
International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

29

A Sub-graph Matching Method based on Calibration of

Characteristics of Topological Footprint

David F. Nettleton

Pompeu Fabra University
Dept. Inf. Technology and Communications

Barcelona, Spain

Anton Dries
KU Leuven

Dept. Computer Science
Leuven, Belgium

ABSTRACT

Approximate sub-graph matching is important in many graph

data mining fields. At present, current solutions can be

difficult to implement, have an expensive pre-processing

phase, or only work for given types of graph. In this paper a

novel generic approach is presented which addresses these

issues. An approximate sub-graph matcher (A-SGM)

calculates the distance between the topological characteristics

(footprint) of the sub-graphs to be matched, applying a

weighting to the different sub-graph characteristics and those

of neighbor nodes. The weights are calibrated for each dataset

with a simulated annealing process using sample sets of graph

nodes to reduce computational cost, and an exact

isomorphism matcher as a fitness function which takes into

account how well the match maintains the neighboring node

degree distributions. Benchmarking is performed on several

state of the art methods and real and synthetic graph datasets

to evaluate the precision, recall and computational cost. The

results show that the A-SGM is competitive with state of the

art methods in terms of precision, recall and execution time.

General Terms

Machine Intelligence (Data and Web Mining), Applications of

Computer Science in Modeling, Data and Information

Systems.

Keywords

Graph Matching, topology, graph characteristics, weight

calibration, simulated annealing, graph queries.

1. INTRODUCTION
The matching of sub-graphs is a key task for graph mining

which however may have a high computational cost for large

data domains. Different matching paradigms exist in the

literature. On the one hand there is the exact one to one

mapping of labeled nodes exemplified by isomorphism

matchers. For these, different optimizations exist in order to

reduce the computational cost, such as compressed matrix

representations of the graph structure. On the other hand,

approximate matchers relax the requirement for a total

matching.

The need for an exact isomorphic matching is also application

and domain dependent. Applications such as molecular

discovery[1][2] and chemical analysis[3] may require exact

isomorphic matching, whereas for data mining online social

networks (OSNs) a good approximate match may be

sufficient. Example applications for OSN sub-graph matching

are user profiling, classification and clustering, network

analysis, behavior analysis, among others.[4]

It must also be mentioned that an approximate matcher can be

used as a first step to reduce the search space, after which an

exact matcher can be applied. This approach is used by

different authors and some of these works will be summarized

in the state of the art.

The matcher presented in this paper uses topological graph

characteristics identified by data mining and statistical

analysis techniques to compose a descriptive footprint. A

corresponding weighting scheme is applied for each

characteristic to capture an approximate “model” of the GED

(Graph Edit Distance) [5] isomorphism matcher which is used

as fitness function. The runtime computational cost is reduced

because the calculations required for the sub-graph

characteristics (statistical metrics such as degree, clustering

coefficient, number of edges, degrees of neighbors) are not

NP-hard and are pre-calculated. Then the distance metric

calculates the difference between the respective weighted

characteristics of each sub-graph. This is used as a first step to

reduce the search space then a label mapping is used to obtain

the most exact match. The principal overhead is the training

of the weights, for which simulated annealing is used as a pre-

process and GED[5] as the fitness function. The

computational cost of the training is reduced by using

relatively small but representative samples of the complete

dataset, and cross validating the results.

In this paper the approximate graph matcher presented is

evaluated against two state of the art methods, in terms of

computational cost, precision and recall. The sub-graph

matching algorithm in the present work has been submitted as

a European and International Patent application[6]. It has also

been successfully used in a specific application for data

privacy (k-anonymization) [7].

The structure of the paper is as follows: in Section 2 the state

of the art and related work is discussed for the issues

considered in this paper; in Section 3 definitions are given for

the key concepts used in the remainder of the paper; in

Section 4 the distance metric is described, together with some

example calculations and details of the data processing

scheme; in Section 5 the experimental setup, datasets and

benchmarking methods are described; in Section 6 the

empirical results for the training and test (apply) phases are

presented; finally, in Section 7 the work is summarized.

2. RELATED WORK AND STATE OF

THE ART
For convenience, the related work and state of the art will be

divided into two general areas: (i) isomorphic matching

approaches and (ii) recent work which includes different

approximate approaches, indexing schemes and scalable

solutions for big data.

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

30

2.1 Isomorphic Matching
A key property of interest in graphs is the isomorphic

property, which refers to an exact match between two given

graphs, in terms of structure, dimensionality, connectivity and

mapping of corresponding nodes. Graph matching is a key

activity in different pattern recognition applications, in which

high and low level information may be represented. However,

graph matching has a high computational cost, and the task of

finding isomorphic sub-graphs is a problem which is NP-

complete.

Two key references for isomorphic matchers are nauty[8] and

VF2[9]. Nauty uses group theory concepts in order to

efficiently construct the automorphism group of each of the

input graphs, from which a canonical labeling is derived. This

obtains a node ordering that is uniquely defined for each

equivalence class of isomorphic graphs, such that two graphs

can be isomorphically matched by a relatively simple

verification of the equality of the adjacency matrices of their

canonical forms. The equality verification has O(N2) time,

however the preprocessing of the canonical labeling can

require an exponential time in the worst case. VF2, on the

other hand, is based on converting the graph into a tree

structure and then performing a depth-first search, using a set

of rules to efficiently prune the search tree. It uses data

structures which have been adapted in order to further reduce

the computational cost of matching. VF2 has subsequently

become widely used in the graph mining community.

