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ABSTRACT 

The aim of this article is to present a collective intelligence 

approach to help solving optimization problems and apply it 

in particular to the Travelling Salesman Problem. The 

approach used is the particle swarm optimization (PSO) 

whose main idea is to simulate the collective behavior of a 

cloud. This article also compares the results obtained using 

PSO algorithm with those obtained by using another famous 

metaheuristic wich is the Genetic Algorithm.  
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1. INTRODUCTION 
In many applications in real world, there's always a need to 

find optimal configurations from a discrete set of objects. This 

is known as a combinatorial optimization problem. While 

many of these combinatorial optimization problems can be 

solved in polynomial time, a majority belongs to the class of 

NP-hard problems [1]. To face these hard combinatorial 

optimization problems, approximations and heuristics 

algorithms were used as a compromise between the quality of 

the solution and the computation time [2]. A class of heuristic 

algorithms: meta-heuristic algorithms, was developed 

showing, at the same time, promising results in the field of 

combinatorial optimization. This class includes: Particle 

Swarm Optimization (PSO), Simulated Annealing (SA), Tabu 

Search (TS), Genetic Algorithms (GA) [3], Ant Colony 

Optimization (ACO) [4]…etc 

One of the benchmark problems used to test these heuristics 

algorithms is the traveling salesman problem (TSP). In this 

problem, the traveling salesman must visit n cities and get to 

each city only once. The goal is to minimize the total distance 

traveled. One of the first researchers who dealt with the TSP 

and study it in detail was K. Menger [5]. There are two types 

of the TSP problem, the asymmetric case and the symmetric 

case. The symmetric TSP is a special case of the problem in 

which locations have coordinates in a Euclidian plane [6] and 

it was proven that this problem is NP-hard [7]. This means 

that the time to find an optimal solution increases 

exponentially depending on the size of the problem. 

Solving this problem would require the use of very efficient 

algorithms, therefore it was decided to opt for using two 

famous algorithmic approaches:  Particle Swarm Optimization 

and Genetic Algorithms.  

The goal of this work is to compare the PSO algorithm, in its 

standard case, with another heuristic algorithm wich is the GA 

at solving instances of the TSP [8]. For this reason, a simple 

instance that we created, and three benchmark Euclidian 

symmetric TSPs are used with increasing complexity. 

The rest of the paper is organized as follows: the second 

chapter dresses a state of art of the methods implemented 

(PSO & GA) and the problem studied (TSP), the third and the 

fourth chapter present the results of the different simulations 

done and a comparison between the two heuristics, and the 

final chapter concludes this work. 

2. STATE OF THE ART 

2.1 Particle Swarm Optimization 
The particle swarm optimization (PSO) is a stochastic 

optimization method developed by EBERHART and 

KENNEDY in 1995 [9]. It draws the origin of the ecosystem, 

specifically the social behavior of animals living in swarms, 

such as schools of fish and grouped flights of birds. 

In its application to optimization problems, this method relies 

on a set of individuals, originally arranged randomly, called 

particles. This particles move in the search space. Each one is 

considered as a solution of the problem, since they have a 

position Xid and a speed Vid. In addition, each particle has a 

memory about his best position visited Pid and the 

neighborhood’s one Pgd. 

The evolution of the algorithm equations is given as 

following: 

 

Vid
t+1 = ω Vid

t + C1R1 (Pid - Xid) + C2R2 (Pgd - Xid)         

Xid
t+1 = Xid

t + Vid
t+1 

 

ω denotes the coefficient of inertia , the coefficients C1 and C2 

are constants determined empirically according to the 

relationship C1 + C2 ≤ 4 , and finally, R1 and R2 are random 

positive numbers following a uniform distribution on [0,1] 

[9]. 

The displacement strategy of a particle, as shown in Fig1, is 

influenced by the following three components: 

1. A component of inertia (ω Vid
t): the particle tends to 

follow its current direction of travel; 

2. A cognitive component (C1R1 (Pid - Xid)): the particle 

tends to move towards the best site for which it has 

already crossed over; 

3. A social component (C2R2 (Pgd - Xid)): the particle 

tends to rely on the experience of its congeners and thus 

to head for the best site already achieved by its 

neighbors. 
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Fig 1: Particles movement 

 

The operations made in the PSO algorithm are explained in 

Fig 2 as follows: 

 

 
 

Fig 2: Launch chart of the PSO algorithm 

2.2 The Genetic Algorithms 
Genetic Algorithm was introduced by Holland et al. [10]. It is 

inspired by Darwin's theory about evolution and based on 

mimicking the survival of the fittest among the species 

generated by random changes in the gene-structure of the 

chromosomes in the evolutionary biology [11]. 

