
International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

1 

Cache Controller for 4-way Set-Associative Cache 

Memory 

Praveena Chauan 
Student M.Tech VLSI Design 

ACS Division, Centre for 
Development of Advanced 

Computing (C-DAC), Mohali, 
160071, India 

Gagandeep Singh 
Lecturer 

Electronics Communication & 
Engineering Department, 
Thapar University, Patiala 

(India) 

Gurmohan Singh 
Senior Engineer 

DEC Division, Centre for 
Development of Advanced 

Computing (C-DAC), Mohali, 
160071, India 

 

ABSTRACT 
This paper presents design of a cache controller for 4-way set 

associative cache memory and analyzing the performance in 

terms of cache hit verses miss rates. An FSM based cache 

controller has been designed for a 4-way set-associative cache 

memory of 1K byte with block size of 16 bytes. Main memory 

of 4K byte has been considered. The synthesis has been 

performed using Xilinx Synthesis Tool (XST) with Virtex-6 

FPGA device XC6VLX240T. ISim simulator is used for 

functional verification of the designed code.The maximum 

output required time i.e. hold-time after clock is 0.777ns and 

minimum input time before clock arrival i.e. setup-time for 

designed module is 1.66ns. The maximum clock frequency is 

257.202MHz.The design has also been synthesized in 

Cadence RTL Compiler tool. Finally, ASIC implementation 

of the designed cache controller has been done in Cadence 

Encounter Digital Implementation tool and the GDSII file has 

been generated.The designed cache controller consumes 

5.53mW of total power. 

Keywords 
Cache Memory, Main Memory, Set-Associative Cache 

Design, Cache Controller. 

1. INTRODUCTION 
The data processing capabilities of a processor (also at times 

termed as processor speed) have been increased at a much 

faster rate when compared to the memoryperformance or 

speed in recent years [1]. This trend can be analyzed by 

looking at the time toperformance graphshown as Moore’s 

law effect in figure 1. In this new generation, the processors 

are having very large main memory access latency and it has 

been predicted that it will be increased further [2]. 

 

Fig.1: Memory speed lags behind CPU speed [1] 

2. CACHE MEMORY  
Cache memory is closest to the processor and fastest of all 

other memories. It is used to store the instructions or data 

which are frequently required by the processor. It has the 

highest level in the memory hierarchy. Whenever there is any 

request from the processor to read or write, cache memory is 

referenced first. While designing the cache, a lot of attention 

has to be paid to implement the best configuration as it affects 

the processor performance. The cache has to be designed such 

that the data required by the processor should be readily 

available in it. The time required to access cache should be 

minimum as well. While designing the cache, few steps have 

to be followed as shown in figure 2. 

 

Fig.2: Cache design steps 

2.1 Architecture of Cache Memory 
The architecture of the cache memory designed is shown in 

figure 3. The cache memory of 1Kbyte i.e. 1024 bytes have 

been designed. It is a four-way set associative cache with 

block size of 16 bytes. There are 16 sets for each way. The 

address line coming from the processor is of 12 bits. Out of 

these 12 bits, bits 0 to 3 are called block offset bits as these 

are required to identify one byte out of 16 bytes of the cache 

block. The bits 4 to 7 are called index bits and these are used 

to select one set out of the 16 sets. The remaining four bits are 

known as tag bits which are used to identify the particular 

location in the cache which is to be accessed by the processor. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

2 

 

 

Fig. 3: Architecture of 4-way set-associative cache memory 

 

It has two inputs, one from the processor and other from the 

main memory. Input from the processor consists of 8 bit data 

while the input from the main memory consists of 128 bit 

data. There is one 8-bit output data line which provides data to 

the processor as well as the main memory. 

2.2 Write Operation of Cache Memory 
During write operation, if there is a hit from any way, then the 

set corresponding to that particular way will be selected with 

the help of index bits e.g. if the index bits of the 12 bit address 

line is 0000, set number 0 will be selected. If it is a miss, the 

way will be selected randomly by using a counter as the 

replacement method. Also as the line size of cache is 16 bytes, 

where to write in the cache is obtained with the help of block 

offset bits e.g. if the block offset is 0001, the data would be 

written to the location of second byte from the right. 