The Graph Edit Distance (GED) [5] calculates the number of

changes required in order to convert one graph into another.

In general, the number of changes necessary is directly related

to the similarity of graphs. The operators used to change the

graph can be, for example, add edge, delete edge, add node,

delete node, and so on. GED represents an optimized version

of the graph edit distance measure, in which Bunke evaluated

the relation between the cost function and the optimal

matching of two graphs.

2.2 Recent Work
In this section a selection of recent sub-graph matching

methods and distance measures are reviewed, with an

emphasis on those which are most often referenced and used

for benchmarking within the graph mining community.

Tale[10] is a method which uses graph characteristics and

stochastic techniques in order to perform approximate

matching of sub-graphs. This method uses an indexing

technique, called Neighborhood Index (NH-Index), which

uses a node’s neighborhood characteristics. Queries are

launched against the graph, and a graph node matches the

query node, only if the two nodes match and their

neighborhoods also match. A neighborhood is defined as the

induced sub-graph of a node and its neighbors (adjacent

nodes). The similarity function is defined as follows:

‘nbConnection’ is the neighbor connectivity of a given node;

 is the percentage of neighbors of a query node that can have

no corresponding matches in the neighborhood of a graph

node. Hence, ‘nbmiss’ =  × (Nq.degree) represents the

number of neighbors of the query node which can be missing

in the match to a graph node and ‘nbcmiss’ is the number of

missing neighbor connections. Then the fraction of missing

neighbors of the query node is defined as fnb = nbmiss /

Nq.degree, and the fraction of missing neighbors connections

is defined as fnbc = nbcmiss / Nq.nbconnection .

Wei[11] presents ‘Tedi’, a method for efficiently calculating

shortest paths for graph queries. It employs an indexing and

query processing scheme in which the graph is first

decomposed into a tree such that each (tree) node contains

multiple graph vertices. The shortest paths are stored in the

tree nodes and these local paths together with the tree are used

to form a lookup index to the graph. A graph search can then

be performed as a bottom-up process on the tree.

Zou et al.[12] present a distance-based pattern matching

method for queries over a large data graph G. In order to

process the large search space, the authors adopt a filter-and-

refine framework to answer pattern match queries over the

graph. The method is benchmarked against Tedi[11] and

Sapper[13]. First, a set of candidate matches is found by a

graph embedding technique and then the set of matches is

evaluated to find the exact matches. Zhao et al.[14] present

‘SPath’, which the authors describe as being a high

performance graph indexing mechanism, that addresses the

graph query problem on large networks. ‘SPath’ decomposes

shortest paths around vertex neighborhoods and uses them as

basic indexing units, which was found to be effective for

graph search space pruning and scalable for index

construction and deployment. ‘SPath’ processes and optimizes

a graph query ‘one path at a time’, instead of the less efficient,

‘vertex at a time’ method. They benchmark their method

against the GraphQL[15] algorithm.

Khan et al.[16] present ‘Ness’, a neighborhood based

similarity search designed for graph datasets with a low

incidence of automorphisms and a high incidence of noise

(such as online social networks). Their method is based on an

information propagation model which transforms a large

network into a set of multidimensional vectors, which are then

processed by indexing and similarity search algorithms. The

neighborhood cost function aggregate the differences for all

node pairs (v, u), where u = f(v).

Sun et al.[17] study the problem of sub-graph matching on big

data graphs. They present an algorithm that supports efficient

sub-graph matching for graphs deployed on a distributed

memory store. The method uses efficient graph exploration

and massive parallel computing for query processing. Given a

query, a cluster graph is created to model the data distribution

among different machines in the cluster with regard to the

query.

Another method which takes into account noisy data is

Sapper, presented by Zhang et al. in [13]. Sapper (Sub-graph

Indexing and Approximate Matching in Large Graphs)

considers the existence of noise (such as missing edges) in

large database graphs, and how it affects approximate sub-

graph indexing and thus finding the occurrences of a query

sub-graph in a large database graph. Sapper uses hybrid

neighborhood unit structures in the index with pre-generated

random spanning trees and a specific graph enumeration

order. The authors benchmark their method against Tale[10]

and Gaddi[18] using real and synthetic graph datasets.

Gaddi[18] is a method which uses a distance measurement

based on frequent substructure counts over a single large

graph. The distance metric, called NDS (neighboring

discriminating substructure distance) is used for graph

indexing which the authors claim has a high pruning power in

the search space, and scales linearly with the number of

neighboring vertex pairs. Consider a pair of vertices v1 and v2

within distance L in the overall graph G, and an integer k

defined such that 2  k  L. Then an intersecting sub-graph

Int(G, v1, v2) is generated from v1 and v2 as follows: (i) the k-

neighborhood set of v1 and v2 is generated and defined as Nk

(G, v1) and Nk (G, v2); (ii) the intersection of Nk(G, v1) and Nk

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

31

(G, v2) is obtained , that is Nk (G, v1)  Nk (G, v2); (iii) the

induced sub-graph of the intersection set Int(G, v1, v2) is

obtained as S(Nk (G, v1)  Nk (G, v2)). Once the set of

intersecting sub-graphs has been obtained, frequent sub-graph

mining techniques are used to find frequent substructures and

to select the most discriminative ones.

To conclude this section, it is noted that a specific application

of the sub-graph matcher A-SGM was presented by Nettleton

et al. in [7], in which it was successfully used to match local

neighborhoods of a graph for a data privacy application. In

[7], a k-anonymization process is applied in which objects

(local neighborhoods in this case) are generalized into groups

of k members. This requires finding, for a given local

neighborhood, the k-1 most similar local neighborhoods.

