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ABSTRACT 

Approximate sub-graph matching is important in many graph 

data mining fields. At present, current solutions can be 

difficult to implement, have an expensive pre-processing 

phase, or only work for given types of graph.  In this paper a 

novel generic approach is presented which addresses these 

issues. An approximate sub-graph matcher (A-SGM) 

calculates the distance between the topological characteristics 

(footprint) of the sub-graphs to be matched, applying a 

weighting to the different sub-graph characteristics and those 

of neighbor nodes. The weights are calibrated for each dataset 

with a simulated annealing process using sample sets of graph 

nodes to reduce computational cost, and an exact 

isomorphism matcher as a fitness function which takes into 

account how well the match maintains the neighboring node 

degree distributions. Benchmarking is performed on several 

state of the art methods and real and synthetic graph datasets 

to evaluate the precision, recall and computational cost. The 

results show that the A-SGM is competitive with state of the 

art methods in terms of precision, recall and execution time.   

General Terms 

Machine Intelligence (Data and Web Mining), Applications of 

Computer Science in Modeling, Data and Information 

Systems. 

Keywords 

Graph Matching, topology, graph characteristics, weight 

calibration, simulated annealing, graph queries.  

1. INTRODUCTION 
The matching of sub-graphs is a key task for graph mining 

which however may have a high computational cost for large 

data domains. Different matching paradigms exist in the 

literature. On the one hand there is the exact one to one 

mapping of labeled nodes exemplified by isomorphism 

matchers. For these, different optimizations exist in order to 

reduce the computational cost, such as compressed matrix 

representations of the graph structure. On the other hand, 

approximate matchers relax the requirement for a total 

matching. 

The need for an exact isomorphic matching is also application 

and domain dependent. Applications such as molecular 

discovery[1][2] and chemical analysis[3] may require exact 

isomorphic matching, whereas for data mining online social 

networks (OSNs) a good approximate match may be 

sufficient. Example applications for OSN sub-graph matching 

are user profiling, classification and clustering, network 

analysis, behavior analysis, among others.[4]  

It must also be mentioned that an approximate matcher can be 

used as a first step to reduce the search space, after which an 

exact matcher can be applied. This approach is used by 

different authors and some of these works will be summarized 

in the state of the art. 

The matcher presented in this paper uses topological graph 

characteristics identified by data mining and statistical 

analysis techniques to compose a descriptive footprint. A 

corresponding weighting scheme is applied for each 

characteristic to capture an approximate “model” of the GED 

(Graph Edit Distance) [5] isomorphism matcher which is used 

as fitness function. The runtime computational cost is reduced 

because the calculations required for the sub-graph 

characteristics (statistical metrics such as degree, clustering 

coefficient, number of edges, degrees of neighbors) are not 

NP-hard and are pre-calculated. Then the distance metric 

calculates the difference between the respective weighted 

characteristics of each sub-graph. This is used as a first step to 

reduce the search space then a label mapping is used to obtain 

the most exact match. The principal overhead is the training 

of the weights, for which simulated annealing is used as a pre-

process and GED[5] as the fitness function. The 

computational cost of the training is reduced by using 

relatively small but representative samples of the complete 

dataset, and cross validating the results.  

In this paper the approximate graph matcher presented is 

evaluated against two state of the art methods, in terms of 

computational cost, precision and recall. The sub-graph 

matching algorithm in the present work has been submitted as 

a European and International Patent application[6]. It has also 

been successfully used in a specific application for data 

privacy (k-anonymization) [7]. 

The structure of the paper is as follows: in Section 2 the state 

of the art and related work is discussed for the issues 

considered in this paper; in Section 3 definitions are given for 

the key concepts used in the remainder of the paper; in 

Section 4 the distance metric is described, together with some 

example calculations and details of the data processing 

scheme; in Section 5 the experimental setup, datasets and 

benchmarking methods are described; in Section 6 the 

empirical results for the training and test (apply) phases are 

presented; finally, in Section 7 the work is summarized. 

2. RELATED WORK AND STATE OF 

THE ART 
For convenience, the related work and state of the art will be 

divided into two general areas: (i) isomorphic matching 

approaches and (ii) recent work which includes different 

approximate approaches, indexing schemes and scalable 

solutions for big data. 
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2.1 Isomorphic Matching 
A key property of interest in graphs is the isomorphic 

property, which refers to an exact match between two given 

graphs, in terms of structure, dimensionality, connectivity and 

mapping of corresponding nodes. Graph matching is a key 

activity in different pattern recognition applications, in which 

high and low level information may be represented. However, 

graph matching has a high computational cost, and the task of 

finding isomorphic sub-graphs is a problem which is NP-

complete. 

