
International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

41

A Survey on Big Data Management and Job Scheduling

Sreedhar C.
CSE Department

G Pulla Reddy Engineering
College

Kurnool. India

N. Kasiviswanath, PhD
Prof. & HOD, CSE Department

G Pulla Reddy Engineering
College

Kurnool. India

P. Chenna Reddy, PhD
Professor

JNTU Pulivendula
Pulivendula. India

ABSTRACT

Big data has gained its popularity in the recent years due to

the fact that there is a need for sophisticated method to collect,

process, analyze and visualize huge volumes of data generated

by our digital and computing world. Several challenges in

handling petabytes of information, commonly named as Big

data needs to be addressed in more efficient way. Big data

management (BDM) is the process of collecting, storing,

analysing and visualization of large volumes of data, which

can be in the form of structured, unstructured and semi-

structured formats. Problems such as data acquisition, data

storage, data retrieval, data analysis, and data visualization

can no longer be handled by traditional database systems. The

primary purpose of this paper is to provide a comprehensive

survey on Big data management and to provide an overview

on various algorithms related to job scheduling in Hadoop and

the latest advancements. These research directions can lead to

exploration of Big data domain and result in development of

optimal techniques and scheduling algorithms to address

problems faced in Big data.

General Terms

Survey on Big data and Job Scheduling

Keywords

Big data, Big data management, Job Scheduling, Hadoop,

MapReduce.

1. INTRODUCTION
The roots of big data have already spread into our planet. Data

is being produced at an ever increasing rate. This growth in

data production is being driven by organizations, individuals;

switch from analogue to digital technologies, social media,

Internet of Things and sensors. The rate at which the data

produced in the recent years is far unexpected. Big data is a

popular term used to describe the exponential growth and

availability of data, both structured and unstructured. It is

mainly collection of data sets so large and complex that is

very difficult to handle them using traditional database

management tools. Big data has become one of the important

elements of business analytics, which provides tremendous

opportunities for enterprise information management and

decision making. In the recent study on the evolution of big

data shows that big data is not only limited to business needs

but also helps in research and scientific issues [29]. The rate at

which the amount of data collected needs to address several

issues and challenges such as real-time reports, transfer speed,

unstructured data, scheduling of jobs and security issues [30].

Modern information technology is becoming the engine

of operation and development of all walks of life. But the

engine is facing a huge test of big data [39]. Big data

management (BDM) is the process of collecting, storing,

analysing and visualization of large volumes of data, which

can be in the form of structured, unstructured and semi-

structured formats. Table 1 describes about data diversity in

the data sources.

Table 1. Data Sources and Formats

Data Source Data Formats

Wikipedia data set Un-structured

Amazon Movie Reviews Semi-structured

Google Social data sets Un-structured

Facebook Social data sets Un-structured

E-commerce Transaction

data sets

Structured

Job Resume Semi-structured

The advances in information technology have created huge

volumes of data. Social media is contributing a lot to this huge

volume of data. Facebook produces more than 10 TB of data

every day and Large Hadron Collider produces 15 PB of

information every year. In order to handle such petabytes of

information, Big data management tools has predominant

role, which are capable of collecting the data, processing,

reporting and visualizing in appreciable time. Relational

database systems tools are developed to tackle the problems

of data storage, retrieval, processing and querying with an

assumption that data is structured. Various business data is

breaking out in the form of geometric series [40] [5],

problems such as collection, storage, retrieval, analysis,

application and so on, can no longer be solved by the

traditional information processing technology With the rapid

development of technology, data is no longer in structured

format. The data can be in the form of audio, video, web logs,

images, system logs, network logs and in XML form. There is

a need for newer means of data processing and storage to

integrate these forms of data. Traditional relational database

management systems in general use a centralized storage

system and processing the data is performed without the use

of distributed architecture. The tools used to handle huge

volumes of data such as Hadoop uses distributed architecture.

In the recent years, there is much advancements in data

acquisition, data storage and processing technologies and this

has led to the data generated by organizations is modified

[31].

This paper presents: (a) comprehensive survey on Big data

management; (b) related technologies; (c) challenging issues

in Hadoop; (d) detailed study on current job scheduling

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

42

algorithms; (e) latest improvements made on scheduling

algorithms.

The rest of the paper is organized as follows. Section 2

describes the concepts of Big data management; Section 3

presents technologies involved in Big data; Section 4 explains

the issues and challenges faced by growth of the data; Section

5 introduces various algorithms adopted related to job

scheduling in Hadoop; Section 6 discusses the latest

advancements and research going on in scheduling; and

Section 7 concludes the paper with future work.

2. BACKGROUND
The rate at which the information generated by various

sources such as YouTube, facebook, twitter, LinkedIn,

Google, sensors increases at a rate of 10 times for every 5

years[33]. With such huge volumes of data generated, Big

data is a critical issue that requires immediate attention [32]

[34]. Big data can be described with 5 characteristics: volume,

variety, velocity, value and complexity according to [35]. Big

data technology aims to minimize less resources and

processing costs and to improve the performance in the

services of business models and provides decision making

support [36] [37]. Fig 1 describes the Big data management

process which involves data sources, data acquisition, data

processing, analysing and reporting. Data has become a

crucial parameter in the growth of any organization. Data

sources can be external and internal in the form of master

data, transactional data, reference data, data generated by

social media and machine generated data. Data is no more

confined to structured data as is followed in traditional

database management tools. Structured data, Semi-structured

and unstructured are the forms of data generated and to be

processed and analysed in Big data. Traditional database

management tools has played a vital role and produced better

results. Due to the tremendous increase in the data, these tools

cannot process with such huge volumes generated by various

sources such as web logs, sensors, YouTube, facebook ,twitter

and telecommunications which has led to the evolution of Big

data.

