
International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.1, November 2015

33

An Evolution of Test Case Prioritization Techniques

Heena Singhal
M.Tech Computer Science and Engg,
Ajay Kumar Garg Engineering College,

Ghaziabad, UP, India

Kirti Tyagi
Department of Computer Science and Engg,

Ajay Kumar Garg Engineering College,
Ghaziabad, UP, India

ABSTRACT
Test case prioritization is the way of arranging the test cases

on the basis of same defined criteria so that fault detection

may be made as earlier as possible and hence cut down the

cost incur during testing process. Due to day by day

increasing complexity of the software system, a lot of test

cases are required to execute for effective validation and

verification that adds to cost and time. Any prioritization

technique schedules the test cases in the way that runs the test

cases with higher priority before the test cases with lower

priority. Present paper gives a comparative overview of

various criteria, techniques and methods used for test cases

prioritization for the component based software system from

the year 1999 to present.

Keywords
Regression testing, software development life cycle,

component based software system, test case prioritization.

1. INTRODUCTION
Software testing is the task of evaluating the correctness of the

system or its component(s). Testing plays a vital role during

software development life cycle (SDLC). It takes almost half

the total time of the SDLC. Testing may be handled either

manually or automatically. In a general context, automated

testing is preferred over the manual testing for big test suite.

Regression testing is done when some modification is made to

present software system. It is quite possible whenever a

change is made to present software system, the other area

within the system may have been affected by this change.

Retesting is performed to verify that a fix bug has not resulted

into another bug. The altered parts of the system are tested

first during the regression testing and later the entire system

needs to be retested, so that the confidence regarding the

software performance can be built against the modifications

introduced and thus ensure that modified software did not

introduce new faults into the present system. Since, the size of

test suite is very large, system retesting taken away a large

amount of time as well as computing resources. Retesting

process may last for minutes, hours, days, or even month. The

main issue faced by developers during system retesting is the

way of scheduling the test cases for execution. Prioritization

of test cases tries to combat this issue.

Test case prioritization (TCP) is the process of executing the

test cases with the higher priority before the test cases with

lower priority on the basis of some fitness value. Retesting is

an important phase of software maintenance, but the phase

incurs high cost. To compensate with this high cost phase,

prioritization of test case is done by software tester so that test

case that cost high may execute earlier in the SDLC lifecycle.

The component based software system (CBSS) is the most

active part of software engineering. It has grasped the

attention of various researchers and developers. It is more

generalized approach as compared with existing software

engineering approach. The CBSS is one key technique for

developing software system. The CBSS may be implemented

in many disciplines with many different techniques. The

CBSS consists of various components which are developed by

third party vendor, however this will reduced the overhead for

the developer and also increases the system openness by

modify or add a component. It will incur the cost and time, the

two important factor of software development life-cycle.

2. TEST CASE PRIORTIZATION
Test case prioritization at first is put forth in regression testing

that aims to test the changed software system during software

evolution by reusing the test suites of its previous version.

TCP gives the way of scheduling the order of test cases so as

to maximize fault detection rate at the earlier stage of SDLC.

The main performance goal regarding the use of TCP is the

rate of fault detection. Test cases must be executed in a way

that enhances the rate of fault detection and also it discovers

the high risk faults at earlier stage of testing phase of SDLC.

TCP Problem Statement may be summarized as:

Given: a program x and its modified version x’; a test suite t;

the set of permutations of test suite xt; a function from xt to

the real numbers f.

Problem: Find t ′ ∈ xt such that (∀t′′) (t′′ ∈ xt)

(t′′≠ t′) [f (t′) ≥ f (t′′)]

Here, xt represents the set of all possible ordering of

prioritizations of t, and f is a function that, applied to any such

ordering, yields an award value for that ordering. The

definition assumes that higher award values are preferred over

the lower ones [2].

There are number of possible goals for TCP such as:

(1) To improve the rate of fault detection.

(2) To increase the code coverage rate.

(3) To enhance the reliability of the system.

The objectives of prioritization of test cases include:

(1) To increase the rate of fault detection i.e. unveiling

faults at early stage of testing process.