Two key references for isomorphic matchers are nauty[8] and 

VF2[9]. Nauty uses group theory concepts in order to 

efficiently construct the automorphism group of each of the 

input graphs, from which a canonical labeling is derived. This 

obtains a node ordering that is uniquely defined for each 

equivalence class of isomorphic graphs, such that two graphs 

can be isomorphically matched by a relatively simple 

verification of the equality of the adjacency matrices of their 

canonical forms. The equality verification has O(N2) time, 

however the preprocessing of the canonical labeling can 

require an exponential time in the worst case. VF2, on the 

other hand, is based on converting the graph into a tree 

structure and then performing a depth-first search, using a set 

of rules to efficiently prune the search tree. It uses data 

structures which have been adapted in order to further reduce 

the computational cost of matching. VF2 has subsequently 

become widely used in the graph mining community.  

The Graph Edit Distance (GED) [5] calculates the number of 

changes required in order to convert one graph into another. 

In general, the number of changes necessary is directly related 

to the similarity of graphs. The operators used to change the 

graph can be, for example, add edge, delete edge, add node, 

delete node, and so on. GED represents an optimized version 

of the graph edit distance measure, in which Bunke evaluated 

the relation between the cost function and the optimal 

matching of two graphs. 

2.2 Recent Work 
In this section a selection of recent sub-graph matching 

methods and distance measures are reviewed, with an 

emphasis on those which are most often referenced and used 

for benchmarking within the graph mining community.  

Tale[10] is a method which uses graph characteristics and 

stochastic techniques in order to perform approximate 

matching of sub-graphs. This method uses an indexing 

technique, called Neighborhood Index (NH-Index), which 

uses a node’s neighborhood characteristics. Queries are 

launched against the graph, and a graph node matches the 

query node, only if the two nodes match and their 

neighborhoods also match. A neighborhood is defined as the 

induced sub-graph of a node and its neighbors (adjacent 

nodes). The similarity function is defined as follows:  

‘nbConnection’ is the neighbor connectivity of a given node; 

 is the percentage of neighbors of a query node that can have 

no corresponding matches in the neighborhood of a graph 

node. Hence, ‘nbmiss’ =  × (Nq.degree) represents the 

number of neighbors of the query node which can be missing 

in the match to a graph node and ‘nbcmiss’ is the number of 

missing neighbor connections. Then the fraction of missing 

neighbors of the query node is defined as fnb = nbmiss / 

Nq.degree, and the fraction of missing neighbors connections 

is defined as fnbc = nbcmiss / Nq.nbconnection . 

Wei[11] presents ‘Tedi’, a method for efficiently calculating 

shortest paths for graph queries. It employs an indexing and 

query processing scheme in which the graph is first 

decomposed into a tree such that each (tree) node contains 

multiple graph vertices. The shortest paths are stored in the 

tree nodes and these local paths together with the tree are used 

to form a lookup index to the graph. A graph search can then 

be performed as a bottom-up process on the tree. 

Zou et al.[12] present a distance-based pattern matching 

method for queries over a large data graph G. In order to 

process the large search space, the authors adopt a filter-and-

refine framework to answer pattern match queries over the 

graph. The method is benchmarked against Tedi[11] and 

Sapper[13]. First, a set of candidate matches is found by a 

graph embedding technique and then the set of matches is 

evaluated to find the exact matches. Zhao et al.[14] present 

‘SPath’, which the authors describe as being a high 

performance graph indexing mechanism, that addresses the 

graph query problem on large networks. ‘SPath’ decomposes 

shortest paths around vertex neighborhoods and uses them as 

basic indexing units, which was found to be effective for 

graph search space pruning and scalable for index 

construction and deployment. ‘SPath’ processes and optimizes 

a graph query ‘one path at a time’, instead of the less efficient, 

‘vertex at a time’ method. They benchmark their method 

against the GraphQL[15] algorithm. 

Khan et al.[16] present ‘Ness’, a neighborhood based 

similarity search designed for graph datasets with a low 

incidence of automorphisms and a high incidence of noise 

(such as online social networks).  Their method is based on an 

information propagation model which transforms a large 

network into a set of multidimensional vectors, which are then 

processed by indexing and similarity search algorithms. The 

neighborhood cost function aggregate the differences for all 

node pairs (v, u), where u = f(v).  

Sun et al.[17] study the problem of sub-graph matching on big 

data graphs. They present an algorithm that supports efficient 

sub-graph matching for graphs deployed on a distributed 

memory store. The method uses efficient graph exploration 

and massive parallel computing for query processing. Given a 

query, a cluster graph is created to model the data distribution 

among different machines in the cluster with regard to the 

query.  

Another method which takes into account noisy data is 

Sapper, presented by Zhang et al. in [13]. Sapper (Sub-graph 

Indexing and Approximate Matching in Large Graphs) 

considers the existence of noise (such as missing edges) in 

large database graphs, and how it affects approximate sub-

graph indexing and thus finding the occurrences of a query 

sub-graph in a large database graph. Sapper uses hybrid 

neighborhood unit structures in the index with pre-generated 

random spanning trees and a specific graph enumeration 

order. The authors benchmark their method against Tale[10] 

and Gaddi[18] using real and synthetic graph datasets.  