MapReduce is a framework used by Google for processing

huge amounts of data in a distributed environment [45].

MapReduce [3] and its open-source implementation, Hadoop

[4], have emerged as the leading computing platforms for big

data management. Managing operational data for analysis

includes a complex batch processing tool for extracting or

capturing data, transforming it and loading into a database.

The various challenges faced by BDM includes – unstructured

data, scalability, accessibility, real-time processing, fault

tolerance. Big Data requires efficient way to process large

quantities of data within tolerable elapsed times. Data

intensive computing systems such as Hadoop must be capable

to provide an efficient scheduling mechanism for enhanced

utilization in a shared cluster environment. A popular data

processing engine for big data is Hadoop Map Reduce. The

MapReduce framework became extremely popular, because

organizations could deploy it on available computing

components for parallel processing. Hadoop has

revolutionized the world for its ability to economically store

and analyse large data sets. Hadoop and its core programming

model, MapReduce are the crucial for batch-oriented

processing of huge amounts of data. MapReduce is useful for

batch processing on terabytes or petabytes of data stored in

Hadoop. Hadoop MapReduce is designed for batch processing

of large volumes of data and its key advantages are simplicity,

scalability, speed, recovery and minimal data motion. Hadoop

works at its best for mining large volumes of historical data

stored on the disk, but since the last few years, there is a

tremendous growth in real-time data and thus raises need to

process huge volumes of data in real-time and online

processing aspects. MapReduce is not able to process

recursive or iterative jobs inherently [2]. HDFS by itself is

designed for high throughput data I/O rather than high

performance I/O. The overhead of framework for starting a

job, like copying codes and scheduling is another problem that

prevents it from executing interactive jobs and real-time

queries.

Fig 1: Big data Management Process

Big data makes it possible to handle huge volumes of data

without requiring complex hardware and high cost. Several

tools are available for Big data management such as Not Only

SQL (NoSQL), Apache Avro, Hadoop, MemcacheDB,

Google BigTable, SimpleDB and Voldemort [38]. Big data

differs from the traditional data and cannot be stored in a

single node. The most commonly used tools and techniques

are Hadoop, MapReduce and Big Table.

Workflow management is not only about how a specific unit

of work is submitted, packaged and scheduled, but is also

about how it executes and how it handles failures and returns

results. In Hadoop all scheduling and allocation decisions are

made on a task and node slot level for both the map and

reduce phases.

3. RELATED TECHNOLOGIES
Map/Reduce application mainly uses HDFS for storing data.

HDFS is very large distributed file systems that assumes

commodity hardware and provides high throughput and fault

tolerance. Hadoop works on a distributed environment and is

build to store, handle and process petabytes and Exabyte of

data. Hadoop is a framework that handles large amount of

data for processing. The following section describes the

technologies related to Big data. Figure 2 describes the

various technologies related to Big data.

Data Sources: Master, Reference,

Machine generated, Social media

Data Analyze: In-memory, In-

database, streaming, predictive

1. HDFS Commands
2. Sqoop
3. Flume
4. Scribe

Data Processing: Batch, Real-

time, ETL, Message-based

Reporting, Dashboards,

interactive discovery, BI

Data Acquire: Files, OLTP,

NOSQL, HDFS

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

43

Fig 2: Technologies used at various stages of Big data

management

There are six steps in Hadoop process execution: job

submission, job scheduling, task assignment, task execution,

process and status updates and job completion. The analysis

is done with the help of two basic functionalities provided by

the Hadoop framework:

MapReduce: MapReduce [41] is a framework for processing

parallelizable problems across huge datasets using a large

number of computers, collectively referred to as a cluster (if

all nodes are on the same local network and use similar

hardware) or a grid (if the nodes are shared across

geographically and administratively distributed systems, and

use more heterogeneous hardware). Computational processing

can occur on data stored either in a file system (unstructured)

or in a database (structured). MapReduce [42] takes advantage

of the locality of data, data processing on or near the storage

assets in order to decrease the data transmission. Figure 3

describes Hadoop MapReduce process, which involves input

dat, split phase, Map phase, Intermediate data, Reduce phase

and Output data.

Fig 3: Hadoop MapReduce Process

HDFS: Hadoop [43] uses Hadoop distributed File System

(HDFS) which is an open source implementation of the

Google File System (GFS) for storing data. HDFS is a

distributed file system that not only stores the data but also

ensures fault tolerance through replication designed to run on

commodity hardware. It has many similarities with existing

distributed file systems. However, the differences from other

distributed file systems are significant. HDFS is highly fault-

tolerant and is designed to be deployed on low-cost hardware.

HDFS provides high throughput access to application data and

is suitable for applications that have large data sets.