(2) To increase the rate of detection of high risk faults

at early stage of testing process.

(3) To increase the coverage of programmable code in

the system under test at a high pace.

(4) To increase the reliability of the system under test at

a high pace.

(5) To increase the probability of revealing regression

wrength related to version specific code changes at

early stage of testing process.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.1, November 2015

34

The number of methods has been introduced to prioritize the

test case and they are as follows:

(1) Code based TCP

(2) Statement based TCP

(3) Branch based TCP

(4) Function based TCP

(5) Model based TCP

3. LITERATURE REVIEW: AN

EVOLUTION OF TEST CASE

PRIORITIZATION
In last few decade there were number of publication that

discussed the concept of TCP and its related techniques. In

this section of paper survey of various prioritization method

and related work has been done.

3.1 Year 1999

Test Case Prioritization: An Empirical

Study
In [1] Gregg Rothermel et al describes various techniques for

TCP and provides with an empirical result that measures the

effectiveness of the techniques for enhancing the rate of fault

detection in the program. An improved rate of fault detection

provides earlier feedback to the system under the regression

testing and helps debuggers to correct fault at the earlier stage

of testing process. The paper also highlights trade-offs

between numbers of prioritization techniques. The nine

different techniques of TCP are considered. They are as

follows (1) zero prioritization of test cases, (2) random

prioritization, (3) optimal prioritization, (4) total branch

coverage prioritization, (5) additional branch coverage

prioritization, (6) total fault exposing potential prioritization,

(7) additional fault exposing potential prioritization, (8) total

statement coverage prioritization and (9) additional statement

coverage prioritization. The two research oriented question

raised are (1) may prioritization improves the rate of fault

detection and (2) how various prioritization discussed in the

paper are compared to one another in terms of fault detection

rate. The result prove that these prioritization techniques

significantly improves quick fault detection by the given test

suites. Also the same result arrived even for the least

sophisticated prioritization techniques.

3.2 Year 2000

Prioritizing Test Cases for Regression

Testing
In [2] Sebastian Elbaum et al discussed some of research

question i.e. (1) is prioritization be effective while applied at

altered versions of programs, (2) what type of trade-offs

presents in between different prioritization techniques such as

fine granularity prioritization and coarse granularity

prioritization and (3) may the involvement of fault proneness

measure improves the effectiveness of prioritization

techniques. This paper presented with fourteen different types

of TCP techniques that are classified under three groups. The

first group known as control group comprises of two

prioritization technique that serves as experimental control

techniques and they are named as (1) random ordering and (2)

optimal ordering. The second group known as statement level

group comprises of four fine grain techniques and they are

named as (3) total statement coverage prioritization (4)

additional statement coverage prioritization (5) total fault

exposing potential prioritization and (6) additional fault

exposing potential prioritization. The third group known as

function level group comprises of eight coarse grain

prioritization techniques and they are named as (7) total

function coverage prioritization (8) additional function

coverage prioritization (9) total fault exposing potential

function level prioritization (10) additional fault exposing

potential function level prioritization (11) total fault index

prioritization (12) additional fault index prioritization (13)

total fault index with fault exposing potential coverage

prioritization and (14) additional fault index with fault

exposing potential coverage prioritization. The metric

weighted average percentage of fault detected (APFD) is

evaluated over the life of the test suites. The value of APFD

ranges from 0 to 100, higher the value of APFD means higher

the rate of fault detection. The APFD measure ranked the

different techniques, the ANOVA analysis was used to find

whether the techniques differed from each other while

Bonferroni analysis gives the comparison between different

techniques i.e. how they are different from each other. Also in

this paper threats to validity of experimental study are

described. The total of three threats have been described, they

are (1) threats to internal validity (2) threats to external

validity and (3) threats to construct validity. The result shows

the differences exist in between the rates of fault detection

among the stated prioritization techniques and also the

practical consequences of result were shown.

