
International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

45

Implementing Entropy Codec for H.264 Video
Compression Standard

Mohamed Abd Ellatief Elsayed

Communication Department,
Ain shams university

Abdelhalim Zekry
Faculty of Engineering,
Ain Shams University

ABSTRACT

Entropy coding is a lossless compression technique which is

supported in H.264/AVC standard by different techniques.

According to baseline and the extended profiles of

H.264/AVC, two variable length techniques are for seen. The

first one is context adaptive variable length coding (CAVLC)

and the other is exponential Golomb (Exp-Golomb) one. The

CAVLC is used to quantize transform residues after

reordering them by ZigZag scanning while Exp-Golomb

coding is used to quantize other syntax elements. Within the

frame of realizing the whole H246 standards, this paper,

introduces an implementation of these two codec techniques

for baseline profile using Matlab and Simulink. The main

concept is to implement CAVLC and Exp-Golomb decoder

according to H.264/AVC standard and then device

a technique to implement CAVLC & Exp-Golomb encoder.

The different implementations are utilized to verify each

other.

Keywords

Context adaptive variable length coder (CAVLC),

Entropy coding, Exp-Golomb, H.264/AVC.

1. INTRODUCTION
H.264/ MPEG-4 AVC is a video codec standard that is

currently one of the most commonly used formats for the

recording, compression, and distribution of video content.

The standardization of the first version of H.264/AVC was

completed in May 2003. The functional block diagram of

H.264 encoder/decoder is shown in Fig.1.As shown in Fig.1,

entropy coding is the last block in encoder after the

transform quantization and the fist block in decoder before

the inverse quantization. H.264 supports two techniques for

entropy encoding. The first one is the Context adaptive

variable length coding (CAVLC) for the quantized transform

residues after ordering them by ZigZag scanning together

with Exponential Golomb coding, Exp-Golomb, for other

syntax elements. The other technique is to use Context

adaptive binary arithmetic coding (CABAC).CABAC has a

higher compression performance but unlike CAVLC, it is not

supported in all H.264 profile like baseline and extended

profiles [1].

H.264/ MPEG-4 AVC support Context adaptive variable

length coding (CAVLC) as one of entropy encoder methods

to achieve a higher compression ratio [2]. Compared with

previous variable length coding, CAVLC achieves better

coding efficiency. Because of its adaptive part that makes the

encoding of each block depend on the number of non zero

transform coefficient in the upper left part of the block. But

that makes the algorithm complexity higher. CAVLC

decoder is used in all the upcoming media applications that

have adopted H.264 video standard:

- Digital TV (satellite, cable, IPTV, over-the-air broadcast

etc).

- High-Definition Optical Discs (Blu-ray Disc, and

HDDVD).

-Real time Image Processing Applications(video

conferencing and video telephony).

-Portable device applications (cell phones and portable media

players).

Fig: 1 Typical H.264 Encoder/Decoder [1]

In this paper, an implementation of Entropy decoder of

Baseline profile is presented according to standard, which

means to implement Exponential Golomb and CAVLC in

Matlab and in Simulink and propose a method to implement

the Entropy encoder in Matlab and Simulink as the encoder

is not specified in the standard. In the next section the

exponential Golomb design and implementation will be

described in detail.

2. EXPONENTIAL GOLOMB

PRINCIPLES
Exponential –Golomb codes are binary codes with variable

length constructed according to a regular pattern.Exp-

Golomb supported by H.264 standard for encoding almost all

syntax elements except those related to quantized transform

coefficients [3][4].Variable length codes such as Exp-

Golomb is considered an efficient way of representing syntax

elements by assigning short code words to frequently

occurring syntax elements and long code words to less

common syntax elements.[5].

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

46

Table 1 shows the first few Exp-Golomb code words that

indexed by code Numbers. Also fromTable1 it is noticed that

these codes have a regular logical construction. So it can be

encoded and decoded logically without the need for look-up

table. An Exp Golomb codeword has the following structure:

 [M Zeros Prefix] [1] [INFO] (0)

Table1. Exp-Golomb Code words

Bit string form Range of code Num

1 0

0 1 X0 1…2

0 0 1 X1 X0 3…6

0 0 0 1 X2 X1 X0 7…14

0 0 0 0 1 X3 X2 X1 X0 15…30

0 0 0 0 0 1 X4 X3 X2 X1 X0 31…62

…. ….