Gaddi[18] is a method which uses a distance measurement 

based on frequent substructure counts over a single large 

graph. The distance metric, called NDS (neighboring 

discriminating substructure distance) is used for graph 

indexing which the authors claim has a high pruning power in 

the search space, and scales linearly with the number of 

neighboring vertex pairs. Consider a pair of vertices v1 and v2 

within distance L in the overall graph G, and an integer k 

defined such that 2  k  L. Then an intersecting sub-graph 

Int(G, v1, v2) is generated from v1 and v2 as follows: (i) the k-

neighborhood set of v1 and v2 is generated and defined as Nk 

(G, v1) and Nk (G, v2); (ii) the intersection of Nk(G, v1) and Nk 
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(G, v2) is obtained , that is Nk (G, v1)  Nk (G, v2); (iii) the 

induced sub-graph of the intersection set Int(G, v1, v2) is 

obtained as S(Nk (G, v1)  Nk (G, v2)). Once the set of 

intersecting sub-graphs has been obtained, frequent sub-graph 

mining techniques are used to find frequent substructures and 

to select the most discriminative ones. 

To conclude this section, it is noted that a specific application 

of the sub-graph matcher A-SGM was presented by Nettleton 

et al. in [7], in which it was successfully used to match local 

neighborhoods of a graph for a data privacy application. In 

[7], a k-anonymization process is applied in which objects 

(local neighborhoods in this case) are generalized into groups 

of k members. This requires finding, for a given local 

neighborhood, the k-1 most similar local neighborhoods. 

3. DEFINITIONS AND PRELIMINARY 

DISCUSSION 
A graph is defined as a set of vertices V interconnected by a 

set of edges, thus: G = (V, E). In the current work each vertex 

has an identifier for data processing purposes which is 

considered as its label.  

 

Isomorphism: two graphs G1 = (V, E1), G2 = (V, E2) are 

designated as being isomorphic if a permutation p exists such 

that p(G1) = G2. That is, with the same set of vertices, the 

edges of G1 can be rearranged to fit G2. In Fig. 1 an example 

of two graphs is shown, one of which is an isomorphism of 

the other, by the permutation {(A, V), (B, W), (C, X), (D, Z), 

(E, Y)}. 

 

 

 

Fig. 1. Graph Isomorphisms: the upper and lower graphs 

are isomorphic if an adequate mapping can be defined 

between them. 

 

Fig. 2. Sub-graph depiction 

 

Sub-graph: a sub-graph Gn = (V', E') is defined as a subset of 

G around a given reference vertex vr at a distance of one. 

Hence vr  V' and all other vertices v'  V' are immediate 

neighbors of vr. An example of a sub-graph can be seen in Fig. 

2. 

Approximate topological matcher: an approximate 

topological matcher is defined as a function A-SGM(G1, G2, 

{T}, {W}), which returns a similarity value  for the two sub-

graphs G1 and G2, given a set of topological characteristics (or 

features) {T} and a set of weights {W} which act on the 

features. The set of features {T} is defined as {t1, t2, t3, t4, t5} 

and the set of weights {W} is defined as {w1, w2, w3, w4, w5}. 

It is observed that in the current implementation there are five 

features and their corresponding weights, although in a 

different implementation a distinct number of features and 

weights could be used. 

Approximate Label Pair Edge Matcher: assume that a sub-

graph G1 has a set of labels L1 = {l1, l2, l3, … , ln} and a set of 

edges between label E1 = {{l1, l2}, {l1, l3}, …, {ln, lm}}. 

Likewise, a sub-graph G2 has a set of labels L2 and a set of 

edges between labels E2. Then a label edge matcher will count 

the number of edges which are different, defined as E , using 

the following formula: 

   
               

                   
 

(1) 

which gives a distance measure between the sub-graphs in 

terms of the label pair similarity. 

Exact matcher: an exact matcher is defined as a function 

GED(G1, G2) which returns a distance value  indicating the 

number of modifications (edits) required to make the sub-

graphs G1 and G2 isomorphic. 

Samples: a set of n training samples {S} is defined as { s1, .. 

sm} which is randomly selected from the complete graph G, 

each sample si consisting of m vertices. Each sample vertex 

has to be at least at distance three from any other sample node 

in order to obtain disjunct neighborhoods. 

Fitness: The fitness of the approximate matcher is defined in 

terms of the information retrieval concepts of precision and 

recall, for which the ‘relevant’ sub-graph set is that which is 

found by the GED matcher. Then, the ‘returned’ sub-graph set 

is that which is found by the A-SGM matcher. 

Relevant sub-graphs: The reference (ground truth) function 

is defined as GED and the function to be tested as A-SGM. 

Now let the list LE be the list of (relevant) sub-graphs returned 

by the GED function, in ascending order of the edit distance 

value with respect to a given sub-graph Gr with reference 

node vr. Let the list LU be the ranked list of (returned) sub-

graphs returned by the A-SGM function, in ascending order of 

the similarity value with respect to the sub-graph Gr 

corresponding to a given reference node vr. It is observed that 

each sub-graph in the list is identified by its corresponding 

reference node vr’ in the graph.  

