. The synthetic dataset

T10I4D100K is generated by IBM generator [28].

BMS_WebView_1 contains 59602 transactions with 497

items and BMS_WebView_2 contains 77512 transactions

with 3340 items.

5.2 Execution Time for different Minimum

Support Values
We have observed the execution time of algorithms on the

above three datasets for different minimum support values.

We have used 4 reducers in all algorithms. The number of

mappers is dependent on the number of input split since for

each split one mapper is assigned. As the chunk size i.e. the

number of lines of input per split decreases, the number of

splits increases. We have set 5K and 6.5K as chunk size for

BMS_WebView_1 and BMS_WebView_2 respectively,

which results 12 mappers. Chunk size for T10I4D100K

dataset was 5K, which results 20 mappers. Figure 2, 3 and 4

shows the execution time on datasets BMS_WebView_1,

BMS_WebView_2 and T10I4D100K respectively for varying

value of minimum support. The performance of hash table trie

is outstanding in comparison to trie and hash tree on all

datasets. The performance of trie is far better than hash tree on

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.9, October 2015

49

BMS_WebView_1 dataset but it is not in the case of

BMS_WebView_2. Also on T10I4D100K dataset, trie

performs nearly same as hash tree.

Fig 2: Execution time of Apriori using three data

structures on dataset BMS_WwbView_1

Fig 3: Execution time of Apriori using three data

structures on dataset BMS_WwbView_2

 Fig 4: Execution time of Apriori using three data

structures on dataset T10I4D100K

In hash tree we have only considered the parameter

child_max_size with value 20. We have ignored the second

parameter leaf_max_size for simplicity of implementation. As

we have discussed in earlier section that performance of hash

tree depends on these two parameters and its major downside

is that value of parameters suitable for one datasets may not

be for others. This can be observed form the Figure 2, 3 and 4

for three datasets. Hash tee performs worst on dataset

BMS_WebView_1 while its performance is competing trie on

BMS_WebView_2 and T10I4D100K. We have explored this

case iteration-wise for dataset BMS_WebView_2. All

algorithms made 7 iterations (jobs) for minimum support

0.003 on this dataset. Table 1 compares the execution time of

these 7 iterations of hash tree and trie based algorithms. Here

we observed that the performance of trie deteriorates when we

generate 2-itemsets in iteration 2 whereas in other iterations it

performs better than or equivalent to hash tree.

Table 1. Execution time (sec.) of respective iterations for

hash tree and trie

Iteration 1 2 3 4 5 6 7

No.

Hash

Tree
23 2078 164 300 252 66 26

Trie 37 2432 39 38 32 28 23

The most important reason behind outstanding performance of

hash table trie may be the memory it requires during

execution. MapReduce starts a new job each time a next

iteration of Apriori starts. In kth iteration there are only

frequent (k-1)-itemsets and candidates k-itemsets reside in the

memory and other itemsets of previous iterations are

discarded. Reason for unsuccessfulness of hash table trie in

sequential Apriori discussed by the author [6] is as follows.

Using hash table enlarges the size of a node, which could not

be cached in and may be moved into memory. Linear search is

fast in cache and reading operation is slower for memory.

Since in MapReduce iteration, there is lesser number of nodes

in memory. Therefore, searching and reading operations will

be faster for small number of nodes.

5.3 Execution Time for Increasing Number

of Mappers
In MapReduce framework, degree of parallelism can be

increased in two ways, either by increasing DataNodes or by

increasing mappers. Number of DataNodes can be controlled

by editing list of slaves in slave file on NameNode. Number

of mappers can be controlled directly in MapReduce code

using NLineInputFormatClass which set the chunk size

(number of lines per split). A smaller chunk size results a

larger number of mappers. Table 2 shows the execution times

of three algorithms on dataset T10I4D100K with minimum

support 0.02, for increasing number of mappers.

Table 2. Execution time of Apriori using hash tree, trie

and hash table trie for different chunk size

Chunk

Size

Number of

Mappers

Execution Time (sec.)