Each codeword has a prefix of M zeros followed by 1 which

is followed by INFO. Accordingly it is M-bit field carrying

information. The first codeword has no leading zero or

trailing INFO. Code words 1 and 2 have a single-bit INFO

field; code words 3–6 have a two-bit INFO field and so on.

The length of each Exp-Golomb codeword is (2M + 1) bits

and each codeword can be constructed by the encoder based

on its index code num as following:

M = floor (log2 [code Num + 1]) (1)

 INFO = code Num + 1 − 2M (2)

A codeword can be decoded as follows:

1. Count number of zeros till reaches 1 this number is

M.

2. Read M-bit INFO field.

3. Code Num = 2M+ INFO – 1

Code Num can be derived from Syntax element by different

ways according to syntax element type as the standard

supports 4 syntax element types (Unsigned(Ue) , Signed(Se)

, Mapping(Me) , Truncated (Te)). Mapping of syntax

element to code Num for each type shall be according to the

following procedure:

1-For Unsigned direct mapping, code num = syntax element.

Used for macro block type, reference frame index and others.

2- For Truncated mapping: if the largest possible value of

syntax element is 1, then a single bit b is sent where

b =! Code num, otherwise Ue mapping is used

3- Signed mapping, used for motion vector difference, delta

QP and others. Syntax element is mapped to code num as in

Table2.

Table2. Signed mapping

Code Num Syntax element value

0 0

1 1

2 -1

3 2

4 -2

5 3

6 -3

K (-1)K+1 Ceil(K+2)

4- Mapped symbols: syntax element is mapped to code num

according to a table specified in the standard [1][2].

2.1 Exponential Golomb Implementation

and Verification
At first the Exponential – Golomb is implemented as an m-

file in Matlab. Fig 2 shows the flow chart of the exponential-

Golomb encoder implemented by Matlab. First step in

encoder is to define the type of the syntax element. If the

syntax element type is unsigned, then code Num equal

syntax element. If the syntax element type is signed, then

code Num calculates as in table2. If the type is mapping, one

uses certain tables defined in the standard to obtain Code

Num from syntax element. After calculating Code Num, one

calculates M and Info and uses them to obtain encoded bits.

Note that the truncated syntax element type encoded as

unsigned if syntax element has value more than 1.And if

syntax element equal 1 only one bit will be sent .When the

input is a syntax element from unsigned type with a value of

226 to the encoder, it outputs the following result:

 Encoded bits = 000000011100011

This result can be confirmed by simple processing of the

input according to equations (0), (1), and (2):-

1-M=Floor [Log2 [226+1]] =Floor 7.826538. Then M=7

zeros.

2-INFO=226+1-27=99 then binary form of info =1100011.

3-I follow that the Encoded bits of 226 should be

000000011100011.

Fig 2: The flow chart for exponential Golomb encoder

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

47

The decoder performs the inverse process of the encoder

where it restores the original data form of decoded one. Fig 3

shows the flow chart of Exponential Golomb decoder

implementation in Matlab. First step in decoder is to count

the number of leading zeros of the received encoded bits to

calculate M. Then calculate Info from the part after the first

one. Then one uses M and Info to calculate code Num. One

has to know the type of the received encoded bits to

determine how to calculate syntax element from it. Note that

the truncated syntax element type decoded as unsigned if

syntax element has value more than 1.And if syntax element

equal 1 only one bit will be received. When the input

encoded bits are “000000011100011” and the syntax type is

unsigned, the output will be a syntax element = 226. To

verify the correctness of the processing in the decoder the

data is calculated according to the steps:

1-Count zeros before the first 1, then M=7

2-INFO=1100011, which means in decimal INFO=99

3- Syntax element =2^7+99-1=226 which is the same

output value from the encoder.