Fig 4: HDFS Architecture

Figure 4 describe HDFS has a master/slave architecture. An

HDFS cluster consists of a single NameNode, a master server

that manages the file system namespace and regulates access

to files by clients. In addition, there are a number of

DataNodes, usually one per node in the cluster, which manage

storage attached to the nodes that they run on. HDFS exposes

a file system namespace and allows user data to be stored in

files. Internally, a file is split into one or more blocks and

these blocks are stored in a set of DataNodes. The NameNode

executes file system namespace operations like opening,

closing, and renaming files and directories. It also determines

the mapping of blocks to DataNodes. The DataNodes are

responsible for serving read and write requests from the file

system’s clients. The DataNodes also perform block creation,

deletion, and replication upon instruction from the

NameNode.

4. ISSUES AND CHALLENGES
The problems of Big data can be summarized in six categories

listed in Table 2. This paper identifies and presents the

challenges of Big data management and analyse the solutions

currently available. The related work can be summarized from

six perspectives: data processing, job scheduling, power

consumption, performance, resource allocation, privacy and

Security.

Table 2. Problems and Challenging Issues in Big data

Category of Big

data Problem
Challenging issues

Speed

real-time and offline response

problems

Statistical analysis problems

Data

Acquisition

 HDFS Commands

 Sqoop

 Flume

 Scribe

Data Storage HDFS

 HBase

Data Analysis

 Hive

 Pig

 Cascading
 Spark

 Shark

Results

Data Acquisition
 HDFS Commands

 Sqoop

 Flume

 Scribe

Data Storage
 HDFS

 HBase

Data Analysis

 Hive

 Pig

 Cascading
 Spark

 Shark

Results

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

44

Query and retrieval problems

Import and export problem

Formats of data

sources

Problem faced due to various

source formats

Problems due to heterogeneity in

data sources

Problems faced due to infrastructure

Volume and

flexibility

Complex interactions among

various resources

Job Scheduling problems

Cost

Cost Comparison between Master

node and slave node.

Costs raised due to upgrade or

modification of nodes

Storage and

security

Structured and non-structured

Data security

Privacy security

Connectivity and

data sharing

Data standards and interfaces

Shared protocols

Access permissions

Data processing: Big Data has two fundamental challenges:

how to store huge volumes of data and how to process the

data. A popular data processing engine for Big Data is

Hadoop MapReduce. In today’s scenario, processing with

data sets with the magnitude of terabytes or even petabytes

has become a reality [10] [12] [13]. Two solutions were

proposed by Saeed Shahrivari and Saeed Jalili [1]. Adding

real-time processing capabilities to MapReduce and providing

stream processing of Big Data are the two possible solutions

proposed by the author. With growing data, Hadoop enables

to horizontally scale clusters by adding commodity nodes and

thus keep with query workloads and make it faster to enable

execution of jobs in very less time. In-memory MapReduce

can be up hundreds of times faster than running it on a disk as

is traditional for systems like Hadoop and which is based on

using distributed memory system to store and process Big

Data in real-time. Storm from Twitter and S4 from Yahoo [3]

are two predominant stream processing frameworks. The main

advantages of these two are that they can run on a Java Virtual

Machine.

Job scheduling: Job scheduling is one of the core technologies

of Hadoop MapReduce and its main function is to control the

order of job execution and assign user’s job to run up on the

resources. The default scheduling algorithm is based on FIFO

where jobs are executed in the order of their submission. The

limitation of the FIFO Scheduler is the balance of resource

allocation between long jobs and short jobs is not taken into

account. Facebook and Yahoo contributed significant work in

developing schedulers: Fair Scheduler [6] and Capacity

Scheduler [7]. The fair scheduler can limit the number of

concurrently running jobs from each user and from each pool.

Running job limits are implemented by marking jobs as not

runnable if there are too many jobs submitted by the same

user or pool. If there is a single job running, the job uses the

entire cluster. Capacity Scheduler is designed to run Hadoop

applications as a shared, multi-tenant cluster in operator-

friendly fashion while maximizing the throughput and the

utilization of the cluster. The capacity scheduler supports the

features of hierarchical queues, capacity guarantees, elasticity

and operability. In Delay scheduling [8], it considers two

approaches in reassigning resources: killing tasks from

existing jobs to allocate new jobs and waiting for tasks to

finish assigning slots to new jobs.

Power consumption: The increase in power consumption of

data-centres is a challenging issue in Big Data Management.

MapReduce clusters constitute a major part of data-centres for

Big Data processing applications. The factors that influence

the energy consumption are sheer size, high fault-tolerant

nature and low utilization levels. Efficient use of energy in

MapReduce clusters can contribute significantly towards

energy efficiency of MapReduce framework. Willis Lang and

Jignesh M.Patel [9] aim to improve the energy efficiency of

the MapReduce clusters to exploit low utilization periods that

turn off nodes to reduce the energy consumption when the

overall system utilization drops. The impact of the workload

characteristics, hardware characteristics and performance

targets are considered to bring out the interactions between

these factors and cluster energy consumption.

Performance: There is a lot of research is going on in order to

optimize the Hadoop jobs performance and the efficiency of

Hadoop clusters in different aspects [11] [14] [15]. Dawei

Jiang et al conducts performance study on MapReduce with

aspects such as impact of architectural design of MapReduce,

storage-independent design and identifies five factors that

affect the performance of MapReduce: Indexing, I/O mode,

parsing of data, grouping schemes and block-level scheduling.