In the Genetic Algorithm logic, a solution vector is called 

individual or chromosome. Each chromosome is made of 

discrete units called genes and each gene controls one or more 

elements of the chromosome. Normally, a chromosome is a 

unique solution in the solution space. GA operates with a set 

of chromosomes, called population. The population is 

normally initialized randomly [11]. 

The basic process for a genetic algorithm is: 

1. Initialization: Create an initial population. This 

population is usually randomly generated and can be any 

desired size, from only a few individuals to thousands. 

2. Evaluation: Each member of the population is then 

evaluated and a 'fitness' value for that individual is 

calculated.  

3. Selection: Discard the bad designs and keep only the best 

individuals in the population.   

4. Crossover: Create new individuals by combining aspects 

of the selected individuals. This is like mimicking 

reproduction in nature. The hope is that by combining 

certain traits from two or more individuals, an even 

'fitter' offspring which will inherit the best traits from 

each of its parents, will be created. 

5. Mutation: Maintain genetic diversity from one generation 

of a population of genetic algorithm chromosomes to the 

next by making small changes at random to an 

individual’s genome. 

6. Repeat: After obtaining the next generation, start again 

from step two until reaching a termination condition. 

2.3 Traveling Salesman Problem 
The traveling salesman problem (TSP) is a well-known and 

important combinatorial optimization problem.  

Generally, the process is as follows: start by choosing any city 

in a given list and end up by returning to the departure one. 

The traveled distance must be minimized knowing that the 

distances between cities are known. The notion of distance 

may be replaced by the time or the cost.  

According to Kemighan [12], the definition of the traveling 

salesman problem is as following: 

Given a graph G = (N, A), where N = {v0, v1….. vn} is the set 

of nodes (cities). And let A = {(vi, vj) / vi, vj Є N, i <j} be the 

set of stops that connect the nodes if the distances are 

symmetrical and A = {(vi, vj ) / vi, vj Є N i ≠ j} represents the 

arcs if the distances are asymmetric. In other words, the 

problem is symmetrical if the distance for the trip from town 

A to town B is the same as the reverse one. 

Despite the simple problem statement, solving the TSP is 

difficult since it belongs to the class of NP-Hard problems [7]. 

In the symmetric case, according to this study, a calculation of 

the complexity of the problem shows that the number of 

feasible solutions is given by the formula: 

(n-1)! /2; where n is the number of cities. 

Considering the computation time for a trip as equal to 1 µs, 

the calculation time found is big enough as shown in Table 1. 

Table 1. Calculation time and number of possibilities 

Number of 

cities 

Number of 

possibilities 

Time calculation 

4 3 3 µs 

14 3113510400 52 min 

20 60E+15 1928 year 

52 7.8E+65 2.5E+43 millard 

years 

280 4.66E+157 2.5E+43 milliard 

years 

 

To test the algorithmic approaches, it was decided to run 

several experiments, varying the complexity of the TSP. The 

two algorithms are tested on three benchmark instances and 

one personal instance wich coordinates are:  

   X {30, 50, 43, 40, 40, 36, 21, 8, 16, 7, 3, 80, 55, 

60, 45, 1, 30, 45, 25, 3};     

   Y {5, 9, 10, 30, 20, 43, 48, 40, 36, 21, 18, 16, 27, 

17, 80, 1, 12, 21, 65, 4}; 

TSPLIB: http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/ 

TSPLIB95/TSPLIB.html, provides most of the benchmark 

problems. It offers problem coordinates, best tour and the 

optimum solutions for the three test problems 

The benchmark TSPs used are Berlin52, Eil101, and A280.  

https://en.wikipedia.org/wiki/Genetic_diversity
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)
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3. RESULTS AND DISCUSSIONS 
All the simulations were completed on a Windows 64 bits 

personal computer with an i7-4710 processor clocked at 

2.50GHz, and 8 GB of Ram. The Genetic algorithm was 

developed in MATLAB. The Particle Swarm optimization 

algorithm was written in JAVA. 

3.1 Particle Swarm Optimization 
3.1.1 Personal Instance 
The first instance to test the PSO is the personal instance with 

20 locations and coordinates as follows:    

X {30, 50, 43, 40, 40, 36, 21, 8, 16, 7, 3, 80, 55, 60, 45, 1, 30, 

45, 25, 3};        

Y {5, 9, 10, 30, 20, 43, 48, 40, 36, 21, 18, 16, 27, 17, 80, 1, 

12, 21, 65, 4}; 

The PSO finds the best tour in 3.987 seconds. Fig 3 presents 

the evolution of the objective function wich is the distance 

over time. 