Fig 3: The flow chart of Exponential –Golomb decoder

Fig 4: Simulink Exp-Golomb codec model

Fig 4 shows the Simulink model of the implemented Exp-

Golomb codec built according to the Matlab model

developed in the previous section. The encoder takes syntax

element and type, while in case of mapping type it also takes

chroma and prediction, as input. The first step in encoder is

to calculate Code Num then calculate M and Info then use

them to figure out Encoded bits. The decoder takes encoded

bits and type, while in case of mapping type it also takes

chroma and prediction, as input. The first step is to count

leading zeros to calculate M then uses it to calculate Info and

at last decodes Code Num then calculates syntax element

according to syntax type. The model consists of the encoder

and decoder in a loop back connection for the functional

verification of the whole codec. It is clear from the figure

that the error counter of the difference between the input and

the output is equal to zero proving the correctness of the

Simulink implementation

3. CAVLC PRINCIPLE
In this section Matlab implementation of the CAVLC will be

carried out similar to Exp-Golomb codec. The Context

adaptive variable length coding (CAVLC) is an Entropy

coding method which is used to compress digital data by

examining the frequency of patterns within it and

representing frequently occurring patterns with smaller

number of bits. It is used to encode quantized residual data of

4X4 or 2X2 blocks of transform coefficients. A residual

block is the difference between the predicted and the input

video data and is obtained after integer discrete cosine

transform and quantization. In order to increase compression

ratio, CAVLC in h.264 standard introduces the concept of

context model to map the probability of symbols more

accurately. However, to provide such a high compression

ratio the computational complexity becomes higher because

of search for code words in several look-up tables. CAVLC

is designed to take advantage of several characteristics of

quantized 4x4 blocks of transform coefficients such as:

- Existence of long runs of zeros after zigzag scanning.

-Highest number of non-zero coefficients after zigzag

scanning are often sequences of +/-1.

-The number of non-zero coefficients in neighboring blocks

is correlated.

-Level of non-zero coefficients is usually higher at the start

of the reordered array near the DC coefficient, and lower

towards the higher frequencies.

Before encode with CAVLC the residual data must be

reordered using ZIGZAG method, as in depicted Fig5, then

CAVLC steps take place. CAVLC coding consist of five

steps as shown in Fig 6 [2] [6][7].

Fig 5: ZigZag reordering of 4x4 residual transform

matrix

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

48

Fig 6: CAVLC coding flow chart

1-Coeff_token: This step encodes the number of nonzero

coefficients (TNZ) and the number of trailing ones (T1).

TNZ can be anything from 0 to 16 and T1 can take values

from 0 to 3. If there are more than three trailing +/−1s, only

the last three are treated as „special cases‟ and any others are

coded as normal coefficients. There are four choices of look-

up table to use for encoding Coeff_token, three variable-

length code tables and a fixed-length code table. The choice

of table depends on the number of non-zero coefficients in

the left and upper previously coded blocks, nA and nB

respectively [8]

- If nA , nB >0 then nC=nA + nB >>1,

- Else if only nB=0 then nC=nA,

- Else if only nA=0 then nC=nB,

- Else nC=0

After calculating nC parameter, then choose one of look-up

tables for encoding according to Table3.

Table 3. Choice of look-up table for Coeff_token

nC Tables for Coeff_token

0,1 VLC table 1

2,3 VLC table 2

4,5,6,7 VLC table 3

8 or above FLC, fixed length coding

2- Sign of trailing ones: One bit to code the sign of each

trailing ones, 0 for positive sign, and 1 for negative sign.

3- Levels: In this step encode the sign and magnitude of the

remaining nonzero coefficients in reverse order level

composed of two parts, level_prefix and level_suffix.

Level_prefix is a b leading zeros followed by 1 according to

Table4.

Table4. Codeword table for level_prefix

level_prefix bit string

0 1

1 01

2 001

3 0001

4 00001

5 000001

6 0000001

7 00000001

…. …..

Level_suffix is an integer code of size suffix length. Large-

magnitude coefficients have low probability, so, its suffix

length is large. Small-magnitude coefficients have high

probability, so, its suffix length is small. The choice of suffix

Length I subjected to the following rules:

Initial suffix Length = 0, except if ((TNZ>10) and (T1<3))

then initial suffix length =1.