Then, the fitness of the A-SGM function is measured in terms 

of the information retrieval metrics ‘precision’, ‘recall’ and F1. 

These metrics are defined in terms of two sets of results: (i) 

the ‘ideal’ set of results returned by an ‘optimum’ method 

(GED, in this case) and (ii) another set of results returned by a 

method which is to be benchmarked (e.g. A-SGM). The 

former set is known as the “relevant results’ and the latter set 

is known as the ‘returned results’.  
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3.1 Defining the Relevant Set of Results 
The definition of the ‘relevant set’ is often defined by the 

precision@(n) measure (precision at n), that is, the precision 

and recall given by considering the first n results retrieved by 

the reference matcher (in the present case, GED) as the 

relevant set. The ‘returned results’ set will then also be 

defined as the first n results, ordered by the similarity metric 

of the matcher used (e.g. A-SGM).  However this is an 

artificial cutoff, and the returned results are dependent on the 

items being queries. For example, Tian and Patel[10] reported 

an optimum precision of approx. 85% for a recall of 80% for 

the ‘Tale’ matcher processing the ASTRAL protein structure 

dataset. For higher recall values the precision dropped rapidly. 

These relatively high values were obtained because of the 

nature of the dataset and given that the methods tend to return 

relevant results as their top results. Walters[19] presented a 

detailed study of precision and recall for 8 different dataset 

corpuses including Google Scholar, finding an optimum 

precision of 80% for a corresponding recall of 50%. However, 

for all corpuses, lower precisions (approx 50%) and recall 

(approx. 30%) were obtained with an optimum relevant 

document set size of between 10 and 25 (for precision) and 

between 20 and 40 (for recall). 

Relevant Results: in the current context, in order to limit the 

set of “relevant results” returned by the GED function for a 

given sub-graph query, it is necessary to specify which results 

will be included in the set. Firstly, all results are included 

whose distance is zero, that is, GED designates them as exact 

matches (isomorphisms). It is observed that sub-graphs of 

distance zero cannot be ordered, thus if an artificial cutoff is 

defined for the relevant set, some of the isomorphisms 

returned by GED may be excluded. As a consequence, if a test 

method returns an isomorphism in the returned set which was 

not in the relevant set, it will be considered as not relevant. 

Hence, in order to guarantee that the relevant set always 

contains all the isomorphisms, its minimum size is set to the 

maximum number of isomorphisms  (with distance zero with 

respect to the query) returned for any query. On the other 

hand, if there are less than  isomorphisms returned, the 

results with the top non-zero distances are included, ordered 

by distance until a set size of  is obtained. In practice, this 

procedure obtains an average relevant set size of approx. =25 

results. It is observed that the test datasets (see Section 5) will 

have different characteristics with respect to the average 

number of isomorphisms returned per query. This is 

particularly so for the protein graph dataset which has a more 

regular topological structure than the online social network 

graph datasets. It is also true that queries consisting of small 

sub-graph structures, for example, two vertices connected by 

an edge, would return a much higher number of 

isomorphisms. However, in the present work, a sub-graph 

query is always formed by a reference node and its immediate 

neighbors.  Consequently, given that the average degree tends 

to be relatively high, this will in the majority of cases result in 

quite large sub-graph structures as query targets which have 

relatively few isomorphisms in the complete graph.    

To formalize what has been commented about relevant result 

sets, LE will represent the set of “relevant sub-graphs” and LU 

the set of “returned sub-graphs”. Then, the information 

retrieval metrics of precision P and recall R are defined as: 

  
              

      
                                                            (2) 

and 

  
              

      
                                                               (3) 

Then the F1 measure (information retrieval metric) is defined 

in terms of the precision and the recall sub-graph sets. The F1 

measure combines precision and recall as their harmonic 

mean: 

    
   

   
                                                         (4) 

In the case of F1, recall and precision are evenly weighted. 

This measure has been used in order to obtain an equilibrium 

between these metrics for the current application. Other 

variants include F2, which biases recall over precision, and 

F0.5 which gives a greater weight to precision. 

4. DESCRIPTION OF THE METHOD 
In this Section, firstly the distance metric of the sub-graph 

matcher will be described, followed by some examples of how 

the matching is calculated. Next there is a description of the 

overall data processing scheme. In Fig. 3 a schematic 

representation of the process is shown. 

 

 

Fig. 3. Overall Scheme of Data Processing 

4.1 Distance Metric 
In order to calculate the similarity between two sub-graphs, a 

two step distance metric is used. The first step serves to 

reduce the search space and finds similar topologies based on 

graph statistical features. The second step acts only on the top 

sub-graphs identified by Step 1, and performs a label 
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matching. It is recalled that a sub-graph is defined as a 

reference vertex, its immediate neighbor vertices and the links 

between them (see Fig. 2). 