In [18], an extensive experiment was conducted on job

configuration parameters that affect the performance of

Hadoop MapReduce jobs. Hadoop. Jiong Xie et al [19]

addresses the problem of data locality and proposes data

placement scheme adaptively that is capable of improving

data-processing performance by a data placement scheme that

distributes and stores data across multiple heterogeneous

nodes based on their computing capacities. The initial data

placement algorithm proposed by the authors begins by

dividing a large input file into several even-sized fragments

and assigns fragments to nodes in a cluster. The data

redistribution procedure is described as collection of disk

space utilization of a cluster by data distribution server which

creates two node lists: number of local fragments in each

node.

Resource allocation: The resource allocation in Hadoop

Mapreduce is done at level of fixed-size resource splits of the

nodes called slots. This mechanism has disadvantages of

under and over utilization of resources. In [20], the authors

identify the efficient resource management across various data

centres and clouds running large distributed data processing

frameworks are a crucial for enhancing the performance of

MapReduce applications. Jorda Polo et al [21] propose a

resource-aware scheduling technique, Resource-aware

Adaptive Scheduler (RAS) for MapReduce multi-job

workloads which is designed to improve the resource

utilization across nodes by obtaining job’s completion time.

The jobs are dynamically adjusted on each node to maximize

the resource utilization. RAS is a novel resource resource

management and job scheduling scheme for Hadoop

MapReduce.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

45

Privacy and Security: Security has become the most crucial

phase in any organization. In the era of Big Data, huge

volumes of data are collecting, analyzing and reporting the

decisions based on the analysis from various sources, there

must be strong secure mechanism to protect the privacy of the

data. A study released by Symantec and Ponemon Institute

found that the average organizational cost of one security

breach in the United State is 5.4 million dollars [22]. In India,

Aadhaar Project is the biggest project in the human history to

collect the details of the citizens and allocating a unique

identity to each citizen. Security and privacy are the two

mandatory requirements of this kind of Big Data in order to

protect the rights of the citizens from the attackers. Travis

Mayberry et al [23] overlooked the problem with outsourcing

data to the cloud is the privacy of access patterns. The authors

propose Private Information Retrieval MapReduce (PIRMAP)

which allows a user to retrieve data from a database while

hiding the user’s access pattern. Large computational

resources that are available in cloud settings are considered in

this solution that can run efficiently on MapReduce and scale

to a large number of nodes.

5. JOB SCHEDULING
Till 2008, Hadoop supported a single scheduler only.

Currently, Hadoop configuration is based on cluster hardware

information and the number of nodes can greatly improve the

performance of Hadoop clusters. Hadoop implements the

ability for pluggable schedulers that assign resources to jobs.

Users can design their own dispatchers according to the actual

application requirements [44].

Our research focuses on Hadoop MapReduce Job Scheduling

along with challenges in MapReduce. Hadoop MapReduce is

a programming model for processing and generating large

datasets [17]. Hadoop is a multi-tasking system that can

process multiple data sets for multiple jobs for multiple users

at the same time. This capability of multi-tasking makes

Hadoop an opportunity to optimally map jobs to resources.

Hadoop operates in a batch mode, where jobs were submitted

to a queue an infrastructure to execute them in the order of

receipt. MapReduce framework is scheduled by JobTracker

and TaskTracker [24]. The relationship of tasks allocation is

shown in Fig. 2. JobTracker is the only master control, which

can run on any computer in the cluster for scheduling and

managing other TaskTrackers, allocating Map task and

Reduce task to free TaskTrackers for parallel running and

monitoring the condition of the tasks. There can be more than

one TaskTracker. TaskTracker is in charge of the

implementation of the tasks [23]. It must run on DataNode,

which means that DataNode is not only a data storage node,

but also a computing node. If a TaskTracker’s task fails,

JobTracker will allocate the task to one of other free

TaskTrackers, and rerunning [25]. When a job is submitted to

the MapReduce framework, MapReduce will divide it into

several Map tasks and assign them to different nodes for

running. Every Map task only deals with a part of the input

data. After Map task processing, the results, those

intermediate state key-value pairs, will be sent to the Reduce

function. Reduce function will merge the pairs based on a

specific key, then generate and output the value-keys that

client requires.

Various scheduler algorithms used in Hadoop MapReduce

namely FIFO Scheduler, Fair Scheduler, Capacity Scheduler

are summarized.

FIFO Scheduling: FIFO scheduler was integrated within Job

tracker. The Each job uses whole cluster and so jobs must

wait for their turn. FIFO: First In First Out, based on which

ever job comes first in the queue, it is processed and then

pulls the next job in the queue. This follows priority and

submission at the same time, which leads to starvation of jobs

in the presence of a long running job. The other disadvantages

of this scheduler are poor utilization, costly data replications,

data locality and no priority or size of the job.

Fair Scheduling: Fair Scheduling is a method of assigning

resources based on the resource pool, which groups jobs into

pools and performs fair sharing between these pools. The Fair

scheduler was designed to meet the following four main

objectives: run small jobs quickly even if they are sharing a

cluster with large jobs, provide guaranteed service levels to

production jobs, easy to administer and configure, support

reconfiguration at run-time.

Capacity Scheduling: Capacity scheduler is a pluggable

MapReduce scheduling algorithm for Hadoop which provides

a way to share large clusters. In Capacity scheduling, the job

queue is divided into several jobs and each job queue still runs

by the way of FIFO. This provides greater control to provide a

minimum capacity guarantee and share excess capacity

among users. In Capacity scheduling, instead of pools, several

queues are created, each with a configurable number of map

and reduce slots. Each queue enforces a limit on the

percentage of resources that a given user can access of

multiple users are accessing the queue at the same time. The

user-limits are dynamic and the actual limits depend upon the

active users and their demand. The capacity scheduler also

supports high resource applications such that MapReduce job

can obtain multiple slots for every map or reduce task.