2.3 Read Operation of Cache Memory  
While reading the cache all the four ways will be enabled. The 

set, from where the data has to be read, is selected, with the 

help of index bits extracted from the address bits coming from 

the processor. The byte which has to be read is selected with 

the help of block offset bits. Tags present in each way will be 

compared with the tag bits of the address coming from the 

processor. Comparator is used for comparing the tag. If the 

same tag is present in any way of the cache, it is ahit. The data 

will be fetched from the location corresponding to that 

particular tag and will be provided to the processor. If the tag 

is not presentin the cache, it is a miss and the data has to be 

brought from the main memory. 

3. MAIN MEMORY 
It is the memory where the data or instruction is actually 

present. It has lowest level in the memory hierarchy. The data 

has to be brought into the cache from the main memory as and 

when required by the processor.  

3.1 Architecture of Main Memory 
The main memory of 4K byte i.e. 4096 bytes have been 

designed to check the functionality of cache controller. Each 

location of main memory consists of 1byte i.e. 8 bits. Hence, 

there are total 4096 locations in the main memory in each 

location of memory is accessed by a 12 bit address line. There 

are two separate data lines for input and output. The input data 

line is of 8 bits where as the output data line is of 128 bits. 

The requirement of 128 bit data line for output will be 

described in the operation. The data has been arranged in the 

main memory as shown in figure 4. 

 

Fig.4: Main memory architecture 

3.2 Operation of main memory 
The architecture of main memory is simple as compared to 

cache memory. Whenever there is a miss in the cache during 

read operation the address coming from the processor will be 

forwarded to the main memory with the help of cache 

controller. After the address arrives, the whole block of data 

consisting of 128 bits will be forwarded to the cache. This 128 

bits data not only consists of the required data by the 

processor, but the neighboring data is also provided to the 

cache keeping in view the property of locality of the cache. In 

case of write operation, if there is a hit in cache, the data will 

be written to the cache as well as main memory by write 

through policy. If there is a miss, the data will be written 

directly to the main memory.  

4. CACHE CONTROLLER 
Cache controller is a device which is used to control the 

transfer of data between the processor, main memory and the 

cache memory. When the processor wants to access any 

location in the main memory by sending the address, cache 

controller will check for that location in the cache. If the 



International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

3 

location is there in the cache, the data will be provided to the 

processor. If the location is not present in the cache, the cache 

controller will fetch the data from the main memory and 

update the cache and provide the data to the processor. 

4.1 Architecture of Cache Controller 
The cache controller designed here consists of four operations 

i.e. fetching address from the processor, read cache and main 

memory, write main memory and cache and providing the 

required data to the processor. All these operations are 

implemented using a Finite State Machine. Figure 5 shows the 

state diagram for the designed cache controller. 

4.2 Working of Cache Controller 
The cache controller designed here consists of 8 states as 

shown in figure 5. Description of each state is as follows: 

1. Reset: It is the initial state of the cache controller. In this 

state, all the enable inputs to cache as well as main 

memory are set to zero. All the controlling output from 

the cache controller will be reset. No operation is 

performed in this state. 

2. Request from Processor: Whenever there is any request 

from the processor to access the memory, cache 

controller will check whether it is a read request or write 

request. Depending upon the request, the controller will 

jump to the desired state. 

 

 

 

3. Read Cache: If there is a read request, the cache 

controller will jump to this state. In this state the cache 

controller will check whether the data is present in cache 

or not. If data is present in the cache, then the data will 

be provided to the processor. In case the data is not 

present in the cache, the cache controller will jump to the 

next state i.e. read main memory. 

4. Read Main Memory: If there is a miss during read 

operation, the cache controller will jump to this state. In 

this state, the cache controller will fetch data from the 

main memory and jump to the next state i.e. bring data 

from main memory to cache. 

