
International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.14, November2015

11

A Review of various Mutual Exclusion Algorithms in

Distributed Environment

Nisha Yadav
Department of computer
science Amity University,

Haryana

Sudha Yadav
Department of computer
science Amity University,

Haryana

Sonam Mandiratta
Department of computer
science Amity University,

Haryana

ABSTRACT

In computer science, mutual exclusion (MUTEX) refers to a

way of making sure that if one process is using shared

modifiable data or resources then the other processes will be

excluded from doing the same thing at the same time. A

number of mutual exclusion algorithms are available in the

literature, with different performance metrics and with

different techniques. The Selection for a “good” mutual

exclusion algorithm is a key point. These mutual exclusion

algorithms can be broadly classified into token and non-token

based algorithm. This paper surveys the algorithms which

have been reported in the literature for Mutual exclusion in

distributed systems and their comparison.

Keywords

Mutual Exclusion (MUTEX), Critical Section (CS),

Timestamp.

1. INTRODUCTION
A distributed system is an assemblage of computers that are

geographically separated and do not share memory and clock.

The processes running on these computers converse with one

another by exchanging messages over communication

channels. The major benefit of distributed system is resource

sharing and cost effective. Mutual exclusion (MUTEX) is a

primary issue in distributed computing systems; this issue

arises in distributed systems (DS) whenever concurrent access

to shared resources by numerous sites is involved. MUTEX

states that concurrent access of processes to a shared resource

or data is serialized to protect the integrity of data. when a

process is accessing a shared resource/data then it is said to be

in a CS. In distributed mutual exclusion, the requirement is to

serialize the access to CS in the absence of shared memory

and common clock. It ensures that action performed by a user

on a shared resource must be atomic [9]. ME in a distributed

system states that only one process is permitted to execute the

critical section (CS) at any given time. The design of

distributed MUTEX algorithms is complex because these

algorithms have to handle changeable message delays and

partial knowledge of the system state. Mutual Exclusion

algorithms are categorized as [12]:

 Centralized Algorithm

 Distributed algorithms

Under Distributed algorithms, there is further categorization:

 Contention based solutions

 Control based solutions

Fig.1.1: Classification of Mutual Exclusion Algorithms

1.1 System model [9]
The DS comprises of n (P1, P2, P3……, PN) distinct sites

(processes or computers), which converse with each other by

message passing over connected network. The messages

consume finite but random time to reach at the receiving

servers. All processes in the DS are assigned distinct

identification numbers (PID). If any process requires

executing the CS, then it sends request message to every other

process. It enters the CS if all process sends reply.

1.2 Requirements of Mutual Exclusion

Algorithms [9]
An ME algorithm should assure the subsequent properties:

1. Safety property: It ensures that at any instant, only

one process can execute the CS. It is a necessary

property of a MUTEX algorithm.

2. Liveness property: This property states the

nonexistence of deadlock and starvation. Two or

more sites should not repetitively wait for messages

that will never turn up. In addition, a site must not

wait forever to execute the CS while other sites are

again and again executing the CS. That is, every

requesting site should get an opportunity to execute

the CS in finite time.

Centralized

algorithm

Voting

algorithm

Controlled

Based algorithm

Broadcast

structure

Ring

structure

Distributed

algorithm

Contention

Based algorithm

Tree structure
Timestamp

prioritized algo.

Mutual Exclusion

algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.14, November2015

12

3. Fairness: Fairness in the context of MUTEX means

that each process gets a reasonable opportunity to

execute the CS. The fairness property normally

means that the CS execution requests are executed

in order of their arrival in the system (the time is

determined by a logical clock) [2, 3].

2. CLASSIFICATION OF MUTEX

ALGORITHMS [12]

2.1 Centralized Algorithm [9, 12, 14]
As its name indicates, there is one coordinator which handles

all the requests to access the shared resource/data. Every

process takes permission to the coordinator, if coordinator

will give permission only then a particular process can enter

into CS. Coordinator will maintain a queue to keep all the

requests in order.