5.1 Analysis of the Scheduling Algorithms
FIFO Scheduling: Hadoop MapReduce follows FIFO as the

default scheduling algorithm. The advantages of FIFO

includes easy and simple for execution, less workload on the

job server. The drawbacks of FIFO are that it ignores the

different needs by different operations. When there is a need

for analysing huge volumes of data which occupies computing

resources for a long time, then subsequent interactive

operations may lead to long response time and affect the hit-

time response. FIFO scheduling is best suited for batch

systems, which follows non-preemptive method. It

implements one queue which holds the tasks in the order they

come in. The order of the task arrival is very important for

average turnaround time.

Fair Scheduling: The Fair Scheduler can limit the number of

concurrent running jobs per user and per pool. It can also limit

the number of concurrent running tasks per pool. If a pool

does not get its minimum share for long time, Fair scheduling

pre-empts the most recently started task of an over allocated

job from some other pool. This ensures that a long running job

do not block the execution of some production jobs. The

priorities are used to assign job weights and resources are

allocated as per the normalized fractions to the jobs. Fair

scheduling works well for both the cases of small and large

clusters. Fair Scheduler is that it does not consider the job

weight of each node.

Capacity Scheduling: The objective of the Capacity

scheduling is to maximize the resource utilization and

throughput in multi-tenant cluster environment. Instead of

pools as in Fair Scheduler, Capacity scheduler uses queues.

Each queue is assigned to an organization and resources are

divided among these queues. In order to control access to the

queues, security mechanisms are built so that each

organization can access only its queue and it cannot interrupt

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

46

with other organization’s queues or jobs. Capacity scheduling

offers minimum capacity guarantee by having limits on

running tasks and jobs from a single queue. It allows resource

re-allocation to queues using their full capacity inorder to

maximize resource utilization. When jobs arrive in that queue,

running jobs are completed and resources are pushed back to

the original queue. This allows priority based scheduling of

jobs in an organization queue.

6. IMPROVEMENTS IN JOB

SCHEDULING
Delay Scheduling [26] is an outcome of strict implementation

of fair sharing compromising locality. To resolve this problem

of locality, Delay scheduling algorithm was proposed, in

which a job waits for a limited amount of time for a

scheduling opportunity on a node that has data for it. The

main goal of Delay Scheduling is to statistically multiplex

clusters while maintaining minimal impact on fairness and

achieving high data locality.

Delay scheduling algorithm temporarily relaxes fairness to

improve locality by asking jobs to wait for a scheduling

opportunity on a node with local data. Two locality problems

were identified from fair scheduler are: head-of-line

scheduling and sticky notes. The first locality problem occurs

in small jobs. Whenever a job reaches the head of the sorted

list for scheduling, one of its tasks is launched on the next slot

that becomes free irrespective of which node the slot is on.

The pseudocode for this algorithm is shown below:

Algorithm: Delay Scheduling

When a heartbeat is received from a node n:

 if n has a free slot then

 sort jobs in increasing order of number of running tasks

 for j in jobs do

 if j has unlaunched task t with data on n then

 launch t on n

 else if j has unlaunched task t then

 launch t on n

 end if

 end for

 end if

In Delay Scheduling, it identifies the impact job response

times significantly if at least one of the following conditions

holds:

 When there are many jobs running, each job’s

fractional share of the cluster,

 Jobs with a small number of tasks,

 Jobs where jobs (J) is greater than average task length

(T) incurs with little overhead.

The problem of enforcing strict queuing order forces a job

with no local data to be scheduled is addressed by a simple

technique called Delay Scheduling. When a node requests a

task, if the head-of-line job cannot launch a local task, it skips

and looks for the next subsequent jobs. If a job is skipped for

long enough time, it starts allowing it to launch non-local

tasks in order to avoid starvation. There should be a

mechanism that is to be involved when once a job has been

skipped for some number of times; it must launch arbitrarily

many non-local tasks without resetting its count.

MapReduce workloads may be heterogeneous in terms of

their data size and their resource requirements [10]. Bogdan

Ghit et.al [11], proposes FAWKES in which balance

resources across the MapReduce clusters which is capable to

resize them by growing and shrinking the number of resources

allocated to them at runtime. The most important requirement

for FAWKES is to provide reliable data management so that

when nodes are removed from an MapReduce cluster and the

number of replicas is small, no data are lost. To enable fast

reconfigurations, the removed nodes of the MapReduce

cluster should store relatively small amounts of data.

Genetic algorithm [27] provides the solution in selecting the

operation sequence, to avoid the time overhead between

frequent switching of shorter jobs, adapting long jobs and

setting up a task queue length limit to meet the demand. In

genetic algorithm, it uses fitness function for the average time

of finishing a job. The following are the steps of the

algorithm:

Algorithm: Genetic Scheduling

M jobs are waiting for running in queue

 m jobs enter into segmentation into s tasks

 if s > L && m!=1 then

 m=m-1

 goto first step

 else

 Select task order based on GA

 Put s tasks into task queue

 Running ends

 Check for any other jobs in queue

 if yes, goto first step

 else Stop.

 end if

 end if

Longest Approximate Time to End (LATE) [28] algorithm

improves the execution time by identifying real slow tasks.