If the magnitude of this coefficient is larger than a threshold,

increment suffix Length, up to a maximum suffix Length = 6

according to table5.

4- Total zeros: the sum of all zeros before each non zero

coefficient it coded according to look up table given by the

standards.

5- Run before: the number of run zeros preceding each

nonzero level in reverse zigzag order.

Table5. Thresholds for determining whether to increment

suffix_length

Current suffix

length

Threshold to increment suffix

length

0 0

1 3

2 6

3 12

4 24

5 48

6 highest value reached

3.1 Matlab CAVLC Encoder/Decoder

Implementation
At first the Context adaptive variable length (CAVLC) is

implemented as m-file in Matlab. Fig 7 shows the flow chart

of CAVLC encoder. The Encoder takes syntax elements, nA

and nC as inputs. The first step is to reorder syntax elements

by ZigZag method. Then count the number of trailing ones

and determine the sign of each trailing ones. Then the

encoder calculates nC to define the look up table which is

used to obtain the Coeff_token according to the number of

trailing ones and total number of non zero coefficients

(TNZ). The next step is for- loop repeated by TNZ-trailing

ones to calculate level_prefix and level_suffix for every non

zero coefficient in order to calculate level_code. Finally, it

encodes the number of total zeros and each run of zeros

before each non zero element.

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

49

Fig 7: The flow chart for CAVLC encoder

The decoder performs the inverse processes of the decoder,

where it restores the original form of the data. Fig 8 shows

the flow chart of Context adaptive variable length (CAVLC)

decoder implementation in Matlab. The Decoder takes

encoded bits, nA and nC as inputs. The first step is to

calculate nC to determine which look up table will be used in

calculating Total number of coefficient and number of

trailing ones. After that, the decoder calculates the sign of

each trailing ones according to that 0 means positive sign and

1 means negative sign. The next step is to decode Level and

sign for each total non zero coefficient. Then decode of the

total number of zeros and each run of zeros before every

TNZ. The last step is to reorder the data into 4X4 block

Fig 8: The flow chart for CAVLC decoder

3.1.1 Encoder Implementation
Table6. CAVLC encoder example

Element Value Code

Coeff_token Total_Coeff = 5, T1s

= 3 (use Num VLC0)

0000100

T1 sign (4) + 0

T1 sign (3) - 1

T1 sign (2) - 1

Level (1) +1 (level prefix = 1 at

suffix Length = 0)

1

Level (0) +3 (level prefix = 001

at suffix length = 1)

0010

Total Zeros 3 111

run before(4) Zeros Left = 3; run

before =1

10

run before(3) Zeros Left = 2; run

before =0

1

run before(2) Zeros Left = 2; run

before =0

1

run before(1) Zeros Left = 2; run

before =1

01

run before(0) Zeros Left = 1; run

before = 1

No code required;

last coefficient.

The output

code word

000010001110010111101101

Here the encoding process will be demonstrated by an

example. The data to be encoded is given in fig 5 where it is

reordered by zigzag scanning resulting in the data series in

the form of (0, 3 , 0,1,-1, -1,0,1, 0, 0, 0, 0, 0, 0, 0, 0). The

encoding process is carried out according to the algorithm

given previously in fig 7. According to the first step in the

algorithm, the Total_coeff =5, T1=3 and nC is taken zero as

there is no previous encoded blocks. So, from table 3 these

values result in choosing (VLC table1).Two approaches are

used to obtain the VLC of Total_coeff and T1.

The first approach is to use the same order of the standard as

in Table 7 and calculate the required row number by this

equation:

If (Total_coeff >2) then row number=4(Total_coeff-3)

+T1+7,

Else if (Total_coeff ==2), then row number =T1+4,

Else if (Total_coeff ==1), then row number= T1+2,

Else row number =1

Table7: Coeff_token mapping to Total_coeff and trailing

ones

Row number T1 Total_Coeff 0≤ nC<2

1 0 0 1

2 0 1 000101

3 1 1 01

4 0 2 00000111

5 1 2 000100

6 2 2 001

7 0 3 000000111

8 1 3 00000110

9 2 3 0000101

10 3 3 00011

… … … …

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

50

The second approach is to reorder the table of the standard to

make 2D table with 16 rows representing the Total_coeff and

4 columns representing T1 as shown in table 8.