Algorithm

Fig.2.1: Working of Centralized algorithm

a) Process 1 asks the coordinator for permission to enter a

critical region. Permission is granted because queue is empty

and no pending request is there so coordinator will give

permission.

b) Process 2 then asks permission to enter the same critical

region. The coordinator does not reply because P1 is not

exited from CS till now.

c) When process 1 exits the critical region, it tells the

coordinator, after that Coordinator will give permission to P2.

Advantages

 Fair algorithm; follow FIFO order for to give

permission.

 Easy to implement

 Scheme can be used for general resource allocation.

Shortcomings

 Single point of failure, No fault tolerance.

 Confusion between No-reply and permission

denied.

 Performance bottleneck because of single

coordinator in a large system.

2.2 Distributed algorithm [13, 15, 16]

In this scheme, there is no coordinator. Every process asks to

other process for permission to enter into CS. These

algorithms divided into two parts

1. Contention(Non-Token) based algorithms

2. Controlled (Token) based algorithms

2.2.1 Contention (Non-Token) based

algorithms [9, 12, 18]

In this type of algorithms, sites converse with a set of other

sites to choose who should execute the CS first. These

algorithms also divided into 2 parts:

1. Timestamp based

2. Voting scheme

Two basic Timestamp-based Contention algorithms are:

LAMPORT’S ALGORITHM [1, 9, 17] Lamport was the

first who designed a distributed MUTEX algorithm on the

basis of his logical clock concept. This algorithm is a non-

token based scheme. Non-token based protocols use

timestamps to order requests for CS. Request message

Contain following:

 Identifier (Machine id, process id)

 Name of resource

 timestamp

Timestamp is a distinct integer value which is given by the

operating system to the sites when they produce requests for

CS. Timestamp is monotonically increased every time when a

request is arrived. Smaller timestamp requests have higher

precedence rather than large timestamps requests. In lamport’s

scheme, for a site Pi, request set Ri= {P1, P2, P3…….Pn}. It

comprises of all those sites from which Pi must require

authorization before entering the CS. Every process maintains

a queue of awaiting requests for entering CS in ascending

order of timestamps. This algorithm assumes that channels are

FIFO.

Algorithm:

Requesting the critical section:

When a process wants to enter into CS, it takes the subsequent

steps:

1. Enters its request in its own queue (ordered by time

stamps).

2. Sends a request to every node.

3. Wait for replies from all other nodes.

4. When another site receives this request message, it

sends a timestamp reply message to the requesting

site and keeps this request in its own request_queue.

Executing the critical section

A site can enter into CS when these two conditions are

satisfied:

[L1]: Pi has not received a message with timestamp

larger than (tsi , i) from all other sites.

[L2]: Pi’s request is at the top of request_ queuei.

Releasing the critical section

1. Upon exiting the critical section, it removes its

request from the queue and sends a release message

to every process.

2. Upon receiving release message, then other sites

removes the related entry from its own

request_queue.

3. If own request is at the head of its queue and all

replies have been received, enter CS.

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.14, November2015

13

Performance

 Message complexity: (N-1) number of messages

necessary for requesting CS. (N-1) number of

messages required for reply. (N-1) number of

messages necessary for release. Total 3 (N-1)

numbers of messages required in heavy load as well

as in case of lightly loaded.

 Synchronization delay: Average message delay for

sending a message from one process to another

process. T time takes place in synchronization.

RICART-AGRAWALA ALGORITHM [2, 9]

Ricart-agrawala algorithm is an expansion and optimization of

Lamport’s protocol. This algorithm is also for MUTEX and it

is a non-token based algorithm. This algorithm combines the

RELEASE and REPLY message of lamport’s algorithm and

decreases the complexity of the algorithm by (N-1).

In this algorithm, there is a request set Pi= (P1, P2,

P3……Pn). It comprises of all the sites from which a site

needs to acquire authorization before entering to CS. The

Algorithm proceeds as follows.

Requesting the critical section

1. When a site desires to execute into CS, it sends a request

along with its timestamp to all sites. This message

includes the site's name, and the current timestamp of the

system according to its logical clock.

2. Upon reception of a request message, another site will

immediately sends a time stamped reply message if and

only if:

 The receiving process is not currently interested in

the critical section.

 The receiving process desires to enter into CS but

its own timestamp value is higher than requesting

site.

