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ABSTRACT  
Since the invention of public -key cryptography, numerous 

public -key cryptographic systems have been proposed. Each 

of these systems relies on a difficult mathematical problem for 

its security. Today, three types of systems, classified 

according to the mathematical problem on which they are 

based, are generally considered both secure and efficient. The 

systems are:the integer factorization systems (of which RSA 

is the best known example), the discrete logarithm systems 

(such as the U.S. Government’s DSA), the elliptic curve 

discrete logarithm systems (also known as elliptic curve 

cryptosystems). 

This paper focuses on implementing cryptographic services 

with  elliptic curve cryptography (ECC). The principle 

attraction of ECC is that it appears to offer equal security for a 

far smaller key size, thereby reducing processor overhead. 

This paper implements Diffie –Hellman Key aggrement 

Procotocol using Elliptic Curve as the mathematical technique 

over prime field Fp 

Keywords 
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1. INTRODUCTION   
Elliptic Curve Cryptography (ECC) was independently 

proposed by koblitz [1] and Miller [2] in the late 1980s. ECC 

is a public key cryptographic scheme that uses the properties 

of Elliptic Curves in mathematics to develop cryptographic 

algorithms. Security of ECC is based on the intractability of 

Elliptic Curve Discrete Logarithm Problem (ECDLP) [3]. 

ECC is defined by Elliptic Curve domain parameters given 

by: T = (q,FR,a,b,c,G,n,h) where; q: the prime p or 2m that 

defines the curve’s form, FR: the field representation, a, b: 

curve coefficients, G: the base point (Gx, Gy), n: the order of 

G, which must be a large prime, and h: the cofactor co-

efficient. The basic advantage of using elliptic curves for 

cryptography purpose is that it appears to provide equal 

security for a far smaller key size, and thus reducing 

processing overhead[4]. 

Diffie-Helmann (DH) key exchange protocol is the first public 

key cryptography scheme, and it was proposed by Witfield 

Diffie and Martin Hellman in 1976. This protocol uses a pair 

of keys (secret and private keys), since it is a public key 

cryptographic scheme[5]. DH key exchange protocol is based 

on the difficulty of computing logarithmic functions of prime 

exponents, and this is known as Discrete Logarithm Problem 

(DLP). But Diffie-Hellman problem over elliptic curve with 

small keys is much harder to solve than the discrete logarithm 

over finite fields[5] 

Rest of the paper is organized as follows. Section 2 and 3 

discusses the background of Elliptic Curve Cryptography and 

Elliptic Curve Diffie Hellman Key Exchange  Protocol. 

Section 4 shows the implementation results ECDLP-based 

Diffie Hellman. Section 4 is Results and Discussions and 

finally, Section 5 is conclusion with application and future 

scope. 

2. MATHEMATICS BEHIND ELLIPTIC 

CURVE CRYPTOGRAPHY  
Elliptic curves are mathematical constructs that have been 

studied by mathematicians since the seventeenth century. In 

1985, Neal Koblitz and Victor Miller independently proposed 

public –key systems using a group of points on an elliptic 

curve, and elliptic curve cryptography (ECC) was born[1,2].  

ECC delivers the highest strength per bit of any known public 

-key system because of the difficulty of the hard mathematical 

problem ie Elliptic Curve Discrete Logarithm problem 

(ECDLP) upon which it is based. Given the best known 

algorithms to factor integers and compute elliptic curve 

logarithms, the key sizes are considered to be equivalent 

strength based on MIPS years needed to recover one key[6,7] 

An elliptic curve E over a field K is defined by an equation 

(Weierstrass equation)[9, 10] 

E: y2 = x3 + ax + b ……  (1) 

where x, y are elements of GF(p),  

a, b ∈ K and ∆≠ 0, 

'p' is known as modular prime integer making the EC finite 

field 

∆ is the determinant of E and is defined as follows: 

determinant−16(4a3 + 27b2) ≠ 0(mod p). ….(2) 

2.1 Point Addition 
The addition rule is best explained geometrically. Let P = (x1, 

y1) and Q = (x2, y2) be two distinct points on an elliptic curve 

E. Then the sum R, of P and Q, is defined as follows. First 

draw a line through P and Q; this line intersects the elliptic 

curve at a third point. Then R is the reflection of this point 

about the x-axis. This is depicted in Figure 1. 

Mathematically addition is defined as:  

Let P = (x1, y1) ∈ E(K) and Q = (x2, y2) ∈ E(K), where P ≠ ± 

Q.  

Then P + Q = (x3, y3),  

Where  x3 = {(y2 − y1) /(x2 −x1)}
2 − x1 − x2  ...(3) 

 y3 ={(y2 − y1)/ (x2 −x1)}(x1 −x3)− y1. ………(4) 
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2.2 Point Doubling 
Similarly the double R, of P, is defined as follows. First draw 

the tangent line to the elliptic curve at P. This line intersects 

the elliptic curve at a second point. Then R is the reflection of 

this point about the x-axis. This is depicted in Figure 2. 

Mathematically doubling is defined as: 

Let P = (x1, y1) ∈ E(K), where P ≠ −P. 