5. Provide data to the processor: In this state, the cache 

controller will provide the required data to the processor 

from the cache memory.  

6. Write Cache: The cache controller will jump to this 

state whenever there is a write request from the memory 

and the required location is available in cache i.e. write 

hit. In this state, the data will be written in the cache. 

After writing data in cache, Cache controller will jump to 

next state i.e. write to main memory. 

7. Write to Main Memory: Cache controller will jump to 

this state in two cases i.e. when there is write hit or when 

there is write miss in cache. In case of write hit, the 

controller will jump to this state after writing the data 

into cache as the main memory have to be updated using 

write through policy. In cache of write miss, the data will 

be directly written to the main memory without affecting 

the cache. 

 

Fig.  5: State Diagram for the cache controller 

 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

4 

5. RESULTS AND DISCUSSIONS 
All the modules designed for this paper have been simulated 

to check whether they are performing as required. After 

simulation, the whole design has been synthesized to obtain 

its timing summary, device utilization summary, area report 

and power report. This section presents the tools used, the 

simulation results and wave forms of all modules designed to 

show the working of cache controller. Design has been 

simulated and synthesized using ISE Design Suite. The design 

has also been synthesized using Cadence RTL Compiler. 

ASIC implementation of the design has been done in Cadence 

Encounter Digital Implementation tool. 

5.1 Testing the Main Memory 
The main memory is tested to check whether it is performing 

as desired. It is tested for read and write operation. 

5.1.1 Simulation waveform of main memory for 

read operation 
The main memory has been enabled to read data from it as 

mm_we is 0 and mm_re is 1as shown in figure 6 and 7 

respectively. Also en_BRAM has to be kept 1 in order to 

perform any read or write operation in main memory. The 

main memory will be referred for read only when there is a 

miss in the cache. So, not only the data required by the 

processor will be read but the whole block will be sent to the 

cache keeping in view the property of spatial locality. The 

required data will be then sent to the processor by the cache 

controller. In figure 6, the requested address is 0x001, the 

whole block corresponding to addresses 0x000 to 0x00f will 

be output of the cache and the required data i.e. 0x29will be 

sent to the processor.. 

 

Fig. 6: Simulation waveform for reading from main 

memory location 0x001 

In figure 7, the requested address is 0x020, so the whole block 

corresponding to the addresses 0x020 to 0x02f will be 

transferred to the cache. Also the ready signal will be set to 1, 

when the whole block is transferred during read operation 

from the main memory. This ready signal is to inform the 

cache that the data has arrived from the main memory. Along 

with the data, the tag corresponding to the particular location 

will also be sent to be updated in the cache memory. 

 

Fig. 7: Simulation waveform for reading from main 

memory location 0x020 

5.1.2 Simulation waveform of main memory for 

write operation 

 

Fig.8: Simulation waveform for writing to main memory 

location 0xfff 

In figure 8, it is a write request as mm_re is 0 and mm_we is 1. 

The data have to be written in the main memory 

locationcorresponding to address 0xfff. Here, the data to be 

written is 0x75. 

5.2 Testing the Cache Memory 
The cache memory is tested for its read and write 

operationduring hit or miss. 

5.2.1 Simulation waveform of cache data memory 

for write hit  
During write operation, the cache will be checked for hit or 

miss by comparing the tags present in the cache with the tag 

bits of the incoming address. If the tag is present, it is a hit 

and the data coming from the processor is written to the 

cache. 



International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

5 

 

Fig. 9: Simulation waveform for writing to cache memory 

for write hit 

Figure 9 shows the simulation results when it is a write hit. 

The address from the processor after being divided into three 

fields i.e. tag, index and block offset by the cachewill be 0. 

These are the control signals provided by the cache 

controller.If it is a write request and the requested address 

where the processor wants to write is not present in the cache, 

then it is a write miss. In case of write miss, the data will be 

directly written to the main memory without affecting the 

cache. 