 Otherwise, the receiving process will suspend the

reply message. This means that a reply will be sent

only after the receiving process has completed using

the CS itself.

Executing the critical section

 Requesting site enters its CS only after receiving all

reply messages.

Releasing the critical section

1. Upon exiting the critical section, the site sends all

deferred reply messages.

2. In this algorithm, all the CS requests are executed in

their timestamp order.

Performance

 Message complexity: (N-1) number of messages

required for requesting CS. (N-1) number of reply

messages merges with release. Total 2 (N-1)

numbers of messages required in heavy load as well

as in case of lightly loaded.

 Synchronization delay: Average message delay for

sending a message from one process to another

process. T time takes place in synchronization.

 Reply messages are combined with release

messages because reply messages are send to only

those sites whose timestamp is greater than

executing site.

Disadvantage: Failure of a node – May result in starvation.

VOTING SCHEMES[12]: In this scheme, If there are n no.

of processes and suppose process p1 wants to enter into

critical section then it will send a request message to (n-1)

processes and more than n/2 processes send reply message

then p1 will enter into CS.

 Requestor

 Send a request to all other processes.

 Enter critical section once REPLY from a majority

is received

 Broadcast RELEASE upon exit from the critical

section.

Other processes

 REPLY to a request if no REPLY has been sent.

Otherwise, hold the request in a queue.

 If a REPLY has been sent, do not send another

REPLY till the RELEASE is received. [1]

Drawback: Possibility of deadlock.

2.2.2 Controlled (TOKEN) BASED

ALGORITHMS [12, 22]
In token-based algorithms, a unique token is shared among the

sites. A site is allowed to enter its CS if it possesses the token.

Token-based algorithms use sequence numbers instead of

timestamps to distinguish between old and current requests.

Generally do not assume FIFO message delivery. Also their

Proof of correctness is trivial.

Issues: how to find and get the token. This distinguishes

various algorithms.

These algorithms are divided into 3 parts on the basis of

structure in which process are connected:

Ring Structure [21]: In this structure all processes are

connected in the form of a ring in which each process is

assigned a position as shown in the Following Fig. The ring

positions may be allocated in numerical order of network

addresses or some other means. Way of ordering is not much

important , while the important thing is that each process

knows who is next in line after itself.

Fig.2.2: Ring Structure of processes

Advantages: simple, deadlock-free, fair.

Disadvantages:

 The token circulates even in the absence of any

request (unnecessary traffic).

 Long path (O(N)) – the wait for token may be high.

Broadcast Structure (Suzuki-Kasami Algorithm) [3, 9, 28]

In Suzuki-kasami algorithm, if a site wants to enter the CS

and in case if it do not possess the token, it broadcasts a

http://en.wikipedia.org/wiki/Logical_clock

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.14, November2015

14

REQUEST message for the token to all other sites. A site

which possesses the token sends it to the requesting site upon

the receipt of its REQUEST message. If a site receives a

REQUEST message when it is executing the CS, it sends the

token only after it has completed the execution of its CS.

Token Consist of:

– Q: Queue of the requesting processes, at most n.

– LN [1...n]: array of integers, LN[j] is the sequence number

of the request that Pj executed most recently.

Data Structures:

• REQUEST (j,n): REQUEST message from Pj for its nth

request to enter the CS.

• RNi[1..N]: RNi[j] is the largest sequence number in a

REQUEST message from Pj received by Pi.

• On receipt of REQUEST (j,n), Pi sets RNi[j] to be

max(RNi[j],n).

• If RNi[j] >n, the message is outdated.

This algorithm must efficiently address the following two

design issues:

(1) How to distinguish an outdated REQUEST message

from a current REQUEST message: Due to variable

message delays, a site may receive a token request message

after the corresponding request has been satisfied. If a site can

not determined if the request corresponding to a token request

has been satisfied, it may dispatch the token to a site that does

not need it .this will not violate the correctness, however, this

may seriously degrade the performance.

(2) How to determine which site has an outstanding

request for the CS: After a site has finished the execution of

the CS, it must determine how many sites have an outstanding

request for the CS so that the token can be dispatched to one

of them.