Table8: Method to reorder Coeff_token mapping to

Total_coeff and trialing ones table.

T
o
ta

l_
co

e
ff

T1

 0 1 2 3

0 1 ___ ___ ___

1 000101 01 ___ ___

2 00000111 000100 001

3 00000011

1

00000110 0000101 00011

… … … … …

1

5

00000000

00000111

00000000

00001010

00000000

00001001

00000000

00001100

1

6

00000000

00000100

00000000

00000110

00000000

00000101

00000000

00001000

The second Step in the encoding process applied on the

example: here there are three trailing ones with sign +,-,- so

the encoded symbol will be 011 as given in Table 6.

The third Step in the encoding process: this step encodes the

remaining non zero coefficients +3 and +1. Each coefficient

is transformed to level code by transforming positive

coefficient to even level code and negative coefficient to odd

level code according to the following rules:-

Levelcode = 2*Coefficient -2 for positive coefficient,

Levelcode = -2*Coefficient -2 for negative coefficient,

If ((index of coefficient == number of trailing ones) &

(number of trailing ones <3) then,

Levelcode = Levelcode -2

Then each level code encoded has two parts, a level_prefix

which is determined as in table 4 and a level_suffix which is

determined according to the following rules:

Initial suffix_length is calculated as in section 4 and

incremented as in table 5.

If (level_code binary right shifted by suffix_length) <14,

 Then level_prefix= (level_code binary right shifted by

suffix_length),

And Levelsuffixsize =suffix_length,

Else if ((level code<30) & (suffix_length==0)),

Then level_prefix=14 and Levelsuffixsize=4,

Else if ((suffix_length>0) & (level_code binary right shifted

by suffix_length==14),

Then level_prefix=14 and Levelsuffixsize= suffix_length,

Else level_prefix=15 and Levelsuffixsize = 12 (as in baseline

profile level_prefix maximum value is 15).

Let us apply the above rules in this example. The first non

zero coefficient is +1.The level code for that coefficient =0

and the initial suffix_length=0. So level_prefix is equal 1

from table 4 and Level_suffixsize =0.Then the codeword for

+1 will be 1. Similarly, the codeword of +3 is 0010 as in

table 6.

The fourth Step for encoding in this example: the total non

zero elements is equal 5 and the total zeros before these

elements is equal 3. From the look up table in the standards,

the code word will be „111‟.

The fifth Step for encoding: in this step the encoder encodes

the number of zeros before each non zero element. In table 6,

the number of non zero elements equals 5, so as shown for

each element, there is a code word except for the last one as

the total zeros are encoded before .This code word is

calculated from a the look up table in the standard . For each

code word, the number of zeros before the non zero

coefficient and the number of zeros left are needed. For

example the first non zero coefficient has 1 zero run before

and the zeros left =3 so from the look up table its code word

is 10 and so on for the remaining run before.

3.1.2 Decoder Implementation
Decoder must restore the original data from the encoded data

according to flow chart in fig 8. As has been done with the

encoder, the decoder will be implemented in this section on

the light of an example, where the above encoded sequence

will be the input to the decoder and transformed back to its

original form so the input to the decoder is

000010001110010111101101.

Table 9: CAVLC Decoder example

Code Element Value Output

array

0000100 Coeff_token TotalCoeffs = 5, T1s =

3

Empty

0 T1 sign + 1

1 T1 sign − −1, 1

1 T1 sign − −1, −1,

1

1 Level +1(suffix_Length=0;

increment

suffix_Length)