3. DEFINITIONS AND PRELIMINARY

DISCUSSION
A graph is defined as a set of vertices V interconnected by a

set of edges, thus: G = (V, E). In the current work each vertex

has an identifier for data processing purposes which is

considered as its label.

Isomorphism: two graphs G1 = (V, E1), G2 = (V, E2) are

designated as being isomorphic if a permutation p exists such

that p(G1) = G2. That is, with the same set of vertices, the

edges of G1 can be rearranged to fit G2. In Fig. 1 an example

of two graphs is shown, one of which is an isomorphism of

the other, by the permutation {(A, V), (B, W), (C, X), (D, Z),

(E, Y)}.

Fig. 1. Graph Isomorphisms: the upper and lower graphs

are isomorphic if an adequate mapping can be defined

between them.

Fig. 2. Sub-graph depiction

Sub-graph: a sub-graph Gn = (V', E') is defined as a subset of

G around a given reference vertex vr at a distance of one.

Hence vr  V' and all other vertices v'  V' are immediate

neighbors of vr. An example of a sub-graph can be seen in Fig.

2.

Approximate topological matcher: an approximate

topological matcher is defined as a function A-SGM(G1, G2,

{T}, {W}), which returns a similarity value  for the two sub-

graphs G1 and G2, given a set of topological characteristics (or

features) {T} and a set of weights {W} which act on the

features. The set of features {T} is defined as {t1, t2, t3, t4, t5}

and the set of weights {W} is defined as {w1, w2, w3, w4, w5}.

It is observed that in the current implementation there are five

features and their corresponding weights, although in a

different implementation a distinct number of features and

weights could be used.

Approximate Label Pair Edge Matcher: assume that a sub-

graph G1 has a set of labels L1 = {l1, l2, l3, … , ln} and a set of

edges between label E1 = {{l1, l2}, {l1, l3}, …, {ln, lm}}.

Likewise, a sub-graph G2 has a set of labels L2 and a set of

edges between labels E2. Then a label edge matcher will count

the number of edges which are different, defined as E , using

the following formula:

 

  

(1)

which gives a distance measure between the sub-graphs in

terms of the label pair similarity.

Exact matcher: an exact matcher is defined as a function

GED(G1, G2) which returns a distance value  indicating the

number of modifications (edits) required to make the sub-

graphs G1 and G2 isomorphic.

Samples: a set of n training samples {S} is defined as { s1, ..

sm} which is randomly selected from the complete graph G,

each sample si consisting of m vertices. Each sample vertex

has to be at least at distance three from any other sample node

in order to obtain disjunct neighborhoods.

Fitness: The fitness of the approximate matcher is defined in

terms of the information retrieval concepts of precision and

recall, for which the ‘relevant’ sub-graph set is that which is

found by the GED matcher. Then, the ‘returned’ sub-graph set

is that which is found by the A-SGM matcher.

Relevant sub-graphs: The reference (ground truth) function

is defined as GED and the function to be tested as A-SGM.

Now let the list LE be the list of (relevant) sub-graphs returned

by the GED function, in ascending order of the edit distance

value with respect to a given sub-graph Gr with reference

node vr. Let the list LU be the ranked list of (returned) sub-

graphs returned by the A-SGM function, in ascending order of

the similarity value with respect to the sub-graph Gr

corresponding to a given reference node vr. It is observed that

each sub-graph in the list is identified by its corresponding

reference node vr’ in the graph.

Then, the fitness of the A-SGM function is measured in terms

of the information retrieval metrics ‘precision’, ‘recall’ and F1.

These metrics are defined in terms of two sets of results: (i)

the ‘ideal’ set of results returned by an ‘optimum’ method

(GED, in this case) and (ii) another set of results returned by a

method which is to be benchmarked (e.g. A-SGM). The

former set is known as the “relevant results’ and the latter set

is known as the ‘returned results’.

X

Y

V

Z

W

C

E

A

D

B

v2

v1

vr

v3

v4

Subgraph(vr) External to
Subgraph(vr)

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

32

3.1 Defining the Relevant Set of Results
The definition of the ‘relevant set’ is often defined by the

precision@(n) measure (precision at n), that is, the precision

and recall given by considering the first n results retrieved by

the reference matcher (in the present case, GED) as the

relevant set. The ‘returned results’ set will then also be

defined as the first n results, ordered by the similarity metric

of the matcher used (e.g. A-SGM). However this is an

artificial cutoff, and the returned results are dependent on the

items being queries. For example, Tian and Patel[10] reported

an optimum precision of approx. 85% for a recall of 80% for

the ‘Tale’ matcher processing the ASTRAL protein structure

dataset. For higher recall values the precision dropped rapidly.

These relatively high values were obtained because of the

nature of the dataset and given that the methods tend to return

relevant results as their top results. Walters[19] presented a

detailed study of precision and recall for 8 different dataset

corpuses including Google Scholar, finding an optimum

precision of 80% for a corresponding recall of 50%. However,

for all corpuses, lower precisions (approx 50%) and recall

(approx. 30%) were obtained with an optimum relevant

document set size of between 10 and 25 (for precision) and

between 20 and 40 (for recall).