The algorithm computes the remaining time of all tasks and

selects a set of tasks with longer remaining time when

compared to all the nodes and considers them as real slow

tasks. LATE algorithm works as follows:

Algorithm: Genetic Scheduling

If a task slot becomes available and there are less than

speculative cap speculative tasks running:

 Ignore the request if the node’s total progress is below

 SlowNodeThreshold

 Rank currently running, non-speculative executed tasks by

 estimated time left

 Launch a copy of the highest-ranked task with progress rate

below SlowTaskThreshold

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

47

LATE is based on three principles: prioritizing tasks to

speculate, choosing fast nodes to run, and capping speculative

tasks to prevent thrashing. The advantages of LATE algorithm

includes: robust to node heteroginity, prioritizes among slow

tasks, focuses on estimated time left rather than progress rate.

The drawback of LATE is that if some commodity hardware

node is running behind its peers, instead of trying to finding

out the reasons on its behaviour, it marks as a straggler. The

complications include temporary defect or permanent

crippling on the tasks during the entire duration of

computation.

Jiang, Ooi, Shi and Wu [16] have explained the importance

and performance of MapReduce. Five design factors were

identified that affect Hadoop performance: 1) grouping

schemes, 2) I/O modes, 3) data parsing, 4) indexing, and 5)

block-level scheduling. The overall performance can be

improved by tuning these factors.

Babu [46] highlights the combination of MapReduce

frameworks and cloud computing and measured a real system

that the presence of too many job configuration parameters in

Hadoop is unwieldy. The reactive and competitive approaches

reduce or eliminate the need for cost models. An automated

tool is introduced to optimize parameter values by setting of

job configuration parameters for MapReduce programs.

Herodotou et al. [47] introduced Starfish, which profiles and

optimizes MapReduce programs based on cost. Starfish aims

to relieve users from having to fine tune job configuration

parameters for different cluster settings and input datasets. All

these profiling tools require a real system on which to test

potential workloads and are tuned to the job scheduler and not

the task scheduler.

Two short comings of where data and computational

resources are shared and accessed were explained: tight

coupling of specific programming mode with the resource

management infrastructure, forcing developers to comment on

the performance of MapReduce programming model and

centralized handling of jobs [48]. Yet Another Resource

Negotiator (YARN), the new architecture were introduced

which is capable of decoupling the programming model from

the resource management infrastructure. Several discrete

event simulators for MapReduce application workloads have

been developed.

Each provides different levels of support for integrating new

task schedulers and different details in the computation and

communication models. SimMR [49], MRSim [50] and

SimMapReduce [51] are designed to evaluate different

schedulers/provisioning strategies. SimMR focuses on

JobTracker decisions and task/slot allocations among different

jobs. MRSim measures scalability easily and captures the

effects of different configurations of Hadoop setup on job

completion times and hardware utilization. SimMapReduce

allows researchers to evaluate different scheduling algorithms

and resource allocation policies.

Hsim [52] simulates the dynamic behaviours of Hadoop

environments and models a large number of Hadoop

parameters such as node parameters (related to processors,

memory, hard disk, network interface, map and reduce

instances) and cluster parameters, (number of nodes, node

configurations, network routers, job queues and schedulers),

and Hadoop system parameters.

MRPerf [20, 21] analyzes application performance on a given

Hadoop setup, enabling the evaluation of design decisions for

fine-tuning and creating Hadoop clusters. MRPerf was made

open source to be used by the research community to enable

exploration of design issues, validation of new algorithms and

optimization in MapReduce. The need for production level

traces by some simulators makes them inappropriate for

general research, since often the traces are proprietary

information and not easily available to the academic

community.

Only recently have MapReduce simulators supported

schedulers other than FIFO, Mumak being the first. A new

simulation environment, SLS5 has been recently introduced

by Yahoo! for the YARN framework includes support for

many components within Hadoop. SLS provides detailed

execution traces as well as resource usage metrics. It even

provides analysis of low-level scheduler operations,

measuring their overhead and assessing scalability.

The environment is designed in a modular fashion to

incorporate new scheduler development. There are many

parameters in the simulator itself. The goals and approach of

our work and SLS are similar, but SLS was not a mature tool

at the beginning of our investigation. Optimizing cluster

utilization and reducing makespan has been studied using job

scheduler adjustments.

7. CONCLUSION AND FUTURE WORK
This paper makes an attempt to present background of Big

data management, technologies used at various stages of

BDM and discussed various issues and challenges faced in

processing huge volumes of data. To be able to process large-

scale datasets, the fundamental design of the standard Hadoop

places more emphasis on high throughput of data than on job

execution performance. This causes performance limitation

when Hadoop MapReduce is used to execute short jobs that

requires quick responses. In order to speed up the execution of

short jobs optimization methods are required to improve the

execution performance of MapReduce jobs. Three important

scheduling issues in Hadoop MapReduce are identified: data

locality, synchronization and fairness. This paper makes a

comprehensive survey on Big data, Big data management and

job scheduling algorithms and highlights the importance

scheduling in Hadoop MapReduce. Various parameters that

affect the performance of Hadoop MapReduce are analyzed

with the perspective of job scheduling. Our future work

includes developing a new job scheduling algorithm

considering of all the parameters describe in this paper which

can yield better performance.

8. REFERENCES
[1] Saeed Shahrivari and Saeed Jalili, “Beyond Batch

Processing: Towards Real-Time and Streaming Big

Data,” in Computers 2014, pp. 117 – 129, doi:

10.3390/computers3040117.