Hash

Tree
Trie

Hash

Table Trie

100K 1 2907 2892 1124

50K 2 1649 1442 584

20K 5 720 657 293

10K 10 425 430 214

5K 20 350 349 200

From Table 2 it is clear that as the number of mappers

increases the execution time for all data structures decreases.

But reduction in execution time also turns to lower with

increasing number of mappers. For example, the difference in

execution time for 10 and 20 mappers is not significant.

Increasing the number of mappers does not work after a

particular point since communication and scheduling

overhead have been increased along with. We can also

represent it in terms of the speedup using multiple mappers.

Speedup is the ratio of execution time without improvement

and improved execution time. We defined the speed up in our

case as following.

Speed up = Execution time with 1 mapper / Execution time

with N mappers

Figure 5 shows the speedup calculated from Table 2, of

Apriori using hash tree, trie and hash table trie, for varying

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.9, October 2015

50

number of mappers. We can see that up to 10 mappers we

have achieved a good speedup but after that increasing the

number of mappers have shown no significant achievement in

speedup.

 Fig 5: Speedup for different number of Mappers

6. CONCLUSIONS
Frequent itemset mining algorithms are the most researched

field of data mining. Re-designing data mining algorithms on

MapReduce framework to analyze big data is the new drift in

research. We have identified and filled up the gap between

effects of data structures on traditional Apriori and on

MapReduce based Apriori. We have implemented the Apriori

algorithm on MapReduce framework, for the central data

structures hash tree, trie and hash table trie and evaluated the

execution time of Apriori algorithms for these data structures

in MapReduce context. In sequential computing environment,

trie outperformed hash tree experimentally as well as

theoretically. Hash table trie theoretically accelerates the

Apriori algorithm but experimentally could not success. In our

experiment on Hadoop cluster, trie outperforms hash tree as

usual but hash table trie is outstanding among the three data

structures for both real-life and synthetic datasets. Reason

behind it may be the lesser number nodes residing in memory

since in MapReduce itemsets of previous iterations are

discarded. For small number of nodes, searching and reading

operations will be faster. Further possible implementations

can be checked in order to improve the performance of

MapReduce based Apriori. One can implement the existing

idea of using mixed of simple trie node and hash table trie

node, and also deploying a joint trie for both frequent and

candidate itemsets.

7. REFERENCES
[1] Agrawal, R., Imielinski, T. and Swami, A. 1993. Mining

Association Rules between Sets of Items in Large

Databases. In ACM SIGMOD Conf. Management of

Data, Washington, D.C., 207–216.

[2] Agrawal, R. and Srikant, R. 1994. Fast Algorithms for

Mining Association Rules. In Proceedings of the

Twentieth International Conference on Very Large

Databases, Santiago, Chile, 487–499.

[3] Ward, J. S. and Barker, A. Undefined By Data: A Survey

of Big Data Definitions.

http://arxiv.org/abs/1309.5821v1. Retrieved Sept. 2015.

[4] Apache Hadoop. http://hadoop.apache.org

[5] Bodon, F. and Rónyai, L. “Trie: an alternative data

structure for data mining algorithms”, Mathematical and

Computer Modelling, 2003, 38(7), 739-751.

[6] Bodon, F. 2010. A fast apriori implementation. In

Proceedings of IEEE ICDM workshop on frequent

itemset mining implementations (FIMI’03), Vol. 90.

[7] Han, J. and Kamber, M. 2006. Data Mining: Concepts

and Techniques. Morgan Kaufmann Publishers.

[8] HDFS Architecture Guide.

https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html

[9] Yahoo! Hadoop Tutorial.

http://developer.yahoo.com/hadoop/tutorial/index.html

[10] Ghemawat, S., Gobioff, H. and Leung, S. “The Google

File System”, ACM SIGOPS Operating Systems Review,

2003, 37(5), 29–43.

[11] Dean, J. and Ghemawat, S. “MapReduce: Simplified

Data Processing on Large Clusters”, ACM Commun.,

2008, vol. 51, 107–113.