The first issue is addressed in the following manner: A

REQUEST message of site Pj has the form REQUEST (j, n)

where n (n=1, 2 ...) is a sequence number which indicates that

site Pj is requesting its nth CS execution. A site Pi keeps an

array of integers RNi[1..N].where RNi[j] denotes the largest

sequence number received in a REQUEST message so far

received from site Pj .When site Pi receives a REQUEST(j, n)

message, it sets RNi[j]:=max(RNi[j], n).When a site Pi

receives a REQUEST(j, n) message, the request is outdated if

RNi[j]>n.

The second issue is addressed in the following manner:

The token consists of a queue of requesting sites Q, and an

array of integers LN [1...N]; where LN[j] is the sequence

number of the request which site Pj executed most recently.

After executing its CS, a site Pi updates LN[i]:=RNi[i] to

indicate that its request corresponding to sequence number

RNi[i] has been executed .At site Pi if RNi[j]=LN[j]+1, then

site Pj is currently requesting token.

Algorithm:

Requesting the CS:

– If the requesting site Pi does not have the token, it

increments its sequence number RNi[i], and sends a

REQUEST (i,sn) message to all other sites.

– When Pj receives the message, it sets RNj[i] to max (RNj[i],

sn). If Pj has the idle token, it sends the token to Pi if RNj[i]

=LN[i] +1.

Executing the CS: Enter CS when gets token.

Releasing the CS: Having finished the execution of the CS,

site Pi takes the following actions:

– Sets LN[i] to Rni[i].

– For every site Pj whose ID is not in the token queue, it

appends its ID to the token queue if RNi[j] = LN[j] +1.

– If token queue is nonempty after the above update, it deletes

the top site ID from the queue and sends the token to the site

indicated by the ID.

Performance

 Message complexity:Requires 0 messages if the

requesting site holds the idle token.N messages

otherwise (N-1 broadcast and 1 to send the token).

 Synchronization delay: 0 or T based on if the site

holds the token at the time of request.

 No Starvation: Token request messages reach all

other sites in finite time. Since one of these sites

posses the token, the request will be placed to the

token Q in finite time. Since there are at most N-1

other requests in front of this request, the request

will be granted in finite time.

Tree structure (Raymond’s Algorithm) [4, 9, 19]

Basically this algorithm uses a spanning tree to reduce the

number of messages exchanged per CS execution. The

network is viewed as a graph; a spanning tree of a network is

a tree that contains all the N network nodes (or sites). The

algorithm assumes that the underlying network guarantees the

delivery of message. All nodes in the network are completely

reliable. A node (or site) needs to hold information about and

communicate only to its immediate-neighboring nodes (or

sites). Sites (or nodes) are arranged in a logical directed tree.

Root holds the token. Edges are directed towards the root

node or towards node currently possessing the token. Every

site (or node) has a holder variable that points to an immediate

neighbor node(or site) on the directed path towards root

(Root’s holder point to itself). A FIFO queue called

request_p that holds its requests for the token, as well as any

requests from neighbors that have requested but haven’t

received the token if request_p is non-empty that implies the

node (or site) has already sent the request at the head of its

queue toward the holder.

Algorithm:

Requesting for CS:

– Send REQUEST to parent on the tree, provided i do

not hold the token currently and its request_p is

empty. Then place request in its request_p.

– When a non-root node j receives a request from i:

a) Place request in its request_p.

b) Send REQUEST to parent if no previous

REQUEST sent.

– When the root r receives a REQUEST:

a) Place request in its request_p.

b) If token is idle, follow rule for releasing critical

section (shown later).

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.14, November2015

15

– When a node receives the token:

a) Delete first entry from the request_p.

b) Send token to that node.

c) Set Holder variable to point to that node.

d) If request_p is non-empty, send a REQUEST

message to the parent (node pointed at by Holder

variable).

Executing the CS:

 Enter if token is received and own entry is at the top

of its request_p; delete the entry from the request_p.

Releasing the CS:

– If request_p is non-empty, delete first entry from the

request_p, send token to that node and make Holder

variable point to that node.

– If request_p is still non-empty, send a REQUEST

message to the parent (node pointed at by Holder

variable).