Step 1: The topology similarity metric calculates a distance 

based on sub-graph characteristics which are pre-calculated.  

The sub-graph characteristics (footprint) are: 

 degree of the target node DT 

 number of edges in the sub-graph NE 

 clustering coefficient CC 

 normalized average (internal) degree of adjacent nodes 

ADAN 

 normalized standard deviation of (internal) degree            

of adjacent nodes SDAN 

The five characteristics were selected by statistical evaluation 

so as to best reflect the internal structure of the sub-graph, 

while including characteristics about the neighbors (such as 

their degree including links outside the sub-graph). In order to 

perform the calculation, all values are normalized against the 

maximum and minimum corresponding values in the 

complete graph. The immediate neighborhood sub-graphs of 

two reference vertices v1 and v2 are designated as sub-graphs 

G1 and G2, respectively. Then, the distance metric will be as 

follows: 

A-SGM1(G1, G2) =   

(DT(G1), DT(G2)) +  

(NE(G1), NE(G2)) +  

(CC(G1), CC(G2)) +  

(ADAN(G1), ADAN(G2)) 

(SDAN(G1), SDAN(G2))                 

(5) 

The weight vector {α, β, χ, δ, ε} is trained using a simulated 

annealing process. (DT(G1), DT(G2)) means the normalized 

difference between metric DT (degree of target node) of graph 

G1 and metric DT of graph G2 . 

Step 2: Using as input the most similar sub-graphs identified 

by Step 1, the label matcher calculates a distance based on a 

list of vertex labels {L} and a list of label pairs which are 

connected {LP}. Again consider two sub-graphs G1 and G2. 

The distance metric will be as follows: 

A-SGM2(G1, G2) =                            (6) 

Equation (6) gives a numerical value for the number of label 

pairs which are different between the two sub-graphs G1 and 

G2. A value of zero will imply an exact match between G1 and 

G2 based on label pairs. It is this value which is compared 

with the value generated by GED, for each sub-graph pair in 

the sample training set, the difference being used as the fitness 

value for the simulated annealing process which calibrates the 

weights for Equation (5). It is observed that, for each sub-

graph, the assignment of the vertex label sets {L} and the 

connected vertex label sets {LP} is performed within the 

clustering coefficient calculation, with no extra cost. Efficient 

adjacency list data structures hold the sets for each vertex.  

At runtime, the intersection is calculated by direct access to 

the adjacency list data structures using the attribute-value as 

index. This inevitably requires a one to one checking of each 

label and label pair, rather than the simple numerical 

differences of Step 1 which are pre-calculated. However, Step 

1 greatly reduces the search space by selecting only a small 

subset of the closest matching sub-graphs in terms of their 

topology, and hence Step 2, which contains the most 

expensive step of label matching, is performed only on this 

reduced subset. 

4.2 Example Calculations of Distance 

Metric 
With reference to Fig. 4 and Table 1, eight similar graphs are 

shown with a slightly different number of vertices, edges and 

labels. Each graph has a ‘reference node’. For example, in the 

case of graph G1 in Fig. 4 the reference node is labeled as R, 

which in turn has a number of ‘neighbor nodes’, which for 

graph G1 are labeled as A to F. From the graph statistics of 

Table 1, it can be seen how the topological features vary in 

relation to the topologies, and how they are sensitive to small 

changes in the sub-graph. The set of returned graphs shown in 

Fig. 4 is ordered by the distance value given by Equation (5), 

which is shown in column 1 of Table 2. It is observed that 

graphs G2 and G3 have a mutual distance of zero with respect 

to G1, as calculated by Equation (5) due to their identical 

topology. However, when the label matcher of Equation (6) is 

applied, it is found that the top match to G1 is G4 (col. 2 of 

Table 2). 

Example of edge pair calculation: With reference to Fig. 4, 

considering graphs G1 and G6, first a matching is made on 

G1’s edges in G6. It is found that A-B C-D, F-E and F-R are 

missing, which gives a provisional missing count of 4. Then 

the inverse comparison is performed, looking for G6’s edges 

in G1.  It is found that two edges are missing, B-C and D-E. 

Hence, the total edge pair difference for graphs G1 and G6 will 

be 6. 

 

Table 1. Example values for graph topological characteristics used by the distance measure (Eq. 5) for the graphs shown in 

Fig. 4 

 G1 G2 G3 G4 G5 G6 G7 G8 

Nodes 7 7 7 7 7 6 8 8 

Edges 9 9 9 8 9 7 10 10 

Clustering Coefficient 0.886 0.886 0.886 0.827 0.707 0.84 0.802 0.695 

Avg. Degree neighbors 2.0 2.0 2.0 1.67 2.0 1.80 1.86 1.86 

Std. Dev. degrees 

neighbors 

0 0 0 0.516 0.894 0.447 0.690 0.899 

 



International Journal of Computer Applications (0975 – 8887) 

  Volume 130 – No.10, November2015 

34 

 

Fig. 4. Example of a sub-graph query (G1) and returned results (G2 to G8) ordered by distance measure (Eq. 5). 