Relevant Results: in the current context, in order to limit the

set of “relevant results” returned by the GED function for a

given sub-graph query, it is necessary to specify which results

will be included in the set. Firstly, all results are included

whose distance is zero, that is, GED designates them as exact

matches (isomorphisms). It is observed that sub-graphs of

distance zero cannot be ordered, thus if an artificial cutoff is

defined for the relevant set, some of the isomorphisms

returned by GED may be excluded. As a consequence, if a test

method returns an isomorphism in the returned set which was

not in the relevant set, it will be considered as not relevant.

Hence, in order to guarantee that the relevant set always

contains all the isomorphisms, its minimum size is set to the

maximum number of isomorphisms  (with distance zero with

respect to the query) returned for any query. On the other

hand, if there are less than  isomorphisms returned, the

results with the top non-zero distances are included, ordered

by distance until a set size of  is obtained. In practice, this

procedure obtains an average relevant set size of approx. =25

results. It is observed that the test datasets (see Section 5) will

have different characteristics with respect to the average

number of isomorphisms returned per query. This is

particularly so for the protein graph dataset which has a more

regular topological structure than the online social network

graph datasets. It is also true that queries consisting of small

sub-graph structures, for example, two vertices connected by

an edge, would return a much higher number of

isomorphisms. However, in the present work, a sub-graph

query is always formed by a reference node and its immediate

neighbors. Consequently, given that the average degree tends

to be relatively high, this will in the majority of cases result in

quite large sub-graph structures as query targets which have

relatively few isomorphisms in the complete graph.

To formalize what has been commented about relevant result

sets, LE will represent the set of “relevant sub-graphs” and LU

the set of “returned sub-graphs”. Then, the information

retrieval metrics of precision P and recall R are defined as:

 

 (2)

and

 

 (3)

Then the F1 measure (information retrieval metric) is defined

in terms of the precision and the recall sub-graph sets. The F1

measure combines precision and recall as their harmonic

mean:

 (4)

In the case of F1, recall and precision are evenly weighted.

This measure has been used in order to obtain an equilibrium

between these metrics for the current application. Other

variants include F2, which biases recall over precision, and

F0.5 which gives a greater weight to precision.

4. DESCRIPTION OF THE METHOD
In this Section, firstly the distance metric of the sub-graph

matcher will be described, followed by some examples of how

the matching is calculated. Next there is a description of the

overall data processing scheme. In Fig. 3 a schematic

representation of the process is shown.

Fig. 3. Overall Scheme of Data Processing

4.1 Distance Metric
In order to calculate the similarity between two sub-graphs, a

two step distance metric is used. The first step serves to

reduce the search space and finds similar topologies based on

graph statistical features. The second step acts only on the top

sub-graphs identified by Step 1, and performs a label

Train
Pre-

Calculations
Apply

Calculate GED

distance for each
sub-graph

Calculate sub-

graph statistics

Optimization process

(simulated annealing)
to find best feature
weights using GED

distance as fitness
value

For a given query sub-

graph q, find top k
sub-graphs with
minimum distance to

q.

Step1:

topology
footprint

match

Step2:

label set
match

ASGM distance metric

http://en.wikipedia.org/wiki/Harmonic_mean
http://en.wikipedia.org/wiki/Harmonic_mean

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

33

matching. It is recalled that a sub-graph is defined as a

reference vertex, its immediate neighbor vertices and the links

between them (see Fig. 2).

Step 1: The topology similarity metric calculates a distance

based on sub-graph characteristics which are pre-calculated.

The sub-graph characteristics (footprint) are:

 degree of the target node DT

 number of edges in the sub-graph NE

 clustering coefficient CC

 normalized average (internal) degree of adjacent nodes

ADAN

 normalized standard deviation of (internal) degree

of adjacent nodes SDAN

The five characteristics were selected by statistical evaluation

so as to best reflect the internal structure of the sub-graph,

while including characteristics about the neighbors (such as

their degree including links outside the sub-graph). In order to

perform the calculation, all values are normalized against the

maximum and minimum corresponding values in the

complete graph. The immediate neighborhood sub-graphs of

two reference vertices v1 and v2 are designated as sub-graphs

G1 and G2, respectively. Then, the distance metric will be as

follows:

A-SGM1(G1, G2) =

(DT(G1), DT(G2)) +

(NE(G1), NE(G2)) +

(CC(G1), CC(G2)) +

(ADAN(G1), ADAN(G2))

(SDAN(G1), SDAN(G2))

(5)

The weight vector {α, β, χ, δ, ε} is trained using a simulated

annealing process. (DT(G1), DT(G2)) means the normalized

difference between metric DT (degree of target node) of graph

G1 and metric DT of graph G2 .

Step 2: Using as input the most similar sub-graphs identified

by Step 1, the label matcher calculates a distance based on a

list of vertex labels {L} and a list of label pairs which are

connected {LP}. Again consider two sub-graphs G1 and G2.

The distance metric will be as follows:

A-SGM2(G1, G2) =  (6)

Equation (6) gives a numerical value for the number of label

pairs which are different between the two sub-graphs G1 and

G2. A value of zero will imply an exact match between G1 and

G2 based on label pairs. It is this value which is compared

with the value generated by GED, for each sub-graph pair in

the sample training set, the difference being used as the fitness

value for the simulated annealing process which calibrates the

weights for Equation (5). It is observed that, for each sub-

graph, the assignment of the vertex label sets {L} and the

connected vertex label sets {LP} is performed within the

clustering coefficient calculation, with no extra cost. Efficient

adjacency list data structures hold the sets for each vertex.