[12] Li, J., Roy, P., Khan, S. U., Wang, L. and Bai, Y. “Data

Mining Using Clouds: An Experimental Implementation

of Apriori over MapReduce”,

http://sameekhan.org/pub/L−K−2012−SCALCOM.pdf,

Retrieved March 2014.

[13] Lin, X. 2014. MR-Apriori: Association Rules Algorithm

Based on MapReduce. In Proceedings of IEEE

International Conference on Software Engineering and

Service Science (ICSESS).

[14] Yang, X. Y., Liu, Z. and Fu, Y. 2010. MapReduce as a

Programming Model for Association Rules Algorithm

on Hadoop. In Proceedings of 3rd International

Conference on Information Sciences and Interaction

Sciences (ICIS), 99(102), 23–25.

[15] Li, N., Zeng, L., He, Q. and Shi, Z. 2012. Parallel

Implementation of Apriori Algorithm based on

MapReduce. In Proceedings of 13th ACIS IEEE

International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel &

Distributed Computing, 236–241.

[16] Oruganti, S., Ding, Q. and Tabrizi, N. 2013. Exploring

HADOOP as a Platform for Distributed Association

Rule Mining. In FUTURE COMPUTING 2013 the Fifth

International Conference on Future Computational

Technologies and Applications, 62–67.

[17] Lin, M-Y., Lee, P-Y. and Hsueh, S-C. 2012. Apriori-

based Frequent Itemset Mining Algorithms on

MapReduce. In Proceedings of 6th International

Conference on Ubiquitous Information Management and

Communication (ICUIMC ’12), ACM, New York,

Article 76.

[18] Kovacs, F. and Illes, J. 2013. Frequent Itemset Mining on

Hadoop. In Proceedings of IEEE 9th International

Conference on Computational Cybernetics (ICCC),

Hungry, 241–245.

[19] Li, L. and Zhang, M. 2011. The Strategy of Mining

Association Rule Based on Cloud Computing. In

Proceedings of IEEE International Conference on

Business Computing and Global Informatization

(BCGIN), 29–31.

[20] Yu, H., Wen, J., Wang, H. and Jun, L. An improved

Apriori Algorithm Based on the Boolean Matrix and

Hadoop", Procedia Engineering 15 (2011), Elsevier,

1827-1831.

[21] Riondato, M., DeBrabant, J. A., Fonseca, R. and Upfal,

E. 2012. PARMA: A Parallel Randomized Algorithm for

Approximate Association Rules Mining in MapReduce.

International Journal of Computer Applications (0975 – 8887)

Volume 128 – No.9, October 2015

51

In Proceedings of the 21st ACM international conference

on Information and Knowledge Management, 85-94.

[22] Singh, S., Garg, R. and Mishra, P. K. 2014. Review of

Apriori Based Algorithms on MapReduce Framework. In

Proceedings of International Conference on

Communication and Computing (ICC - 2014),

Elsevier Science and Technology Publications, 593–604.

[23] Borgelt, C. 2003. Efficient implementations of apriori

and éclat. In Proceedings of IEEE ICDM workshop

on frequent itemset mining implementations (FIMI’03).

[24] Bodon, F. 2004. Surprising Results of Trie-based FIM

Algorithms. FIMI 2004.

[25] Bodon, F. 2005. A trie-based APRIORI implementation

for mining frequent item sequences. In Proceedings 1st

international workshop on open source data mining:

frequent pattern mining implementations, ACM.

[26] Bodon, F. and Schmidt-Thieme, L. 2005. The relation of

closed itemset mining, complete pruning strategies and

item ordering in apriori-based fim algorithms. In

Knowledge Discovery in Databases: PKDD,

Springer Berlin Heidelberg, 437-444.

[27] SPMF Datasets. http://www.philippe-fournier-

viger.com/spmf/index.php?link=datasets.php

[28] Frequent Itemset Mining Dataset Repository.

http://fimi.ua.ac.be/data/

IJCATM:www.ijcaonline.org