Table 2. Distance measure results for the graphs of Fig. 4 

and feature values of Table 1. 

Graph 

Eq. (5) 

distance* 

to G1 

Eq. (6) 

distance 

to G1 

GED 

distance 

to G1 

G2 0.00 6 1.00 

G3 0.00 4 0.67 

G4 1.17 1 0.17 

G5 1.40 2 0.33 

G6 1.68 6 1.00 

G7 1.70 3 0.50 

G8 2.18 5 0.83 
*Using initial weights of {3, 3, 2, 1, 1} 

In order to calculate the distance (Eq. 5), first all the values in 

Table 1 are normalized, then an initial weighting vector {3, 3, 

2, 1, 1} is applied, which produces the values in the first 

column of Table 2. The initial weighting vector can have an 

arbitrary assignment, or it can be assigned from some 

previous statistical analysis. The initial weight assignments 

will then be refined by the simulated annealing optimization 

process, which will be commented in the next section. Then 

the edge pair distance is calculated using Eq. 6 as described 

previously, and the values are normalized, which gives 

column 2 of Table 2. It can be seen that the first two graphs, 

G2 and G3, give a distance of zero ranked uniquely on 

topology, whereas the lowest label pair distances correspond 

to graphs G4, G5, G7, G3, G8, G2 and G6, in that order. 

However, if the set size of results returned by Eq. 5 is 

progressively extended, the majority of the top graphs ranked 

by GED will be found among them. By training the weights of 

Eq. 5 (using a simulated annealing process) to find the same 

subset of similar graphs to the GED function, a closer fit is 

obtained of the results set of Eq. 5 to that of GED. It is 

recalled that Eq. 5 is used as a first step to reduce the search 

space and then Eq. 6 is used to produce the final ranking. 

Hence, it is finally the set overlap (Eq. 6, col. 2 of Table 2) 

which measures the fitness, and not the ordering (rank 

position) of the results. From columns 2 and 3 of Table 2 a 

good fit can be seen between the set overlap and GED. 

4.3 Data Processing Scheme 
The data processing scheme comprises three main steps: pre-

calculations, train and apply.   

Pre-calculations: In the pre-calculations step the sub-graph 

statistics and the GED distance between all sub-graphs are 

calculated. It is observed that GED is calculated for all sub-

graphs for purposes of runtime benchmarking (see Sections 5 

and 6). Otherwise, it is only necessary to calculate the GED 

for the sample vertex set S (input to the train step). For each 

vertex vi, the reference vertices (vj, vj+1, …) of the k sub-

graphs which are closest to vi‘s sub-graph are assigned as a 

vector. The pseudo-code of this process can be seen in the 

Annex Section as ‘Procedure 1’. 

Train: The ‘A-SGM’ matcher distance metric is defined in 

terms of a set of descriptive statistical features each of which 

has a corresponding weight to ponder its contribution to the 

overall distance result. The weights are optimized for each 

dataset by a process which uses the simulated annealing 

technique. The fitness function used for the optimization 

technique matches the result obtained by the ‘A-SGM’ method 

against the ‘ideal’ result obtained by the GED matcher, as 

described in the previous section.  Training is performed using 

subsets of randomly assigned sample nodes. The sub-graph 

around each reference (sample) node is then used as a graph 

search query and the top k results are found. The use of 

subsets of sample nodes greatly reduces the computational 

cost. The best weight assignments are found by executing n 

training runs (n = 5). The pseudo-code of this process can be 

seen in the Annex Section as ‘Procedure 2’ and ‘Procedure 3’. 

Apply: Once the feature weights have been optimized in the 

‘Train’ step, the A-SGM distance measure is calculated for 

different sub-graph queries against the whole graph to find the 

top k results. The GED method (the gold standard) is also run, 

and two state of the art benchmark comparison methods (see 

Section 5.2). The pseudo-code of this process can be seen in 

the Annex Section as ‘Procedure 4’. 
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5. EXPERIMENTAL SETUP 
The experimental setup will now be described in terms of the 

datasets, the benchmark methods and the hardware/software 

used.  

5.1 Datasets 
The datasets chosen have been frequently used by other 

authors of sub-graph matching methods in the state of the art 

literature. The real datasets are: DBLP[20], downloaded from 

https://snap.stanford.edu/data/com-DBLP.html; CondMat[21], 

downloaded from https://snap.stanford.edu/data/ca-

CondMat.html; and Protein[22], downloaded from 

http://vlado.fmf.uni-lj.si/pub/networks/data/. In Table 3 the 

basic statistics are shown for these graph datasets. The 

synthetic datasets, generated using a Java implementation of 

RMAT[23], had the following configurations {vertices, 

edges}: {10k, 100k}, {100k, 1M}, {1M, 3M}. 