[2] J. F.N Afrati, V. Borkar, M. Carey, N. Polyzotis, and J.

D. Ullman, “Map-reduce extensions and recursive

queries,” in 14th International Conference on Extending

Database Technology, 2011, pp. 1–8.

[3] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” in 6th USENIX Symp.

Oper. Syst. Des. Implementation, 2004, pp. 137-150.

[4] Hadoop. (2014) [Online]. Available:

http://hadoop.apache.org/.

[5] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4:

Distributed Stream Computing Platform,” in Proceedings

of IEEE International Conference on Data Mining

Workshops (ICDMW), 2010, pp. 170–177.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

48

[6] Yang XIA, Lei WANG, Qiang ZHAO and Gongxuan

ZHANG, “Research on Job Scheduling Algorithm in

Hadoop,” in Journal of Computational Information

Systems 7:16, pp. 5769 – 5775, December 2011.

[7] Capacity Scheduler for Hadoop [EB/OL]. http://Hadoop.

apache.org/common/docs/current/Capacity_scheduler.

.html, 2010-03-22

[8] Matei Zaharia, Dhruba Borthakur and Joydeep Sen

Sarma, “Delay Scheduling: A Simple Technique for

Achieving Locality and Fairness in Cluster Scheduling,”

in EuroSys’10 ACM International Conference, Apr 13 –

16, 2010.

[9] Willis Lang and Jignesh M. Patel, “Energy Management

for MapReduce Clusters,” in International Conference on

Very Large DataBases, Proceedings of the VLDB

Endowment, Vol. 3 No.1, September 2010.

[10] A. Thusoo , “Hive: A Petabyte Scale Data Warehouse

Using Hadoop,” in Proc. ICDE, pp. 996-1005, 2010.

[11] M. J. Fischer, X. Su, and Y. Yin, “Assigning tasks for

efficiency, hadoop: extended abstract”, in Proc., SPAA,

2010, pp. 30-39 .

[12] A. Thusoo, “Data Warehousing and Analytics

Infrastructure at Facebook”, in Proc., ICDE, pp. 1013-

1020, 2010.

[13] D. Logothetis, Statefull Bulk Processing for Incremental

Analytics,” in Proc.,SOCC, pp.51-62, 2010.

[14] A. Verma, L. Cherkasova, and R. H. Campbell, “Aria:

automatic resource, inference and allocation for

mapreduce environments,” in Proc., 8th ACM

international conference on Autonomic computing,

ICAC’11, USA: ACM, 2011, pp. 235-244. [Online].

Available: http://doi.acm.org/10.1145/1998582.1998637.

[15] J. Polo, D. Carrera, Y. Becerra, M. Steinder and I.

Whalley, “Performance-driven task co-scheduling for

mapreduce environments,” in Proc., NOMS, 2010, pp.

373-380.

[16] Dawei Jiang, Beng Chin Ooi, Lei Shi and Sai Wu, “The

Performance of MapReduce: An In-depth Study,” in

Proc., VLDB Endowment, Vol. 3, No. 1, 2010, pp.472-

483.

[17] J. Dean and S. Ghemawat, “MapReduce: A flexible data

processing tool,” in Proc ACM, 53(1), 2010, pp. 72-77.

[18] S. Babu, “Towards automatic optimization of mapreduce

programs,” in proc., SoCC, ACM, 2010, pp. 137-142.

[19] Jiong Xie, Shu Yin, Xiaojun Ruan, Zhiyang Ding, Yun

Tian, James Majors, Adam Manzanares and Xiao Qin, “

Improving MapReduce Performance through Data

Placement in Heterogeneous Hadoop Clusters,” in Proc.,

19th International Heterogeneity in Computing

Workshop, Atlanta, Georgia,2010.

[20] Bikash Sharma, Ramya Prabhakar, Seung-Hwan Lim,

Mahmut T. Kandemir and Chita R. Das,

“MROrchestrator: A Fine-Grained Resource

Orchestration Framework for Hadoop MaReduce,”

Technical Report, CSE-12-001, January 2012.

[21] Jorda Polo, Claris Castillo, David Carrera, Yolanda

Becerra, Ian Whalley, Malgorzata Steinder, Jordi Torres,

Eduard Ayguade, “Resource-Aware Adaptive

Scheduling for MapReduce Clusters,” in LNCS Vol.

7049, Springer, 2011, pp 187-207.

[22] Ponemon Institue, “2013 Cost of Data Breach Study:

Global Analysis,” May 2013.

[23] J. Dean, and S. Ghemawat, “MapReduce: simplified data

processing on large clusters,” ACM, vol. 51, no. 1, pp.

107-113, 2008.

[24] T. White, Hadoop: The Definitive Guide: O'Reilly

Media, 2009.

[25] Changqing Ji, Yu Li, Wenming Qiu, Uchechukwu

Awada, Keqiu Li,” Big Data Processing in Cloud

Computing Environments”, 2012 International

Symposium on Pervasive Systems, Algorithms and

Networks.

[26] Matei Zaharia, Dhruba Borthakur and Joydeep Sen

Sarma, “Delay Scheduling: A Simple Technique for

Achieving Locality and Fairness in Cluster Scheduling”,

in proc., EuroSys’10, ACM, 2010.