At runtime, the intersection is calculated by direct access to

the adjacency list data structures using the attribute-value as

index. This inevitably requires a one to one checking of each

label and label pair, rather than the simple numerical

differences of Step 1 which are pre-calculated. However, Step

1 greatly reduces the search space by selecting only a small

subset of the closest matching sub-graphs in terms of their

topology, and hence Step 2, which contains the most

expensive step of label matching, is performed only on this

reduced subset.

4.2 Example Calculations of Distance

Metric
With reference to Fig. 4 and Table 1, eight similar graphs are

shown with a slightly different number of vertices, edges and

labels. Each graph has a ‘reference node’. For example, in the

case of graph G1 in Fig. 4 the reference node is labeled as R,

which in turn has a number of ‘neighbor nodes’, which for

graph G1 are labeled as A to F. From the graph statistics of

Table 1, it can be seen how the topological features vary in

relation to the topologies, and how they are sensitive to small

changes in the sub-graph. The set of returned graphs shown in

Fig. 4 is ordered by the distance value given by Equation (5),

which is shown in column 1 of Table 2. It is observed that

graphs G2 and G3 have a mutual distance of zero with respect

to G1, as calculated by Equation (5) due to their identical

topology. However, when the label matcher of Equation (6) is

applied, it is found that the top match to G1 is G4 (col. 2 of

Table 2).

Example of edge pair calculation: With reference to Fig. 4,

considering graphs G1 and G6, first a matching is made on

G1’s edges in G6. It is found that A-B C-D, F-E and F-R are

missing, which gives a provisional missing count of 4. Then

the inverse comparison is performed, looking for G6’s edges

in G1. It is found that two edges are missing, B-C and D-E.

Hence, the total edge pair difference for graphs G1 and G6 will

be 6.

Table 1. Example values for graph topological characteristics used by the distance measure (Eq. 5) for the graphs shown in

Fig. 4

 G1 G2 G3 G4 G5 G6 G7 G8

Nodes 7 7 7 7 7 6 8 8

Edges 9 9 9 8 9 7 10 10

Clustering Coefficient 0.886 0.886 0.886 0.827 0.707 0.84 0.802 0.695

Avg. Degree neighbors 2.0 2.0 2.0 1.67 2.0 1.80 1.86 1.86

Std. Dev. degrees

neighbors

0 0 0 0.516 0.894 0.447 0.690 0.899

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

34

Fig. 4. Example of a sub-graph query (G1) and returned results (G2 to G8) ordered by distance measure (Eq. 5).

Table 2. Distance measure results for the graphs of Fig. 4

and feature values of Table 1.

Graph

Eq. (5)

distance*

to G1

Eq. (6)

distance

to G1

GED

distance

to G1

G2 0.00 6 1.00

G3 0.00 4 0.67

G4 1.17 1 0.17

G5 1.40 2 0.33

G6 1.68 6 1.00

G7 1.70 3 0.50

G8 2.18 5 0.83
*Using initial weights of {3, 3, 2, 1, 1}

In order to calculate the distance (Eq. 5), first all the values in

Table 1 are normalized, then an initial weighting vector {3, 3,

2, 1, 1} is applied, which produces the values in the first

column of Table 2. The initial weighting vector can have an

arbitrary assignment, or it can be assigned from some

previous statistical analysis. The initial weight assignments

will then be refined by the simulated annealing optimization

process, which will be commented in the next section. Then

the edge pair distance is calculated using Eq. 6 as described

previously, and the values are normalized, which gives

column 2 of Table 2. It can be seen that the first two graphs,

G2 and G3, give a distance of zero ranked uniquely on

topology, whereas the lowest label pair distances correspond

to graphs G4, G5, G7, G3, G8, G2 and G6, in that order.

However, if the set size of results returned by Eq. 5 is

progressively extended, the majority of the top graphs ranked

by GED will be found among them. By training the weights of

Eq. 5 (using a simulated annealing process) to find the same

subset of similar graphs to the GED function, a closer fit is

obtained of the results set of Eq. 5 to that of GED. It is

recalled that Eq. 5 is used as a first step to reduce the search

space and then Eq. 6 is used to produce the final ranking.

Hence, it is finally the set overlap (Eq. 6, col. 2 of Table 2)

which measures the fitness, and not the ordering (rank

position) of the results. From columns 2 and 3 of Table 2 a

good fit can be seen between the set overlap and GED.

4.3 Data Processing Scheme
The data processing scheme comprises three main steps: pre-

calculations, train and apply.

Pre-calculations: In the pre-calculations step the sub-graph

statistics and the GED distance between all sub-graphs are

calculated. It is observed that GED is calculated for all sub-

graphs for purposes of runtime benchmarking (see Sections 5

and 6). Otherwise, it is only necessary to calculate the GED

for the sample vertex set S (input to the train step). For each

vertex vi, the reference vertices (vj, vj+1, …) of the k sub-

graphs which are closest to vi‘s sub-graph are assigned as a

vector. The pseudo-code of this process can be seen in the

Annex Section as ‘Procedure 1’.

Train: The ‘A-SGM’ matcher distance metric is defined in

terms of a set of descriptive statistical features each of which

has a corresponding weight to ponder its contribution to the

overall distance result. The weights are optimized for each

dataset by a process which uses the simulated annealing

technique. The fitness function used for the optimization

technique matches the result obtained by the ‘A-SGM’ method

against the ‘ideal’ result obtained by the GED matcher, as

described in the previous section. Training is performed using

subsets of randomly assigned sample nodes. The sub-graph

around each reference (sample) node is then used as a graph

search query and the top k results are found. The use of

subsets of sample nodes greatly reduces the computational

cost. The best weight assignments are found by executing n

training runs (n = 5). The pseudo-code of this process can be

seen in the Annex Section as ‘Procedure 2’ and ‘Procedure 3’.