Performance:

 Message complexity: Average messages: O (log N)

as average distance between 2 nodes in the tree is O

(log N).

 Synchronization delay: (T log N) / 2, as average

distance between 2 sites to successively execute CS

is (log N) / 2.

 Greedy approach: Intermediate site getting the

token may enter CS instead of forwarding it down.

Affects fairness, may cause starvation.

Table 1: Comparison of algorithms on the basis of No. of

message require for entry/exit, Delay & their problems

PERFORMANCE METRICS [9]

The performance is usually calculated by the subsequent four

metrics:

Message complexity: The number of messages

communication per CS execution by a site.

Synchronization delay: it is a duration time when a site exits

the CS and next site enters the CS.

Response time: The time duration a request waits for its CS

execution to be over after its request messages have been sent

out.

System throughput: The rate at which the system executes

requests for the CS. (System Throughput=1/ (SD+E)), where

SD is the Synchronization Delay and E is the average CS

Execution Time.

Low and High Load Performance: We often study the

performance of MUTEX schemes under two special loading

conditions, which is, “low load” and “high load”. The load is

determined by the arrival rate of CS execution requests. Under

low load conditions, there is seldom more than one request for

the CS present in the system simultaneously. Under heavy

load conditions, there is always an awaiting request for CS at

a site. The MUTEX is very essential for the design of

distributed systems. The design of distributed MUTEX

schemes is difficult because these algorithms have to deal

with irregular message delays and partial knowledge of the

system state.

Table 2: Comparative Performance Analysis A

comparison of performance (LL= Light Load, HL =

Heavy Load)

Algorithm

Resp.

Time (LL)

Sync.

Delay

Messages

(LL)

Messages

(HL)

Lamport’s 2T+E
T 3(N − 1) 3(N−1)

Ricart-

Agrawala

2T+E

T 2(N−1) 2(N−1)

Suzuki-

Kasami

2T+E T N N

Raymond’s T(logN)+E T(log

N)/2

Log(n) 4

3. CONCLUSION
In Non-Token based approach requests for access to the

critical section are satisfied in the order of their timestamps,

therefore fairness is guaranteed. More no. of messages require

for Non-token based algorithms in their communications in

comparison with the token-based algorithms. No one

algorithm is perfect because everyone has their own

advantages and disadvantages. Non-Token based algorithms

are called permission based algorithms so no token is required

to enter into CS. Two or more successive rounds of messages

are exchanged among the sites to determine which site will

enter the CS next. Tree structure based algorithm uses a

spanning tree to reduce the number of messages exchanged

per critical section execution. The algorithm assumes that the

underlying network guarantees message delivery. All nodes of

the network are ’completely reliable. The algorithm provides

the following guarantees: Mutual exclusion is guaranteed,

Deadlock is impossible, Starvation is impossible.

4. RESEARCH GUIDELINES
 A mutual exclusion algorithm should be fault

tolerant. If any site fails due to some network failure

or any hardware failure then mutual exclusion

algorithm should gracefully handle the situation.

 We need to design the algorithm for NON-FIFO

channels.

 It should be adaptive to mobile distribution system.

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.14, November2015

16

 Priority should be there. Higher priority site should

get chance to access critical section first.

5. REFERENCES
[1] L. Lamport. Time, clocks and the ordering of events in a

distributed system. Communications of the ACM,

21(7):558-565, 1978.

[2] G. Ricart and A. K. Agrawala. An optimal algorithm for

mutual exclusion in computer networks.

Communications of the ACM, 24(1):9-17, 1981.

[3] Trehel and M. Naimi. A distributed algorithm for mutual

exclusion based on data structures and fault tolerance. In

Proc. IEEE 6th International Conference on Computers

and Communications, pages 35-39, 1987.

[4] M.G.Velaquez. "A Survey of Distributed Mutual

Exclusion Algorithms". Technical Report CS. Colarido

state university, September 1993.

[5] P.C. Saxena, J. Rai, A survey of permission-based

distributed mutual exclusion algorithms, Computer

Standards & Interfaces, Volume 25, Issue 2, May 2003,

Pages 159-181

[6] SRIMANI, P.and REDDY, R., "Another distributed

algorithm for multiple entries to a critical section,"

Information Processing Letters, vol. 41, no. 1, jan. 1992,

pp. 51-57.