Table 3. Summary of graph statistics for the test datasets 

 #Vertices #Edges 

Protein 2361 7182 

Cond-mat 23133 93497 

DBLP 317080 1049866 

Rmat1 10K 100K 

Rmat2 100K 1M 

Rmat3 1M 3M 

5.2 Benchmark methods 
Two benchmark methods, Tale[10] and Ness[16], are used 

which represent two recent state of the art approximate sub-

graph matching methods, which were described in Section 2. 

The software of these two systems was kindly supplied by the 

authors, upon request.  

The Tale system required the following software and systems 

to be installed and configured: Linux OS; C++; PostgreSQL 

(http://www.postgresql.org/); LEDA (Library of Efficient 

Data types and Algorithms), a C++ class library ; GUESS 

(http://graphexploration.cond.org/);  Java Version 6. 

PostgreSQL is used to store and index graph data, LEDA is 

used for a bipartite graph matching computation, GUESS is 

used for visualizing the graphs and Java 6 is used for running 

the graphical user interface. 

The Ness system required the following software and systems 

to be installed and configured: Fedora Linux OS release 8 

(Werewolf); C++, gcc; LEDA. 

GED[5] is used as the ‘gold standard’ method for calculating 

the “ground truth” quality of the results for precision/recall, 

and for training ASGM. That is, for a given sub-graph query it 

returns the top k sub-graphs which are the closest match 

(smallest distance) to being isomorphisms of the sub-graph 

query. The Java code of the GED (Graph Edit Distance 

Finder) was adapted from the online source 

https://code.google.com/p/ged-finder/, authored by Roman 

Tekhov. It is observed that the cost for all types of edit 

operations (vertex addition/deletion, edge addition/deletion 

edge, and so on) is set to 1.  

The ASGM matcher requires Eclipse Standard/SDK Kepler 

Service Release 2 (2014), Java Version 7, PostgreSQL for 

storing and indexing the pre-calculations and GED. The 

following parameters were assigned for the simulating 

annealing procedure: initial temperature, 1.e+6; cooling rate, 

20; iterations, 20; tolerance, 1.e-5. The type of simulated 

annealing was downhill simplex. 

5.3 Hardware 
The hardware used is a PC with an Intel quad-Core i5-3470S 

processor at 2.9Ghz and 4Gb of RAM. The software used is 

Eclipse Kepler R2 with Java SE 7 and Windows / 7 (32 bits). 

6. EMPIRICAL TESTING AND 

RESULTS 
In this Section the performance results are presented in terms 

of computational cost for the training phase and 

precision/recall and computational cost for the apply phase. 

The ASGM method is benchmarked against the comparison 

methods Tale[10] and Ness[16] for six datasets: three real 

world and three synthetic. It is observed that the GED matcher 

is used as the gold standard for precision/recall, as described 

previously. An effort has been made to replicate equal test 

conditions in terms of hardware and software, although Tale 

and Ness use the LEDA library and ASGM does not, which 

may give the former methods some advantage. 

6.1 Training Phase 
The results of elapsed time are shown for different Rmat 

generated graph datasets and the real datasets. In the training 

phase cost, the corresponding index building times are 

included for Tale and Ness. In the case of ASGM, the pre-

calculations and the simulated annealing calibration of the 

attribute weights are taken into account. In Fig. 5 the datasets 

have been grouped into real datasets (on the left) and synthetic 

datasets (on the right). Also, within each group they have been 

arranged, from left to right on the x-axis, in approximate order 

of size and complexity (that is the number of vertices and 

edges, see Table 3). The y-axis uses a logarithmic scale given 

the large difference in processing time between graph 

datasets. From this, it can be seen that ASGM and NESS 

consume a similar amount of training time, with ASGM being 

slightly faster, and TALE is consistently the fastest of the 

three.  

 

Fig. 5. Pre-processing times for methods: ASGM 

(calibration); Tale and Ness (index build) 

 

https://snap.stanford.edu/data/com-DBLP.html
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://code.google.com/p/ged-finder/
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Fig. 6. Execution times for methods and sub-graph queries (vertices, edges): (a) (4, 24) (b) (5, 48) (c) (6, 120) 

 

 

Fig. 7. Precision and Recall for methods and sub-graph queries (vertices, edges): (a) (4, 24) (b) (5, 48) (c) (6,120) 

6.2 Apply Phase 
In the following the results are shown in terms of elapsed 

execution time (Figs. 6), precision and recall (Figs. 7) for all 

methods and datasets. For the precision and recall, the 

relevant sub-graph set (‘gold standard’) is defined as the set 

recovered by the GED matcher. See Section 3 for a 

description of the quality metrics: precision, recall and F1. 

In Figs. 6 the runtime computation cost results are shown for 

three different queries, for each method and dataset.  The 

datasets are organized on the x-axis in the same manner as 

previously for Fig. 5. Each query is designated by two 

numbers (V, E) which signify the number of vertices V and 

edges E in the sub-graph query. The three queries are (4, 24), 

(5, 48) and (6, 120). In Figs. 6 it can be seen that TALE 

consistently shows a higher runtime than the other two 

                   Precision        Recall 

  Legend: 

                   Method 

Legend: 
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methods. Ness and ASGM, on the other hand, display a very 

similar performance. It is observed that a logarithmic scale is 

used on the y-axis given the large difference in processing 

time between graph datasets. 