Apply: Once the feature weights have been optimized in the

‘Train’ step, the A-SGM distance measure is calculated for

different sub-graph queries against the whole graph to find the

top k results. The GED method (the gold standard) is also run,

and two state of the art benchmark comparison methods (see

Section 5.2). The pseudo-code of this process can be seen in

the Annex Section as ‘Procedure 4’.

G1

A

R

B

C

D

E

F

(4) G5

A

R

B

C

D

E

F

(5) G6

A

R

C

D

E

(6) G7

A

R

B

C

F

G

D

E

(7) G8

A

R

B

C

F

G

D

E

(1) G2

A

R

B

C

D

E

F

(2) G3

A

R

B

C

D

E

G

(3) G4

A

R

B

C

D

E

F

Query graph Ranked results

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

35

5. EXPERIMENTAL SETUP
The experimental setup will now be described in terms of the

datasets, the benchmark methods and the hardware/software

used.

5.1 Datasets
The datasets chosen have been frequently used by other

authors of sub-graph matching methods in the state of the art

literature. The real datasets are: DBLP[20], downloaded from

https://snap.stanford.edu/data/com-DBLP.html; CondMat[21],

downloaded from https://snap.stanford.edu/data/ca-

CondMat.html; and Protein[22], downloaded from

http://vlado.fmf.uni-lj.si/pub/networks/data/. In Table 3 the

basic statistics are shown for these graph datasets. The

synthetic datasets, generated using a Java implementation of

RMAT[23], had the following configurations {vertices,

edges}: {10k, 100k}, {100k, 1M}, {1M, 3M}.

Table 3. Summary of graph statistics for the test datasets

 #Vertices #Edges

Protein 2361 7182

Cond-mat 23133 93497

DBLP 317080 1049866

Rmat1 10K 100K

Rmat2 100K 1M

Rmat3 1M 3M

5.2 Benchmark methods
Two benchmark methods, Tale[10] and Ness[16], are used

which represent two recent state of the art approximate sub-

graph matching methods, which were described in Section 2.

The software of these two systems was kindly supplied by the

authors, upon request.

The Tale system required the following software and systems

to be installed and configured: Linux OS; C++; PostgreSQL

(http://www.postgresql.org/); LEDA (Library of Efficient

Data types and Algorithms), a C++ class library ; GUESS

(http://graphexploration.cond.org/); Java Version 6.

PostgreSQL is used to store and index graph data, LEDA is

used for a bipartite graph matching computation, GUESS is

used for visualizing the graphs and Java 6 is used for running

the graphical user interface.

The Ness system required the following software and systems

to be installed and configured: Fedora Linux OS release 8

(Werewolf); C++, gcc; LEDA.

GED[5] is used as the ‘gold standard’ method for calculating

the “ground truth” quality of the results for precision/recall,

and for training ASGM. That is, for a given sub-graph query it

returns the top k sub-graphs which are the closest match

(smallest distance) to being isomorphisms of the sub-graph

query. The Java code of the GED (Graph Edit Distance

Finder) was adapted from the online source

https://code.google.com/p/ged-finder/, authored by Roman

Tekhov. It is observed that the cost for all types of edit

operations (vertex addition/deletion, edge addition/deletion

edge, and so on) is set to 1.

The ASGM matcher requires Eclipse Standard/SDK Kepler

Service Release 2 (2014), Java Version 7, PostgreSQL for

storing and indexing the pre-calculations and GED. The

following parameters were assigned for the simulating

annealing procedure: initial temperature, 1.e+6; cooling rate,

20; iterations, 20; tolerance, 1.e-5. The type of simulated

annealing was downhill simplex.

5.3 Hardware
The hardware used is a PC with an Intel quad-Core i5-3470S

processor at 2.9Ghz and 4Gb of RAM. The software used is

Eclipse Kepler R2 with Java SE 7 and Windows / 7 (32 bits).

6. EMPIRICAL TESTING AND

RESULTS
In this Section the performance results are presented in terms

of computational cost for the training phase and

precision/recall and computational cost for the apply phase.

The ASGM method is benchmarked against the comparison

methods Tale[10] and Ness[16] for six datasets: three real

world and three synthetic. It is observed that the GED matcher

is used as the gold standard for precision/recall, as described

previously. An effort has been made to replicate equal test

conditions in terms of hardware and software, although Tale

and Ness use the LEDA library and ASGM does not, which

may give the former methods some advantage.

6.1 Training Phase
The results of elapsed time are shown for different Rmat

generated graph datasets and the real datasets. In the training

phase cost, the corresponding index building times are

included for Tale and Ness. In the case of ASGM, the pre-

calculations and the simulated annealing calibration of the

attribute weights are taken into account. In Fig. 5 the datasets

have been grouped into real datasets (on the left) and synthetic

datasets (on the right). Also, within each group they have been

arranged, from left to right on the x-axis, in approximate order

of size and complexity (that is the number of vertices and

edges, see Table 3). The y-axis uses a logarithmic scale given

the large difference in processing time between graph

datasets. From this, it can be seen that ASGM and NESS

consume a similar amount of training time, with ASGM being

slightly faster, and TALE is consistently the fastest of the

three.

