
International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.5, November2015

9

Efficient Proximity Search with Query Logs

Sushilkumar N. Holambe
Perusing Ph.D. at DR. B. A. M. U.,

 Aurangabad,
India

Bhagyashri G. Patil
Perusing M.E. at DR. B. A. M. U.,

Aurangabad
India.

ABSTRACT

In information retrieval technology there are various

techniques for fetching data from resources. And that

technique also contains various issues. Information retrieval

techniques require advanced manipulating schemes which

improves keyword search. There are many techniques have

been proposed but results get down when large amount data

interrupted. In this paper, have tendency to achieve efficient

time and space complexities by integrating proximity

information. This system improves the performance by using

previous searching results. All the previous system consist

basic solutions for extracting results and ranking them. Query

logs consists the last searching results and use that results for

next search. Fuzzy keyword search truly enhance the system

usability. Existing system in databases requires to write

complete keyword for searching but by using auto-complete

scheme it is easy to type less and find more. In this system

proper demand paging algorithm is used for finding previous

results.

General Terms

Algorithm, Performance.

Keywords

Auto complete, Algorithm, demand paging, Top-k,

Segmentation, Term pair, edit distance.

1. INTRODUCTION
Fuzzy search further improves user search experiences by

finding relevant answers with keywords similar to query

keywords. A main computational challenge in this paradigm

is the high speed requirement, each query needs to be

answered within milliseconds to achieve an instant response

and a high query throughput, and it cannot meet this high-

speed requirement on large data sets when there are too many

answers[1],[2],[3],[4],[5].

The performance of the proposed techniques on real data sets.

We implemented the following methods:

(1) Find All (“FA”): We found all the answers and returned

the top-k answers after sorting them based on their relevancy

score.

(2) Query Segmentation (“QS”): In this approach, we

computed a query plan based on valid segmentations, and ran

the segmentations one by one until top-k answers were

computed.

 (3) Term Pair (“TP”): In this approach, term pairs are used

which increases as the window size increase.

2. FLOW OF WORK

2.1 Check user login
After User has login the personal details, user can check the

details about their requirement, based upon their search result

has produce within the milliseconds.

2.2 Valid phrases in a query
Receiving a list of valid phrases, the Query Plan Builder

computes the valid segmentations. The basic segmentation is

the one where each keyword is treated as a phrase [6], [7].

Each generated segmentation corresponds to a way of

accessing the indexes to compute its answers. The Query Plan

Builder needs to rank these segmentations to decide the final

query plan, which is an order of segmentations to be executed.

Here we are using log for improve search results. The

previous search results must be part of next search history, so

will put log/history in table. This can retrieve pages efficiently

as query keyword requirement.

 Fig1.Server architecture for Instant search

2.3 Top-k Query
The ranking needs to guarantee that the answers to high-rank

segmentation are more relevant than the answers to low-rank

segmentation. [8], [9] There are different methods to rank

segmentation. Our segmentation ranking relies on a

segmentation comparator to decide the final order of the

segmentations. This comparator compares two segmentations

at a time based on the following features and decides which

segmentation has a higher ranking. The comparator ranks the

segmentation that has the smaller minimum edit distance

summation higher. If two segmentations have the same total

minimum edit distance, then it ranks the segmentation with

fewer segments higher [10], [11], [12].

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.5, November2015

10

 Figure 2 Flow of work

2.4 Query Segmentation
This paper compute a query plan based on valid

segmentations, and ran the segmentations one by one until

top-k answers were computed. The database of segments and

may be applied to an arbitrary text, preferably query, for

splitting it into segments according to a segmentation

procedure. The procedure matches all possible subsequences

of the given tokenized query segmentation it is meant to

segment the input segments, typically natural language

phrases , so that the performance of relevance ranking search

is increased. Finally results are computed by using technique

such as minimum edit distance.

3. EXPERIMENTAL RESULTS
Experimental results consists time and task depending upon

the previous systems used for instant search. The dataset used

is movie datset .

3.1 Screen shots
1)Userlogin

2) Find all

3) Query segmentation

4) Final result based on graph

From experimental results conclusion is,

-Term pair is very slow.

-Find all is good for lengthy keyword search, but its slightly

better for 1-keyword search.

- Query segmentation is good for 2-keyword or 3-keyword

search as most of the applications use this and its better as the

size of dataset increase.

4. CONCLUSION
In this paper, instant fuzzy search technique is compute

relevant top-k answers. There are some techniques to find

valid phrases by avoiding large space overhead. And next is

computing valid segmentations which include all indexed

phrases. In this paper page replacement strategy is used for

using previously history / log. By using demand paging

concept we can easily use log for previously searched results.

Future scope consist semantic search on keyword may be joint

keywords and searching more than 3 query keywords.

5. REFERENCES
[1] Inci Cetindil, Iamshid Esmaelnezhad, Taewoo Kim, and

Chen Li, “Efficient instant fuzzy search with proximity

raking,” in ICDE, 2014.

[2] Centennial, J. Esmaelnezhad, C. Li, and D. Newman,

“Analysis of instant search query logs,” In WebDB,

2012,pp.7-12.

[3] R. B. Miller, “Response time in man-computer

conversational transactions,” in Proceedings of the

December 9-11, 1968, fall joint computer conference,

part I, ser. AFIPS ’68 (fall, part I). New York, NY, USA:

ACM, 1968, pp. 267–277.

[4] K. Grabski and T. Scheffer, “Sentence completion,” in

SIGIR, 2004, pp.433-439.

[5] A. Nandi and H.V. Jagadish, “Effective phrase

prediction,” in VLDB, 2007, pp.219-230.

International Journal of Computer Applications (0975 – 8887)

Volume 129 – No.5, November2015

11

[6] R. Schenkel, A. Broschart, S. won Wang, M. Theo bald,

and G. Welkom, “Efficient text proximity search,” in

SPIRE, 2007, pp. 287-299.

[7] H. Yan, S. Shi, F. Zhang, T. Suel, and R. Wen, “Efficient

term proximity search with term pair indexes,” in CIKM,

2010,pp. 1229-1238.

[8] M. Zhu, S. Shi, F. Zhang, T. Suel, and R. Wen, ”Can

phrase indexing helps to non-phrase queries?, ”in CIKM,

2010, pp. 1229-1238.

[9] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation

algorithm for middleware,” in PODS, 2001.

[10] F. Zhang, H. Yan, S. Shi, and R. Wen, “revisiting

globally sorted indexes for efficient document retrieval,”

in WSDM, 2010, pp. 371-380.

[11] M. Persin, J. Zobel, R. Sacks-Davis, “Filtered document

retrieval with frequency-sorted indexes,” JASIS, val. 47,

no. 10, pp. 749-764, 1996.

[12] S. Ji, G. Li, C. Li, and J. Feng, “efficient interactive

fuzzy keyword search,” in WWW, 2009, pp.371-380.

IJCATM : www.ijcaonline.org