In Figs. 7 the results are shown for the quality of the query 

responses for each query, method and dataset. The datasets 

are organized on the x-axis in the same manner as previously 

for Figs. 5 and 6. The quality is calculated as described 

previously, using the information retrieval metrics of 

precision and recall and GED as the ‘gold standard’ for the 

retrieved result set.  In general, it can be seen that the 

precision is consistently higher than recall, which is to be 

expected and is consistent with other results in the literature. 

This is because, it is relatively easier that most of the returned 

results are relevant (precision) and more difficult that all the 

possible relevant results are returned (recall), with respect to a 

given threshold (see Section 3). 

In terms of the methods, it can be seen that overall NESS has 

a slightly lower precision score than TALE and ASGM. 

TALE has stronger overall recall for the datasets, and better 

precision for the bigger datasets and the smaller query. ASGM 

in general has a recall which is similar to NESS, and precision 

which competes with TALE and NESS as the best result. 

However, each of the methods has specific queries and 

datasets in which they performed better/worse. This could 

suggest the possible utility of building an ensemble system 

integrating different methods, with a consensus as output. 

7. SUMMARY AND CONCLUSIONS 
A novel sub-graph matcher has been presented which employs 

an optimization process to calibrate sub-graph statistic 

weights and use them in a similarity distance.  It has been 

shown to be competitive with state of the art methods in terms 

of precision, recall and computational cost in both the pre-

calculation/training and execution phases. As future work, 

other types of data related to the graph could be incorporated 

into the similarity matching, such as categorical and 

numerical data associated with the nodes and edges. Also, an 

ensemble approach could be considered. 
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10. APPENDIX 
____________________________________________ 

PROCEDURE 1 PreCalculations(graph G) 

Input: complete graph G = (V, E) 

Output: graph statistics for each sub-graph, assign closest sub-

graphs using GED   

1.      FOR each (v)  (G)  

2.         Define SGv as the sub-graph for vertex v. 

3.         For SGv calculate the following statistics: degree of  

              reference vertex, clustering coefficient, number of  

              edges, average degree of neighbors of reference  

              vertex, standard deviation of degrees of reference  

              vertex.   

4.         FOR each (v’)  (G), v’ ≠ v  

5.              Calculate the GED between SGv and SGv’ as  

                    GEDvv’ 

6.         END FOR 

7.         Assign to vertex v, the k sub-graphs SGv’ which are  

            closest to SGv* 

8.     END FOR  

9.     Normalize all statistics  

END PROCEDURE  
*GED is calculated for all sub-graphs for purposes of runtime benchmarking. Otherwise, it 

would only be necessary to calculate the GED for the sample vertex set S. 

PROCEDURE 2 Train(graph G, sample vertices S)  

Input: complete graph G, sample vertices S 

Output: optimal weights for Equation (5)   

1.   WHILE optimum fitness NOT FOUND or maxiterations  

2.         Run simulated annealing 

3.         Weights assigned by simulated annealing 

4.         Execute fitness function with weights assigned by  

             simulated annealing, for sample vertices S on graph G 

5.         Simulated annealing evaluates if optimum fitness.    

6.   END WHILE  

7.   RETURN optimum weight assignments 

END PROCEDURE  

__________________________________________________ 

 

________________________________________________ 

PROCEDURE 3 Fitness(graph G, sample vertices S,  

                                         weights W)  

Input: complete graph G, sample vertices S,  

           current weights W 

Output: fitness value F1 for current weights W  

1.     FOR each (s)  (S)  

2.         Define SGs as the sub-graph for s 

3.         Find top k sub-graphs LE corresponding to vertices i in  

              G identified by GED as being minimum distance to  

              SGs   

4.         Find top k sub-graphs LU, corresponding to vertices i  

              in G whose A-SGM distance is closest to that of SGs .  

5.         Calculate fitness for s by calculating F1 measure for  

              sets LE and LU  

6.     END FOR  

7.     RETURN average fitness 

END PROCEDURE  

_________________________________________________ 

PROCEDURE 4 Apply(graph G, sub-graph query Q,  

                                     optimum weights W’)  

Input: complete graph G, sub-graph query Q,  

           optimum weights W’ 

Output: returned sub-graphs set corresponding to top matched  

             sub-graphs, precision statistics  

1.         Find top k sub-graphs LE corresponding to vertices i in  

             G identified by GED as being minimum distance to Q   

2.         Find top k sub-graphs LU, corresponding to vertices i  

              in G whose A-SGM distance is closest to that of Q  

3.         Calculate precision and recall for sets LE and LU  

4.     RETURN precision and recall for query Q; top k sub- 

                         graphs LE 

END PROCEDURE 

__________________________________________________ 
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