3.3 Year 2001

3.3.1 Understanding and Measuring the

Sources of Variation in the Prioritization

of Regression Test Suites
In [3] Sebastian Elbaum et al observed the unknown variance

that point out the additional factors that affects the

prioritization effectiveness along with the target program and

the TCP techniques. In previous work Sebastian Elbaum

explained number of prioritization techniques that

significantly improves the rate of fault detection. Further he

explained that the rate of fault detection is in close proximity

of the program under test. The three research question that

were raised due to stated observation are (1) whether there are

factors other than the prioritization techniques and the tested

program, (2) what type of metrics are used to represent each

factor and (3) was the inclusion of other factor effect the

prioritization techniques. To formulate these questions a series

of experiment was conducted that include three factors (1)

program structure, (2) test suite composition and (3) change

characteristics. During experimentation two types of variable

were used dependent variable and independent variable. The

dependent variable include the use of APFD measure while

independent variable consists of four types of variable and

they are (1) subject program, (2) prioritization techniques, (3)

version and changes introduce in the program and (4) test

suite characteristics. The experiment comprises of eight

programs and each program consists of a baseline version and

twenty nine version of which each contains multiple faults.

For every baseline version, number of test cases exists. The

selected prioritization techniques that were described in

previous work are further briefly described here and are as

follows (1) total function coverage, (2) total statement

coverage, (3) additional function coverage, (4) additional

statement coverage, (5) total fault index, (6) additional fault

index and (7) optimal. To understand the dimensionality of the

program, the information presented by the each variable and

to predict the correlation among each variable, the principal

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.1, November 2015

35

component analysis (PCA) has been performed over the

collected data and metrics. The PCA discovered the six

underlying source of variation. To examine the

interrelationship among the dependent and independent

variable regression analysis have been used. The regression

analysis was performed in two phase. In first phase, regression

analysis over individual variable has been evaluated against

the APFD measure criteria and in second phase multiple

regressions was done to explore the certain factors that affects

different prioritization techniques. The result of the study

shows that new factors leads to the growth of more powerful

TCP techniques, while high prediction capability of regression

analysis helps to evaluate the new ordering of test suites.

3.3.2 Incorporating Varying Test Costs and

Fault Severities into Test Case

Prioritization
In [4] Sebastian Elbaum et al presents a new metric for

evaluating the rate of fault detection that includes the varying

test cases and fault cost of prioritized test cases. The metric

used in previous study did not incorporate the varying test

cost and fault severity of prioritized test cases. However, for

the uniform test cost and fault detection severity, the metric

APFD measures the weighted average cumulative percentage

of detection of faults over the life of test suites. The case study

has been exercised to show the practical application of the

new metric introduce. This study gives rise to some of

practical question in applying the new metric to evaluate the

prioritization of test cases. The example have been derived

that disapprove the use of old APFD measure due to inclusion

of varying cost of test and fault severity and hence new cost

cognizant metric APFDC has been invented by adapting the

old APFD metric. The graph has been represented for the

APFDC where horizontal axis denote the percentage of total

cost of test case incurred while the vertical axis denote the

percentage of total severity of fault detection. In the study five

different test case cost distribution have been used and they

were as follows: (1) unit test case cost, (2) random test case

cost, (3) normal test case cost, (3) Mozilla test case cost,

where Mozilla is an open source web browser that include

large number of developers and testers and (5) QTB test case

cost where QTB is a software system that include more than

300KLOC. Also the study described the fault severity

detection which three in number and as follows: (1) unit fault

severity detection, (2) Mozilla linear fault severity detection,

and (3) Mozilla exponential fault severity detection. Thus with

the given distribution of test case cost and fault severity

detection, a total of fifteen possible combination of the pair.

But in the study, attention was restricted to nine combination

of test cases cost and fault detection severity.

3.4 Year 2002

Test Case Prioritization: A Family of

Empirical Studies
In [5] Sebastian Elbaum et al shows that comparative

effectiveness of various prioritization techniques varies

significantly over the target program. The total of eighteen

prioritization was taken into the accounts that were subdivided

into three groups. The first group known as comparator group

consists of two techniques (1) random ordering and (2)

optimal ordering. The second group, statement group consists

of four fine grain techniques (3) total statement coverage, (4)

additional statement coverage, (5) total fault exposing

potential (FEP) and (6) additional fault exposing potential.