 Then 2P = (x3, y3), 

Where x3 = {(3x12+a y1)/2y1}
2 −2x1 ……….(5) 

y3 = {(3x1
2+a y1)/2y1}

2 (x1 −x3) − y1. ……….(6) 

When the elliptic curve group is described using additive 

notation, the elliptic curve discrete logarithm problem is: 

given points P and Q in the group, find a number k such that 

Pk = Q . And k is large enough such that it would be 

infeasible to determine k.  The value of kP can be calculated 

by a series of doubling and addition operation 

 
 

Fig1:Point Addition 

When the elliptic curve group is described using  additive 

notation, the elliptic curve discrete logarithm problem is: 

given points P and Q in the group, find a number k such that 

Pk = Q . And k is large enough such that it would be 

infeasible to determine k.  The value of kP can be calculated 

by a series of doubling and addition operation. 

 

 

 
Fig 2: Point Doubling 

 

3. ECDLP— DIFFIEE- HELLMAN KEY 
AGREEMENT PROTOCOL 

In order to generate a shared key between Alice and Bob 

using ECDH key exchange protocol, both Alice and Bob 

should agree beforehand to use the same Elliptic Curve 

domain parameters [8,9] .The following procedure allows 

Alice and Bob to securely exchange the value of a point on an 

elliptic curve, although neither of them initially knows the 

value of the point: 

 Alice (sender) computes key k = (xK, yK) = dAlice* 

QBob, where dAlice is Alice’s private key an QBob is 

Bob’s public key 

 Bob (receiver) computes key l = (xL,yL) = dBob * 

QAlice,where dBob is Bob’s private key, and QAlice is  

Alice’s public key 

 Since dAlice* QBob = dAlice dBob G = dBob dAlice G = 

dBob * QAlice, then k = l, hence xK =xL. 

  Hence the shared key is xK . 

4. RESULTS AND DISCUSSION 
Snap shots shows the results with p=29, a=4 and b=20 

Then the elliptic curve expression is E: y2 = x3 +4x +20 

defined over F29. Also since Δ =−16(4a3 +27b2)=−176896  ≠0 

(mod 29), so E is indeed an elliptic curve. Thirty Seven 

coordinates that satisfy   E(F29) are: ∞ (0,7) (0,22) (1,5) (1,24) 

(2,6) (2,23) (3,1) (3,28) (4,10) (4,19) (5,7) (5,22) (6,12) (6,17) 

(8,10)(8,19)  (10,4) (10,25) (13,6) (14,6) (14,23) (15,2) 

(15,27) (16,2) (16,27) (17,10) (17,19) (19,13) (19,16) (20,3) 

(20,26) (24,7) (24,22)  (27,2)  (13,23) (27,27)  

 

Generator or base points are: (0,7) (0,22) (1,5) (1,24) (2,6) 

(2,23) (3,28) (4,10) (4,19) (5,7) (5,22) (6,12) (6,17) (8,10) 

(8,19) (10,4) (10, 25) (13, 6) (13,23) (14,6), (14,23) (15,27) 

(16,2) (16,27) (17,10), (17,19) (19,16) (20,3) (20,26) (24,7) 

(24,22) (27,27).  

The coordinates and base points are  shown in the figure 3 

 

Following steps illustrates computation of shared key: 

Step-1: Let Alice and Bob agrees on same base point  (3, 28) , 

calculates their public key  and  

send it to  each other 

Step-2: Let Alice selects its private key dAlice i.e  n as 20. Then 

Alice Public Key i.e 

 QAlice  (xA, yA) =  20 * (3,28) = (15,2) 

Step-3: Let Bob selects its private key dBob i.e n as 15. Then 

Bobs Public Key i.e  

QBob  (xB, yB) = 15 * (3,28) = (20, 26)  

Step-4: Alice sends  QAlice ie (xA, yA) to Bob and Bob sends 

QBob ie (xB, yB) to Alice. 

Step-5: Alice computes shared key  as 

 PAB= dAlice* QBob = dAlice dBob G =  20 * (20,26)   

Step-6: Bob computes shared key as 

PBA= dBob * QAlice = dBob dAlice G = 15 * (15,2) 

Step-7: PAB = PBA= (5,22) 

Step 4 to Step 6 is shown in Figure 4 
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Figure 3: Cordinates and base point of E: E: y
2
 = x

3
 +4x 

+20 over F29 

 

Figure 4: Shared key of Alice and Bob PAB = PBA 

Data encryption and secure communication can occur, once 

secure exchange of the symmetric key is complete 

5. CONCLUSION AND FUTURE SCOPE 
The Diffie–Hellman scheme is one of the exchanging key 

cryptosystem, no messages are involved in this scheme nor in 

this report, and we try to benefit from this scheme by using 

the key (which exchange it) as a secret key. The longer a 

symmetric key is in use, the easier it is to perform a successful 

cryptanalytic attack against it. Therefore, changing keys 

frequently is important. Both sides of the communication still 

have the shared secret and it can be used to encrypt future 

keys at any time and any frequency desired. The Diffie-

Hellman key exchange is vulnerable to a man-in-the-middle  

attack (MITM). And attacker can  decrypts, read and  modify 

any messages sent out by Alice or Bob, This vulnerability is 

present because Diffie-Hellman key exchange does not 

authenticate the participants. 

ECDH can be applied on devices where limited processing 

power and limited memory capacity exist. 
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