5.2.2 Simulation waveform of cache data memory 

for read hit 
When there is a read hit i.e. the address requested by the 

processor is present in cache, the required data corresponding 

to the requested address will be provided at the output as 

shown in figure 10. Here the requested data is 0xd0. Also, we 

see that during read hit cdm_re will be 1, cdm_we will be 0 

and mem_ready will be 0. 

 

Fig.10: Simulation waveform of cache memory for read 

hit 

5.2.3 Simulation waveform of cache data memory 

for read miss 
If it is a read miss, first the data will be brought from the main 

memory to the cache and then it will be sent to the processor. 

While bringing the data from the main memory cdm_we will 

be 1, cdm_re will be 0 and mem_ready will be 1 and while 

sending the data to the processor cdm_we will be 0, cdm_re 

will be 1 and mem_ready will be 0. The whole block which 

consists of 128 bits will be copied to the cache as shown in 

figure 11. Here, the requested data is 0x58. 

 

Fig.11: Simulation waveform of cache memory for read 

miss 

5.3 Testing the Cache Controller 
The cache controller has been tested for its function of 

transferring data among processor, cache memory and main 

memory during hit or miss in cache. 

5.3.1 Simulation waveform of cache controller for 

read miss 

Figure 12 shows the simulation waveform for the cache 

controller designed using a finite state machine. As 

Readbar_write is 0, it is a read operation. The incoming 

address i.e. cpu_Address is divided into three fields i.e. 

calc_tag, index and block_offset. As the requested address is 

not present in the cache, tag_hit is 0. So, the controller goes 

through different states as shown in figure 12 and the data is 

fetched from the main memory and provided to the 

processor.During cache miss, the whole block of data is 

copied from main memory to cache. It takes 9 clock cycles to 

perform read operation whenever there is a miss. Here, the 

requested data is 0x87. 



International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

6 

 

Fig.12: Simulation waveform of cache controller for read 

miss 

5.3.2 Simulation waveform of cache controller for 

read hit 
Figure 13 shows the simulation waveform of cache controller 

during read hit. The address requested by the processor is 

present in the cache as tag_hit is 1. So, the data will be 

fetched from the cache memory by the cache controller 

andprovided to the processor. The controller go through 

different states as shown in figure 13 and it takes 4 clock 

cycles to perform read operation when there is a hit. Here, the 

requested data is 0x16. 

 

Fig.13: Simulation waveform of cache controller for read 

hit 

5.3.3 Simulation waveform of cache controller for 

write miss 
When there is a miss during write request, the data will be 

directly written to the main memorywithout affecting the 

cache. It will take 3 clock cycles to perform this operation and 

the states are as shown infigure 14. The data written to the 

main memory is 0x3f. 

 

Fig.14: Simulation waveform of cache controller for write 

miss 

5.3.4 Simulation waveform of cache controller for 

write hit 
When there is a hit during write request, the data will be 

written to the cache at the requested address. It will take 2 

clock cycles to perform this operation as shown in figure 15. 

The data will also be copied to the main memory in the next 

cycle using write through policy. The data written to the cache 

is 0xd4. 

 

Fig.15: Simulation waveform of cache controller for write 

hit 

5.3.5 Simulation waveform of hit verses miss 

count 
Figure 16 and figure 17 shows the parts of simulation 

performed to get number of hit verses miss counts 

ofinstruction cache when a series of operations have been 

performed and the instructions are fetched from the cache 

memory. mem_Address is the address of the main memory 

from which data to be operated is fetched. mem_Address1 is 

the address of the main memory from where instructions are 

fetched. 0x070 is the address of the first instruction in the 

main memory. The address is incremented or changed 

depending upon the instruction or opcode present in the 

memory until all the operations have been performed. 



International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

7 

 

Fig.16: Waveform showing different instructions used to 

check hit verses miss count 

This address is first checked in cache. If it is present than the 

instruction present in that particular location will be fetched 

and will be executed. If the address is not available in cache, 

then it will be fetched from main memory and also copied 

tothe cache memory. The data present in location 0x010 is 

copied to a register named Data and the operations are 

performed on it. 