[27] Xueying Jiang, Zhongyao Li and Yang Yang,

“Implementation of a Hadoop platform scheduling

algorithm based on a genetic algorithm,” WIT

Transactions on Information and Communication

Technologies, Vol. 55 , pp. 595 – 605, 2013.

[28] M. Zaharia, A. Konwinski, A. D. Joseph, R. Katz, and I.

Stoica, “Improving mapreduce performance in

heterogeneous Environment,” in proc., IEEE 10th

Internation Conference on CIT, pp. 2736-2743, 2010.

[29] H. Moed, “The Evolution of Big Data as a Research and

Scientific Topic: Overview of the Literature,” 2012,

Research Trends, http://www.researchtrends.com.

[30] S. S. Kaisler, F. Armour, J. A. Espinosa, andW.Money,

“Big data: issues and challenges moving forward,” in

Proceedings of the IEEE 46th Annual Hawaii

International Conference on System Sciences (HICSS

’13), pp. 995–1004, January 2013.

[31] R. Cumbley and P. Church, “Is “Big Data” creepy?,”

Computer Law and Security Review, vol. 29, no. 5, pp.

601–609, 2013.

[32] J. M. Wing, “Computational thinking and thinking about

computing,” Philosophical Transactions of the Royal

Society of London A: Mathematical, Physical and

Engineering Sciences, vol. 366, no. 1881, pp. 3717–

3725, 2008.

[33] S. Hendrickson, “Getting Started with Hadoop with

Amazon’s Elastic MapReduce,” EMR, 2010.

[34] J.Mervis, “Agencies rally to tackle big data,” Science,

vol. 336, no. 6077, p. 22, 2012.

[35] S. Sagiroglu and D. Sinanc, “Big data: a review,” in

Proceedings of the International Conference on

Collaboration Technologies and Systems (CTS ’13), pp.

42–47, IEEE, San Diego, Calif, USA,May 2013.

[36] J. Manyika, C. Michael, B. Brown et al., “Big data: The

next frontier for innovation, competition, and

productivity,” Tech. Rep., Mc Kinsey, May 2011.

[37] J. Manyika, M. Chui, B. Brown et al., “Big data: the next

frontier for innovation, competition, and productivity,”

McKinsey Global Institute, 2011.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.13, November 2015

49

[38] M. Chen, S. Mao, and Y. Liu, “Big data: a survey,”

Mobile Networks and Applications, vol. 19, no. 2, pp.

171–209, 2014.

[39] Zikopoulos PC, Eaton C, DeRoos D, Deutsch T, Lapis G.

“Understanding big data,” New York et al: McGraw-

Hill, 2012.

[40] Bell G, Hey T, Szalay A. “Beyond the data deluge,”

Science, 2009, 323(5919): 1297-1298.

[41] Narasimhaiah Gorla and Kang Zhang, “Deriving

Program Physical Structures using Bond Energy

algorithm,” in Proceeding 6th Asia Pacific Software

Engineering Conference,pp-359,1999.

[42] Dong Yuan, Yun Yang, Xiao Liu, Jinjun Chen, “A Data

Placement Strategy in Scientific cloud workflows,” pp-

1200-1214, 2010.

[43] Xie Jiong, Yin Shu, Ruan Xiaojun, Ding Zhiyang, Tian

Yun, “Improving Mapreduce performance through data

placements in heterogeneous hadoop cluster,” 2010.

[44] Huang Lu, Hu Ting-ting and Chen Hai-shan, “Research

on Hadoop Cloud Computing Model and its

Applications,” 2012 Third International Conference on

Networking and Distributed Computing.

[45] D. Jiang, B. C. Ooi, L. Shi, and S. Wu “The performance

of MapReduce: an in-depth study,” VLDB Endowment,

3(1-2):472–483, Sept. 2010.

[46] S. Babu “Towards automatic optimization of MapReduce

programs,” in IEEE SoCC , pages 137– 142,

Indianapolis, June 2010.

[47] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F.

B. Cetin, and S. Babu, “Starfish: A Self- tuning System

for Big Data Analytics,” in CIDR, pages 261–272,

Asilomar, CA, Jan. 2011.

[48] Vavilapalli, A. Murthy, C. Douglas, S. Agarwal, M.

Konar, R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth,

B. Saha, C. Curino, O. O’Malley, S. Radia, B. Reed, and

E. Baldeschwieler, “Apache Hadoop YARN: Yet

Another Resource Negotiator,” in IEEE SOCC, pages

5:1–5:16, Santa Clara, CA, Oct. 2013.

[49] A. Verma, L. Cherkasova, and R. H. Campbell, “Play it

Again, SimMR!,” in IEEE CLUSTER, pages 253–261,

Austin, TX, Sept. 2011.

[50] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu,

“MRSim: A discrete event based MapReduce simulator,”

in Fuzzy Systems and Knowledge Discovery, pages

2993–2997, Yantai, China, Aug. 2010.

[51] F. Teng, L. Yu, and F. Magoulaas, “SimMapReduce: A

simulator for modeling MapReduce frame-work,” in

FTRA Mobile and Ubiquitous Engineering, pages 277–

282, Crete, Greece, June 2011.

[52] Liu, M. Li, N. K. Alham, and S. Hammoud, “HSim: A

MapReduce Simulator in Enabling Cloud Computing,”

in Future Gener. Comput. Syst. 29(1):300–308, Jan.

2013.

IJCATM : www.ijcaonline.org