Fig. 5. Pre-processing times for methods: ASGM

(calibration); Tale and Ness (index build)

https://snap.stanford.edu/data/com-DBLP.html
http://vlado.fmf.uni-lj.si/pub/networks/data/
https://code.google.com/p/ged-finder/

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

36

Fig. 6. Execution times for methods and sub-graph queries (vertices, edges): (a) (4, 24) (b) (5, 48) (c) (6, 120)

Fig. 7. Precision and Recall for methods and sub-graph queries (vertices, edges): (a) (4, 24) (b) (5, 48) (c) (6,120)

6.2 Apply Phase
In the following the results are shown in terms of elapsed

execution time (Figs. 6), precision and recall (Figs. 7) for all

methods and datasets. For the precision and recall, the

relevant sub-graph set (‘gold standard’) is defined as the set

recovered by the GED matcher. See Section 3 for a

description of the quality metrics: precision, recall and F1.

In Figs. 6 the runtime computation cost results are shown for

three different queries, for each method and dataset. The

datasets are organized on the x-axis in the same manner as

previously for Fig. 5. Each query is designated by two

numbers (V, E) which signify the number of vertices V and

edges E in the sub-graph query. The three queries are (4, 24),

(5, 48) and (6, 120). In Figs. 6 it can be seen that TALE

consistently shows a higher runtime than the other two

 Precision Recall

 Legend:

 Method

Legend:

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

37

methods. Ness and ASGM, on the other hand, display a very

similar performance. It is observed that a logarithmic scale is

used on the y-axis given the large difference in processing

time between graph datasets.

In Figs. 7 the results are shown for the quality of the query

responses for each query, method and dataset. The datasets

are organized on the x-axis in the same manner as previously

for Figs. 5 and 6. The quality is calculated as described

previously, using the information retrieval metrics of

precision and recall and GED as the ‘gold standard’ for the

retrieved result set. In general, it can be seen that the

precision is consistently higher than recall, which is to be

expected and is consistent with other results in the literature.

This is because, it is relatively easier that most of the returned

results are relevant (precision) and more difficult that all the

possible relevant results are returned (recall), with respect to a

given threshold (see Section 3).

In terms of the methods, it can be seen that overall NESS has

a slightly lower precision score than TALE and ASGM.

TALE has stronger overall recall for the datasets, and better

precision for the bigger datasets and the smaller query. ASGM

in general has a recall which is similar to NESS, and precision

which competes with TALE and NESS as the best result.

However, each of the methods has specific queries and

datasets in which they performed better/worse. This could

suggest the possible utility of building an ensemble system

integrating different methods, with a consensus as output.

7. SUMMARY AND CONCLUSIONS
A novel sub-graph matcher has been presented which employs

an optimization process to calibrate sub-graph statistic

weights and use them in a similarity distance. It has been

shown to be competitive with state of the art methods in terms

of precision, recall and computational cost in both the pre-

calculation/training and execution phases. As future work,

other types of data related to the graph could be incorporated

into the similarity matching, such as categorical and

numerical data associated with the nodes and edges. Also, an

ensemble approach could be considered.

8. ACKNOWLEDGEMENTS
This research is partially supported by the Spanish MEC

project HIPERGRAPH TIN2009-14560-C03-01.

9. REFERENCES
[1] Ewing, T.J.A, Kuntz I.D. 1997. Critical evaluation of

search algorithms for automated molecular docking and

database screening. J. Comput. Chem., 18(9) (1997)

1175-1189.

[2] Raymond, J.W., Willett, P. 2002. Maximum common

subgraph isomorphism algorithms for the matching of

chemical structures. J. Computer-aided Molecular

Design, 16(7) (2002) 521-533.

[3] Inokuchi, A., Washio, T., Motoda, H. Complete mining

of frequent patterns from graphs: Mining graph data.

Mach. Learn. 50(3) (2003) 321-354.

[4] Nettleton, D.F. 2013. Data Mining of Social Networks

Represented as Graphs, Comp. Sci. Rev., 7 (2013) 1-34.

[5] Bunke, H. 1999. Error correcting graph matching: on the

influence of the underlying cost function. IEEE Trans.

Patt. Anal. Mach. Intell. 21, 917-922.

[6] Nettleton, D. F. and Dries, A. 2014. Local

Neighbourhood Sub-Graph Matching Method. European

Patent application number: 13382308.8. Presented: 30th

July 2013. PCT application number:

PCT/ES2014/065505. Presented 18th July 2014.

[7] Nettleton, D.F., Torra, V., Dries, A. 2014. A Comparison

of Clustering and Modification based Graph

Anonymization Methods with Constraints. International

Journal of Computer Applications (0975 – 8887), Vol.

95– No.20, June 2014.

[8] McKay, B.D. 1981. Practical graph isomorphism,

Congressus Numerantium 30, 45-87.

[9] Cordella, L.P., Foggia, P., Sansone, C. and Vento, M.

2001. An Improved Algorithm for Matching Large

Graphs. In: Proc. 3rd IAPR-TC-15 Int. Workshop on

Graph based Representations, pp. 149-159.

[10] Tian, Y. and Patel, J.M. 2008. TALE: A Tool for

Approximate Large Graph Matching. In: Proc. IEEE

ICDE 2008, 24th Int. Conf. on Data Engineering, pp.

963-972.

[11] Wei, F. 2010. Tedi: Efficient shortest path query

answering on graphs. In: Proc. SIGMOD 2010, pp. 99–

110.