1, −1,

−1, 1

0010 Level +3 (suffix_Length =

1)
3, 1, −1,

−1, 1

111 Total Zeros 3 3, 1, −1,

−1, 1

10 run before 1 3, 1, −1,

−1, 0, 1

1 run before 0 3, 1, −1,

−1, 0, 1

1 run before 0 3, 1, −1,

−1, 0, 1

01 run before 1 3, 0, 1,

−1, −1,

0, 1

First Step: As shown in Table 9 first the decoder decodes

the TotalCoeffs and T1. This process takes long time, as in

the standard, for the VLC table with 4X4 block there are 62

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

51

elements in the lookup table to be scanned to figure out the

TotalCoeffs and T1.So, it is tried here to subdivide this large

look up table into smaller ones according to the number of

leading zeros as shown in fig 9. Then one has to count the

number of leading zeros of the received stream and choose

the appropriate sub lookup table for it this will reduce the

number of access times of the lookup tables .Here using the

62 element look up table needs 18 access trials to find a

match. While with the use of these smaller look up tables the

access trial will be 3 times. The code word 0000100 means

that the total non zero coefficient =5 and the number of

trailing ones =3.

The second Step: from previous step the number of trailing

ones is 3 so the decoder takes the next 3 bits to determine

their signs.

 6
2
 E

le
m

en
t

lo
o
k
 u

p
 t

ab
le

1

Divide

into smaller look

up tables

000101
000101 000100
01 00011
00000111
000100 0000101
…. 000011
000000000000110 0000100
0000000000000101
0000000000001000 And So

on

Fig9: The large look up table for the Coeff_token is

divided into sub lookup tables according to the number of

leading zeros

Third Step: from step one the number of non zero

coefficients and the number of trailing ones are known.

Then, the difference specifies the number of times to repeat

this step to obtain the value and the sign of the remaining

non zero coefficient. Here the decoder count the no of zeros

to the known level_prefix then Levelsuffixsize is determined

according to the following conditions:

If((level_prefix==14)&(suffix_length==0)

Then Levelsuffixsize =4,

Else if (level_prefix==15),

Then Levelsuffixsize=12

Else Levelsuffixsize = suffix_length.

After that the decoder converts the levelcode to the non zero

coefficient by the following rules:

Coefficient = (levelcode+2)>>1 for even levelcode.

Coefficient = (-levelcode-1)>>1 for odd levelcode.

As shown in table 9 (the Total non zero coefficient – the

trailing ones =2) so There are two non zero coefficient to be

decoded. The codeword of the first coefficient is „1‟ and

from table 4 it has level_prefix=0 and it has no level_suffix,

then the decoded levelcode = 0 and the decoded coefficient

=+1.By using the above rules once again, the codeword of

the second coefficient ‟0010‟ is decoded as +3.

The fourth Step in decoding: from step one, the total number

of non zero coefficients(TNZ) is 5, which means have to

search in column number 5 in the look up table proposed by

the standard to decode the total number of zeros. Here in this

example the required code word „111‟ and that means total

zeros before non zero elements equal 3 as in table 9.

The fifth Step in the decoding: from step one TNZ =5, so the

decoder has to decode the run before zeros to each

coefficient. There is a look up table in the standard defining

the code word of the run before zeros according to number of

zeros left and number of run before zeros. In this example, at

first the decoder put zero left = total number of zero which

decoded in step number four then zeros left =3.This means

that searching for a match from column number 3 in the look

up table. Here the decoder find a match for code word ‟10‟

which means that before element number five there is one

zero. By the same procedure ‟1‟, ‟1‟ ,‟01‟ means, before

element number four there is no zeros, and before element

number three there is no zeros ,while before element number

two there is one zero. The run before zeros before the

element number one did not have to be encoded because the

number of zero left is known from total zero which here is

one.

3.2 Cavlc Encoder/ Decoder Simulink

Implementation
Fig 10 shows the Simulink model of the implemented

CAVLC encoder. The encoder takes Syntax element 4X4

blocks, nA and nB as inputs and run all steps as has been

done in the Matlab implementation. So, the first process in

the encoder is to reorder the input syntax by ZigZag method

then the first, second, fourth and fifth steps take place at the

same time as all these steps not depend on each other. The

third step and the final stage are enabled by the stage of step

1 and 2 block. To encode the remaining non zero coefficients

and after some delay, the first step enables the final stage

which reorder all the outputs from each stage and output the

encoded bits which represent the encoded syntax.