[7] KAKUGAWA, H.; FUJITA, S.; YAMASHITA, M. and

AE, T., "Availability of k- Coterie," IEEE Transactions

on Computers, vol 42, no. 5, may 1993, pp. 553-558

[8] Pranay Chaudhuri, Thomas Edward “An O(√n)

Distributed Mutual Exclusion Algorithm Using Queue

Migration1” Journal of Universal Computer Science, vol.

12, no. 2 (2006), 140-159

[9] M. Singhal and N. Shivaratri, Advanced Concepts in

Operating Systems, New York, McGraw Hill, 1994.

[10] I. Suzuki and T. Kasami. A distributed mutual exclusion

algorithm. ACM Transactions on Computer Systems,

3(4):344-349, 1985.

[11] L. Lamport, “Time, clocks and ordering of events in a

distributed system” Comm. ACM, vol.21, no.7, pp. 558-

565, July 1978.

[12] “Distributed Mutual exclusion” ppt. by Rajnitha

Shivarudraiah

[13] A. Tanenbaum and M. Van Steen, Distributed Systems:

Principles and Paradigms, Upper Saddle River, NJ,

Prentice-Hall, 2003.

[14] Randy Chow,Theodore Johnson “Distributed Operating

system and algorithm analysis”.

[15] Abhishek swaroop, Awadesh kumar singh “a STUDY

BASED ALGORITHMS FOR Distributed mutual

exclusion”.

[16] K.Raymond,”A distributed algorithm for multiple entries

to a critical section”,Information processing letter,

vol.30, pp.lg9- 193,1989.

[17] L.Lamport ,’A fast mutual exclusion algorithm”, ACM

Transaction on computer Systems,vol. 5,no. 1,p. 1-

11,1987.

[18] D.agarwal,A.El Abbadi,”A token baesd fault tolerant

Distributed mutual exclusion algorithm,journal of

parallel and distributed computing,24,pp.164-176,1995.

[19] k.Raymond,”a tree based algorithm for distributed

mutual exclusion,ACM Transcaction on computer

systems,computer standard & interfaces,vol. 21 ,pp.33-

50,1999.

[20] M.Mizuno,M.L Neilson,R.rao,”A token based

Distributed mutual exclusion algorithm based on quorum

agreements.Conference on distributed computing

system,pp.361 368,1991.

[21] “Several-tokens Distributed Mutual Exclusion algorithm

in a logical ring network” by Ousmane.

[22] I.Suzuki and T.Kasami, “A distributed Mutual exclusion

algorithm”. ACM Transaction on computer systems.

Vol.3,no. 4,pp. 344-349,1985.

[23] KAKUGAWA, H.; FUJITA, S.; YAMASHITA, M. and

AE, T., "Availability of k- Coterie," IEEE Transactions

on Computers, vol 42, no. 5, may 1993, pp. 553-558

[24] Rahul Garg, Vijay K Garg, Yogish sabharwal

“Scalable algorithms for global snapshots in

distributed systems ” ACM 2006.

[25] “Shared memory mutual exclusion exclusion”: Major

Research trends since 1986 by James H.Anderson and

yong-jik kim.

[26] Ichiro Suzuki, Tadao kasmi,” A distributed Mutual

exclusion Exclusion algorithm”.

[27] Trehel and M. Naimi. A distributed algorithm for mutual

exclusion based on data structures and fault tolerance. In

Proc. IEEE 6th International Conference on Computers

and Communications, pages 35-39, 1987.

[28] SUZUKI, I., AND KASAMI, T. An optimality theory for

mutual exclusion algorithms in computer networks.In

oroceedings of the 3rd international conference on

distributed computing systems, IEEE,N.Y.,365-370.

[29] M.G.Velaquez. "A Survey of Distributed Mutual

Exclusion Algorithms". Technical Report CS. Colarido.

[30] P.C. Saxena, J. Rai, “A survey of permission-based

distributed mutual exclusion algorithms”, Volume 25,

Issue 2, May 2003, Pages 159-181

IJCATM : www.ijcaonline.org