The third group, function group consists of twelve coarse

grain techniques (7) total function coverage, (8) additional

function coverage, (9) total FEP function level, (10) additional

function level FEP, (11) total fault index (FI), (12) additional

FI, (13) total FI with FEP coverage, (14) additional FI with

FEP coverage, (15) total difference (DIF) based, (16)

additional DIF based, (17) total DIF with FEP and (18)

additional DIF with FEP. The APFD metric is mathematically

formulated as:

APFD = 1 - (TF1+TF2+…+TFm)/nm + 1/2n, where TFi is the

first test case in new ordering T`.

3.5 Year 2004

Empirical Studies of Test Case

Prioritization in a JUnit Testing

Environment
In [6] Hyunsook Do et al extended the previous work of TCP

to numerous other language paradigm. In early studies

concept was bind to C language only, but whether it works for

other language was not known. In this paper, TCP is deployed

in language Java under JUnit framework. Hyunsook

performed controlled experiment to check the TCP

effectiveness over Java programs under JUnit testing

framework. The result shows significant improvement in rate

of fault detection of test suite of JUnit. The paper also presents

the differences that exist in between the testing paradigm and

the language used within the system under test with respect to

old studies for prioritization of test cases.

3.6 Year 2005

A Controlled Experiment Assessing Test

Case Prioritization Techniques via

Mutation Faults
In [7] Hyunsook Do and Gregg Rothermel suggests that real

fault may be represented by mutation faults. A controlled

experiment has been performed to determine the ability of

TCP techniques for the improvement in the rate of fault

detection in relation to mutation faults as well as real faults.

The result shows that TCP techniques works effectively while

assessing mutation faults. The effectiveness of TCP

techniques varies according to the characteristics of test cases

and mutant faults. Also, comparison of relationship between

mutation faults and hand seeded faults along with earlier data

has been done.

3.7 Year 2006

3.7.1 On the Use of Mutation Faults in

Empirical Assessments of Test Case

Prioritization Techniques
In [8] Hyunsook Do and Gregg Rothermel carried out the

empirical study which suggests that the real faults may be

represented via mutation fault. Also it is suggested that hand

seeded faults may cause problem for the authenticity of

empirical result that focus on the rate of fault detection of test

suites. The two controlled experiment has been performed to

determine the ability of TCP techniques relative to the

mutation faults.

3.7.2 Cost-Cognizant Test Case

Prioritization
In [9] Alexey G.Malishevsky et al presents a new metric for

determining the rate of fault detection of TCP, APFDc. The

metric defined include varying test case cost as well as

varying fault cost. This paper also describes how the previous

prioritization techniques work well with the new cost-

cognizant factor. The study shows the comparison between

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.1, November 2015

36

the cost-cognizant techniques as well as the cost-cognizant

metric to that of previous non-cost-cognizant techniques and

metric. This study gives consideration to answer the practical

question of real world scenario.

3.8 Year 2008

Configuration-Aware Regression Testing:

An Empirical Study of Sampling and

Prioritization
In [10] Xiao Qu et al addresses the shortcomings of the

configuration aware regression testing for the evolvement of

software systems. The study makes use of combinatorial

interaction testing techniques for modelling and generating the

configuration samples that were used during the regression

testing process. An empirical study was conducted over the

non-trivial evolved software system that evaluates the

influence of configuration over testing effectiveness. The

result shows that there was significant impact of configuration

on the rate of fault detection and also, prioritizing the

configuration was effective.

3.9 Year 2010

The Effects of Time Constraints on Test

Case Prioritization: A Series of Controlled

Experiments
In [11] Hyunsoo Do et al suggested that imposing the time

constraints over the process of regression testing by the

software development process may significantly affect the

behaviour of TCP techniques. The study shows that effective

application of time constraint over the prioritization

techniques may improves the rate of fault detection, software

maintenance and testing process. A series of experiment has

been conducted to determine the effects of time constraints

over the costs as well as the benefits of the prioritization

techniques. The results show the various implications for the

system engineer who wish to retest the software system cost

effectively.