 

Fig. 17: Simulation waveform showing number of hits and 

misses in instruction cache 

Figure 17 shows the simulation waveform, when all the 

operations have been performed. It shows that the number of 

hits and misses in cache after completing the operations are 19 

and 6 respectively. From the simulation results it has been 

noticed that most of the miss were due to jump and call 

instructions. 

5.4 Synthesizing and Implementing the 

Design 
The design has been synthesized using Xilinx Synthesis Tool 

(XST). Table 1 shows the device utilization summary of cache 

controller designed. The development board that has been 

targeted is Virtex-6 ML605 evaluation board.  

Table 1: Device utilization summary of the designed cache 

controller 

 

It shows number of logics available which includes number of 

Slice Registers, number of slice LUTs, number used as logic, 

number used as memory, number of bonded IOBs and number 

of Block RAM. It has been shown that the logic utilization is 

2%, 14%, 13%, 2%, 5%, and 3% respectively. 

Table 2 shows the timing summary of the cache controller 

designed. 

Table 2:Timing summary of the designed cache controller 

 

The design has also been synthesized in Cadence RTL 

Compiler. Area and power report have been shown in table 3 

and 4 respectively. 

Table 3:Area report of the complete design 

 

Table 4:Power report of the complete design 

 

6. CONCLUSION 
A Cache Controller has been designed for a 4-way set-

associative cache memory using Xilinx ISE 14.6 Design Suite 

in Verilog HDL and it has been found to work successfully 

with given inputs. In this design, the main memory of 4K byte 

has been considered. Along with this, a 4-way set-associative 

cache memory of 1K byte has been designed to check the 

functionality of the designed cache controller. A test module 

has also been designed which consists of some instructions to 

be fetched from the instruction cache. It shows that there were 

total 19 hits and 6 misses to do a series of operations. It could 

be seen that most of the misses were due to call and jump 

instructions.The design has been implemented on Virtex-6 

ML605 evaluation board. From the synthesis report, it could 

be seen that the maximum output required time i.e. hold-time 

after clock is 0.777ns and minimum input time before clock 



International Journal of Computer Applications (0975 – 8887) 

Volume 129 – No.1, November2015 

 

8 

arrival i.e. setup-time for designed module is 1.66ns. The 

maximum clock frequency is 257.202MHz.The device 

utilization summary showed that minimum resources were 

consumed.Finally, the ASIC implementation of Cache 

Controller along with other modules has been done on 

Cadence Encounter Digital Implementation tool and the 

GDSII file has been generated. The designed cache controller 

consumes 5.53mW of total power.  

7. REFERENCES 
[1] John L. Hennessy and David A. Patterson, Computer 

Architecture: A Quantitative Approach, 4th ed. Morgan 

Kaufmann Publishers Inc., San Francisco, CA, USA, 

2006. 

[2] Maurice V. Wilkes, “The memory gap and the future of 

high performance memories”, SIGARCH Comput. Archit. 

News, 29(1), 2–7 March, 2001. 

[3] A. J. Smith, “Cache memories”, ACM Computing 

Surveys, vol. 14, no. 3, pp. 473-530, September 1982. 

[4] Bani R.R, Mohanty, S.P, Kougianos E, and Thakral G, 

“Design of a Reconfigurable Embedded Data Cache”, 

inProc. Int. Symp. Electronic System Design, pp.163-

168, December 2010.  

[5] Chuanjun Zhang, Vahid F, and Lysecky R, “A self-

tuning cache architecture for embedded 

systems”, inProc. Europe Conf. and Exhibition on 

Design, Automation and Test, vol.1, pp.142,147, 16-20 

February 2004. 

[6] Frank Vahid and Tony Givargis, Embedded System 

Design: A Unified Hardware / Software Approach. John 

Wiley & Sons, 2006. 