Fig 10: Simulink CAVLC encoder model

Fig 11 shows the Simulink model of the implemented

CAVLC decoder where the processing is carried out in

stages similar to the Matlab decoder model. The decoder

takes encoded bits, nA and nB as inputs. First step in decoder

is to decode token coefficient to calculate TNZ and trailing

ones. Two stages can proceed at the same time, namely the

second and third stage. The second stage is to figure out the

sign of each trailing ones. The third stage is to decode the

level and sign of each non zero coefficient and store these

levels in registers. Then, the fourth stage can proceed to

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

52

decode the total number of zeros. Finally, stage five collect

all outputs from the previous stages and from registers and

decode run before zeros and then reorder all outputs in 4X4

block

Fig 12 shows the encoder and decoder of CAVLC in a loop

back connection for the functional verification of the whole

codec. It is clear from the figure that the error counter of the

difference between the input and the output is equal to zero

proving the correctness of the Simulink implementation.

Fig 11: Simulink CAVLC decoder model

Fig 12: CAVLC codec loop back for verification

Similarly, the CAVLC encoder, decoder and loopback

verification for 2X2 residual blocks are implemented

depicted in Figs 13, 14 and 15, respectively.

Fig 13: CAVLC 2X2 Simulink encoder

Fig 14: CAVLC 2X2 Simulink decoder

Fig 15: CAVLC 2X2 codec loopback for verification

4. CONCLUSION
In this paper the implementation of encoders and decoders of

the Exponential Golomb and the CAVLC codec techniques

are carried out according to the standards of the video codec

H264 by Matlab and Simulink. This implementation is a

primary step towards VHDL implementation on FPGA. The

theoretical basis for the implementation is first described and

then appropriate algorithms of the codec are presented.

Matlab m-files are produced for all the encoders and

decoders. Then Simulink model is built for both codec. The

validation of the implementation is verified by straight

forward calculations and also by loopback method. This

project is a part of custom implementation of H264 video

codec.

Future work is to develop a technique to reduce the time of

searching tables in the decoder to reduce the time taken by

the decoder to decode a symbol. Implement encoder and

decoder of Exponential Golomb and CAVLC using VHDL

on FPGA.

5. ACKNOWLEDGEMENT
The article is partially supported by a grant of the Foundation

of Computer Science, NY, USA vide FCS/RT56/15”

6. REFERENCES
[1] ITU-T Recommendation H.264, 06-2011.

[2] Iain E.RICHARDSON, The H.264 Advanced Video

Compression Standard, Second edition , 2010, John

Wiley & Sons.

[3] Jorn Ostermann, Jan Bormans, Peter List,Detlev Marpe,

Matthias Narroschke, Fernando Pereira, Thomas

Stockhammer, and Thomas Wedi,”Video coding with

H.264/AVC:Tools, Performance, and Complexity”,

FIRST QUARTER 2004, IEEE CIRCUITS AND

SYSTEMS MAGAZINE

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.2, November2015

53

[4] Detlev Marpe and Thomas Wiegand, Heinrich Hertz

Institute (HHI),Gary J. Sullivan, Microsoft

Corporation,” The H.264/MPEG4 Advanced Video

Coding Standard and its Applications”, August 2006,

IEEE Communications Magazine

[5] Iain E. Rechardson, "H.264 and MPEG-4 Video

Compression", 2003, John Wiley & Sons.

[6] ThomasWiegand, Gary J. Sullivan, Senior Member,

IEEE, Gisle Bjøntegaard, and Ajay Luthra, Senior

Member, IEEE, “Overview of the H.264/AVC Video

Coding Standard”, IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS FOR VIDEO

TECHNOLOGY, VOL. 13, NO. 7, JULY 2003

[7] Xiaohua Tian, Thinh M. Le, Yong Lian, Entropy

Coders of the H.264/AVC Standard

[8] Algorithms and VLSI Architectures, 2011, SpringerA

HIGH PERFORMANCE AND LOW POWER

HARDWARE ARCHITECTURE FOR H.264 CAVLC

ALGORITHM, Esra Sahin and Ilker Hamzaoglu

Faculty of Engineering and Natural Sciences, Sabanci

University 34956, Orhanli, Tuzla, Istanbul, TURKEY.

IJCATM : www.ijcaonline.org