[12] Zou, L., Chen, L., Özsu, M.T. and Zhao, D. 2012.

Answering pattern match queries in large graph

databases via graph embedding. J. VLDB 2012; 21(1):

97-120:

[13] Zhang, S., Yang, J. and Jin, W. 2010. SAPPER:

Subgraph Indexing and Approximate Matching in Large

Graphs. In: Proc. VLDB, 3(1), 2010.

[14] Zhao, P. and Jiawei Han, J. 2010. On Graph Query

Optimization in Large Networks. In: Proc. VLDB 3(1):

pp. 340-351.

[15] He, H. and Singh, A.K. 2008. Graphs-at-a-time: query

language and access methods for graph databases. In:

Proc. SIGMOD'08, pp. 405-418.

[16] Khan, A., Li, N., Yan, X., Guan, Z., Chakraborty, S. and

Tao, S. 2011. Neighborhood based fast graph search in

large networks. SIGMOD '11.

[17] Sun, Z., Wang, H., Wang, H., Shao, B. and Li, J. 2012.

Efficient subgraph matching on billion node graphs. In:

Proc. VLDB, 5(9):788-799.

[18] Zhang, S., Li, S. and Yang, J. 2009. Gaddi: distance

index based subgraph matching in biological networks.

In: Proc. EDBT '09, 12th Int. Conf. on Extending

Database Technology: Advances in Database

Technology, pp. 192-203.

[19] Walters, W.H. Comparative Recall and Precision of

Simple and Expert Searches in Google Scholar and Eight

Other Databases. 2011. The Johns Hopkins University

Press, Baltimore. Portal: Libraries and the Academy, vol.

11, no. 4, pp. 971–1006.

[20] Yang, J. and Leskovec, J. 2012. Defining and Evaluating

Network Communities based on Ground-truth. In: Proc.

ICDM 2012, pp. 745-754.

[21] Leskovec, J., Kleinberg, J. and Faloutsos, C. 2007. Graph

Evolution: Densification and Shrinking Diameters. ACM

Trans. on Knowledge Discovery from Data (ACM

TKDD), 1(1).

International Journal of Computer Applications (0975 – 8887)

 Volume 130 – No.10, November2015

38

[22] Sun, S., Ling, L., Zhang, N., Li, G. and Chen, R. 2003.

Topological structure analysis of the protein-protein

interaction network in budding yeast. Nucleic Acids

Research, Vol. 31, No. 9 2443-2450.

[23] Chakrabarti, D., Zhan, Y. and Faloutsos, C. 2004. R-mat:

A recursive model for graph mining. In Proc. SDM

(Secure Data Management), Orlando, Florida, USA, pp.

442-446.

10. APPENDIX
__

PROCEDURE 1 PreCalculations(graph G)

Input: complete graph G = (V, E)

Output: graph statistics for each sub-graph, assign closest sub-

graphs using GED

1. FOR each (v)  (G)

2. Define SGv as the sub-graph for vertex v.

3. For SGv calculate the following statistics: degree of

 reference vertex, clustering coefficient, number of

 edges, average degree of neighbors of reference

 vertex, standard deviation of degrees of reference

 vertex.

4. FOR each (v’)  (G), v’ ≠ v

5. Calculate the GED between SGv and SGv’ as

 GEDvv’

6. END FOR

7. Assign to vertex v, the k sub-graphs SGv’ which are

 closest to SGv*

8. END FOR

9. Normalize all statistics

END PROCEDURE
*GED is calculated for all sub-graphs for purposes of runtime benchmarking. Otherwise, it

would only be necessary to calculate the GED for the sample vertex set S.

PROCEDURE 2 Train(graph G, sample vertices S)

Input: complete graph G, sample vertices S

Output: optimal weights for Equation (5)

1. WHILE optimum fitness NOT FOUND or maxiterations

2. Run simulated annealing

3. Weights assigned by simulated annealing

4. Execute fitness function with weights assigned by

 simulated annealing, for sample vertices S on graph G

5. Simulated annealing evaluates if optimum fitness.

6. END WHILE

7. RETURN optimum weight assignments

END PROCEDURE

__

__

PROCEDURE 3 Fitness(graph G, sample vertices S,

 weights W)

Input: complete graph G, sample vertices S,

 current weights W

Output: fitness value F1 for current weights W

1. FOR each (s)  (S)

2. Define SGs as the sub-graph for s

3. Find top k sub-graphs LE corresponding to vertices i in

 G identified by GED as being minimum distance to

 SGs

4. Find top k sub-graphs LU, corresponding to vertices i

 in G whose A-SGM distance is closest to that of SGs .

5. Calculate fitness for s by calculating F1 measure for

 sets LE and LU

6. END FOR

7. RETURN average fitness

END PROCEDURE

PROCEDURE 4 Apply(graph G, sub-graph query Q,

 optimum weights W’)

Input: complete graph G, sub-graph query Q,

 optimum weights W’

Output: returned sub-graphs set corresponding to top matched

 sub-graphs, precision statistics

1. Find top k sub-graphs LE corresponding to vertices i in

 G identified by GED as being minimum distance to Q

2. Find top k sub-graphs LU, corresponding to vertices i

 in G whose A-SGM distance is closest to that of Q

3. Calculate precision and recall for sets LE and LU

4. RETURN precision and recall for query Q; top k sub-

 graphs LE

END PROCEDURE

__

IJCATM : www.ijcaonline.org