3.10 Year 2011

A Model Based Prioritization Technique for

CBSS Retesting Using UML State Chart

Diagram
In [12] Sanjukta Mohanty et al Proposes a new efficient

technique to prioritize the test cases for the CBSS using

regression testing. In this technique, developer construct UML

state chart diagram for all components and change of state by

the different modules in the CBSS. The UML chart diagrams

are then converted into Graph like representation known as

component interaction graph (CIG). These graphs help in

determining the interrelationship that exists in between the

components. The new proposed algorithm takes the UML

generated graph as an input along with the old test cases. The

output of the algorithm is the efficient prioritization of test

cases. The prioritization of test cases is done on the basis of

two factors i.e. (1) total number of database access and (2) the

number of state changes by the components when interacted

with test cases. Also, the algorithm works efficiently for many

java applications by enhancing the performance function and

decreasing the cost.

3.11 Year 2012

3.11.1 Oracle-Centric Test Case

Prioritization

In [13] M. Staats et. al. propose a technique for the TCP that

explicitly considered the impact of test oracles to measure the

effectiveness of testing. In the existing work, effect of test

oracle has not been considered during retesting process. The

new technique works by getting the flow information from the

variable assignment and thus test oracle for individual test

case. Later, prioritizing of cover variable was done with the

help of shortest path available to test oracle. The results show

that there is significant enhancement in the rate of fault

detection in relation to both structural and random coverage

based TCP techniques.

3.11.2 Modular Based Multiple Test Case

Prioritization
In [14] N.Prakash and Rangaswamy proposes a new technique

that prioritizes the test cases at modular level, to alleviate the

problem of cost and time. The existing techniques for TCP

consumes more time and cost, however not reliable and

efficient. In this new proposed technique the program is first

decomposed into different modules and then generate the test

case for each module, in the first stage the test case

corresponding to each individual module is prioritized and

then in second stage the individual test suit are recombined

together to further prioritizes the whole program. And also

this technique is verified for fault coverage, moreover

compared with overall test case periodization method.

3.12 Year 2013

Bridging the Gap between the Total and

Additional Test Case Prioritization

Strategies
In [15] L. Zhang et al proposes two different models that unify

the two well-known TCP strategies i.e. the total TCP strategy

and the additional TCP strategy. The two models i.e. basic

model and extended model gives a spectrum of evasive

strategy that ranges from total strategy to additional strategy,

that depends on the specified parameter referred as x value.

The four different heuristic have been taken to get the

differentiated values of x for the different test methods. The

empirical study has been performed over the 19 versions of

given four Java program under test. The results show that

differentiated value of x applied over the both basic and

extended models using method coverage may performed

better than the additional strategy with statement coverage.

3.13 Year 2014

A Unified Test Case Prioritization

Approach
In [16] D. Hao et al presents an unified TCP approach that

encircles both the total TCP strategy and additional TCP

strategy. The unified TCP approach contains two models i.e.

basic and extended model. Using these two models a unified

TCP approach produces the spectrum of TCP techniques that

ranges from entirely total to entirely additional TCP

techniques defined by unique parameter z. To evaluate the

approach, an empirical study has been performed over the 28

Java and 40 C objects. The result shows that numerous

prioritization techniques derived from the two models with z

value may perform better than entirely total TCP technique

and also competitive with entirely additional TCP technique.

4. CONCLUSION
In this paper, a review on existing techniques of regression

TCP based on code coverage, components and UML state

chart diagrams is done. To evaluate the operative efficiency of

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.1, November 2015

37

TCP techniques, two metrics named as APFD and APFDC are

used. Also, paper presents how the TCP techniques evolve

from year 1999 to present and how the prioritization

techniques that were used only for C dialects evolved to be

used in other language such as Java under JUnit framework

and many more. Thus, it may be conclude that there are many

techniques that may be used to prioritize the test cases in an

efficient manner.