[7] Chenxu Wang, Jiamin Zheng, and Mingyan Yu, “Cache 

Performance Research for  Embedded Processors” 

inProc. SciVerse Science Direct Int. Conf. Solid State 

Devices and Materials Science, pp.1322-1328, March 

2012. 

[8] Hassan S.L.M, Johari M.N, Saparon A, Halim I.S.A, and 

Ab  Rahim A.A, “Multi-sized Output Cache  

Controllers”, in Proc. Int. Conf. Technology, Informatics, 

Management, Engineering & Environment (TIME-E 

2013), Bandung, Indonesia, pp.186-191, June 2013. 

[9] Chuanjun Zhang, “An efficient direct mapped instruction 

cache for application-specific embedded systems”, 

inProc. Third IEEE/ACM/IFIP Int. Conf. 

Hardware/Software Co design and System Synthesis, 

pp.45-50, September 2005.  

[10] Crisu D, “An architectural survey and modelling of data 

cache memories in Verilog HDL”, inProc. Int. 

Semiconductor Conf. CAS '99, vol.1, pp.139, 142, 1999.  

[11] Chuanjun Zhang, Vahid F, and Najjar W, “A highly 

configurable cache architecture for embedded systems”, 

inProc. 30th Annual Int. Symp. Computer Architecture, 

pp.136-146, June 2003.  

[12] Bhure V.S and Padole D, “Design of Cache Controller 

for Multi-core Systems using Multilevel Scheduling 

Method”, inProc. Fifth Int. Conf. Emerging Trends in 

Engineering and Technology (ICETET), pp.167-173, 

November 2012. 

[13] Sparsh Mittal, “A survey of architectural techniques for 

improving cache power efficiency”, Sustainable 

Computing: Informatics and Systemsvol.4, Issue 1, pp. 

33-43,March 2014. 

[14] Givargis T, “Improved indexing for cache miss reduction 

in embedded systems”, inProc. Conf. Design 

Automation, pp.875,880, 2-6 June 2003. 

[15] Malik A, Moyer B, and Cermak D, “A low power unified 

cache architecture providing power and performance 

flexibility”, inProc. Int. Symp. Low Power Electronics 

and Design (ISLPED), pp. 241,243, 2000. 

[16] Agarwal A and Pudar S.D, “Column-associative Caches: 

A Technique For Reducing The Miss Rate Of Direct-

mapped Caches”, inProc. 20th Annual Int. Symp. 

Computer Architecture, pp.179,190, 16-19 May 1993. 

[17] James K.Peckol and Embedded Systems: A 

Contemporary Design Tool. John Wiley & Sons, 2008. 

[18] Olukotun K, Mudge T.N, and Brown R.B, “Multilevel 

optimization of pipelined caches”, IEEE Trans. 

Computers, vol.46, no.10, pp.1093-1102, Oct 1997. 

[19] Dash A and Petrov P, “Energy-Efficient Cache 

Coherence for Embedded Multi-Processor Systems 

through Application-Driven Snoop Filtering”, 9th 

EUROMICRO Conf. Digital System Design: 

Architectures, Methods and Tools, pp.79,82, 2006. 

[20] Balwant  Raj,  Anita  Suman,  Gurmohan Singh,  

“Analysis  of  Power  Dissipation  in DRAM Cells 

Design for Nanoscale Memories”, International Journal 

of Information Technology &amp; Knowledge 

Management, July-December 2009, Volume-2,No. 2,pp. 

371-374. 

[21] Karishma Bajaj, Manjit Kaur, Gurmohan Singh,” Design 

and Analysis of Hybrid CMOS SRAM Sense Amplifier, 

International Journal of Electronics and Computer 

Science Engineering, Volume-1, Number-2, pp. 718-726, 

2012.  

 

 

IJCATM : www.ijcaonline.org 

http://www.sciencedirect.com/science/journal/22105379
http://www.sciencedirect.com/science/journal/22105379
http://www.sciencedirect.com/science/journal/22105379
http://www.sciencedirect.com/science/journal/22105379