 

Fig 3: Evolution of PSO results over time in the personal 

instance 

3.1.2 Berlin 52 
The second instance is Berlin 52 with 52 locations in Berlin 

(Groetschel) [13]. The PSO gives average results but doesn’t 

find the optimal solution. The convergence time is 

considerably short: 19.23 seconds. The PSO returns an 

optimal tour equals to 12568. 

 

Fig 4: Evolution of PSO results over time in Berlin 52 

3.1.3 Eil 101 
The third instance is Eil101 with 101 cities. It is considered a 

large TSP instance [13]. The PSO gives average results but 

doesn’t find the optimal solution. It returns an optimal tour 

equals to 1576 in 53.346 seconds. 

 

Fig 5: Evolution of PSO results over time in Eil 101 

3.1.4 A 280  
A280 is the largest instance in this work. It has 280 location 

and its optimal tour is 2579 [13]. It requires more 

computational time due to its complexity. Even if the PSO 

doesn’t find the optimal tour, its convergence is considerably 

good. It starts with a value equals to 20702 and ends with a 

value equals to 7437 in 1563.709 seconds.  

 

Fig 6: Evolution of PSO results over time in A280 

3.2 Genetic algorithms 
3.2.1 Personal instance 
The GA converges quickly and finds the optimal tour in 1.371 

seconds. 

Fig 7 illustrates the performance of the GA in providing the 

best tour 

 

Fig 7: Evolution of GA results over time in the personal 

instance 

3.2.2 Berlin 52  
The GA converges quickly in this instance too but doesn’t 

find the optimal tour wich is 7542 [13]. It finds a tour of 

length 7935 in 119.394. The evolution can be described as a 

set of two phases: The first one, where the algorithm 

converges rapidly and provides a tour with a distance equals 
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to 8988 in less than 10 seconds. The second phase where the 

improvement goes slowly. 

 

Fig 8: Evolution of GA results over time in Berlin 52 

3.2.3 Eil 101 
Eil101 optimal tour is 629. The GA maintains the same two 

phases’ behavior; it converges to a tour of 808 in 46 seconds 

and then its evolution goes slowly. Then it returns an overall 

best tour of 728 after 227.611 seconds. 

 

Fig 9: Evolution of GA results over time in Eil 101 

Table 2. Comparison between PSO and GA 

3.2.4 A 280 
This instance is large and the evolution of the GA changed a 

little but it treats this case with a good improvement factor as 

seen in Fig 10 and returns a best tour of 2818 in 402.101 

seconds. 

 

Fig 10: Evolution of GA results over time in A 280 

4. COMPARISON OF THE RESULTS 
Qualitative and quantitative comparisons were made to 

compare these two algorithmic approaches. Both algorithms 

give acceptable results in solving this NP-hard optimization 

problem. They are both efficient in attacking all instances of 

the TSP even if the search space is large and complex. Table 2 

shows the computational results, and Fig 11 compares the best 

tours obtained with the two heuristics. 
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Fig 11: Best Tours obtained with PSO and GA 
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Even if the starting values of the PSO is smaller than the GA’s 

one, except for Berlin 52, the GA provides more satisfying 

results than the PSO over the four instances and its 

convergence time is less than the PSO’s one.  

This is due to the fact that PSO in its standard configuration 

falls into local optima. This is because the major problem 

when it comes to using the PSO is in the limits of the search 

area. If the particles are functioning normally, they borrow 

many solutions that contain a lot of visits per node. It is also 

possible that the next node in the tour will be the current node. 

Both of these problems lead to a large number of possible 

solutions that are illegitimate. Indeed, the search space 

changes in the same manner as (nn), while the number of 

possible solutions grows proportionally to (n!), where “n” is 

the number of nodes. To limit the search space methods have 

been developed to contain and move the particles around. [14] 

5. CONCLUSION 
This paper presented a comparison of two famous 

metaheuristics: PSO and GA. It was found that the GA 

provides better solutions than the standard PSO.  

Although the PSO algorithm to its initial state, without 

modification or hybridization, showed a success on a variety 

of continuous functions, limited success has been shown to fit 

the PSO algorithm to more complex and richer areas such as 

combinatorial optimization. 

This was the case in this research because the algorithm using 

simple PSO can not find better solutions than the GA for the 

four benchmark instances. It falls into local optimum. 

For this reason, thinking about making an automatic tuning 

for the different parameters of the PSO (ω, C1, C2 and the 

number of particles) in order to find the best combination 

between the four parameters that may give better results, 

seems to be an effective solution. This would be done by 

hybridizing the PSO algorithm with other heuristic 

optimization algorithms such as neural network and compare 

the results that will be obtained with the actual results.  
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