5. REFERENCES
[1] G. Rothermel, R. Untch, C. Chu, M. Harrold,”Test Case

Prioritization: An Empirical Study,”,Proc. IEEE

International Conference on Software Maintenance,

pages 179-188, 1999.

[2] S. Elbaum, A. Malishevsky, and G. Rothermel,”

Prioritizing Test Cases for Regression Testing”,

Proceedings of the ACM International Symposium on

Software Testing and Analysis, pages 102-112, August

2000.

[3] S. Elbaum, D. Gable, and G. Rothermel, “Understanding

and Measuring the Sources of Variation in the

Prioritization of Regression Test Suites”, Proceedings of

the 7th International Software Metrics Symposium, pages

169-181, April 2001.

[4] S. Elbaum, A.Malishevsky, and G. Rothermel,

“Incorporating Varying Test Costs and Fault Severities

into Test Case Prioritization”, Proceedings of the 23rd

International Conference on Software Engineering, IEEE

Computer Society, pages 329-338, May 2001.

[5] S. Elbaum, A. Malishevsky, and G. Rothermel. “Test

case prioritization: A family of empirical studies”, IEEE

Transactions on Software Engineering, 28(2), pages 159-

182, February 2002.

[6] H. Do, G. Rothermel, and A. Kinneer, “Empirical Studies

of Test Case Prioritization in a JUnit Testing

Environment”, Proceedings of the International

Symposium on Software Reliability Engineering, pages

113-124, November 2004.

[7] Hyunsook Do and Gregg Rothermel, “A Controlled

Experiment Assessing Test Case Prioritization

Techniques via Mutation Faults”, Proceedings of the

IEEE International Conference on Software

Maintenance, pages 411-420, 2005.

[8] Hyunsook Do and Gregg Rothermel, “On the Use of

Mutation Faults in Empirical Assessments of Test Case

Prioritization Techniques”, IEEE Transactions on

Software Engineering, V. 32, No. 9, pages 733- 752,

2006.

[9] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg

Rothermel and Sebastian Elbaum, “Cost-cognizant Test

Case Prioritization”, Technical Report TRUNL-CSE-

2006-0004, Department of Computer Science and

Engineering, University of Nebraska – Lincoln, 2006.

[10] Xiao Qu, Myra B. Cohen and Gregg Rothermel,

"Configuration-Aware Regression Testing: An Empirical

Study of Sampling and Prioritization," In.Proc.of the

2008 international symposium on Software testing and

analysis, pages 75-85, 2008.

[11] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari and

Gregg Rothermel, "The Effects of Time Constraints on

Test Case Prioritization: A Series of Controlled

Experiments", IEEE Transactions on Software

Engineering archive, Vol. 36, No. 5, pages 593 - 617,

Sep 2010.

[12] Sanjukta Mohanty, Arup Abhinna Acharya, Durga

Prasad Mohapatra, “A Model based prioritization

technique for Component based software retesting using

UML state chart diagram”, IEEE Third Int’l Conf. on

Electronics Computer Technology, vol. 2, pages 36-368,

2011.

[13] M. Staats, P. Loyola, G. Rothermel, “Oracle-Centric Test

Case Prioritization”, Proceedings of the International

Symposium on Software Reliability Engineering, pages

311-320, November 2012.

[14] N. Prakash and T. R. Rangaswamy, “Modular Based

Multiple Test Case Prioritization”, In Computational

Intelligence and Computing Research, IEEE International

Conference on, pages 1-7, 2012.

[15] L. Zhang, D. Hao, L. Zhang, G. Rothermel, H. Mei,

“Bridging the Gap Between the Total and Additional

Test-Case Prioritization Strategies”, Proceedings of the

International Conference on Software Engineering, pages

192-201, May 2013.

[16] D. Hao, L. Zhang, L. Zhang, G. Rothermel and H. Mei,

“A Unified Test-Case Prioritization approach”, ACM

Transactions on Software Engineering and Methodology

(TOSEM) 24, no. 2, 2014.

IJCATM : www.ijcaonline.org

