
International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

34

A Performance Comparison of PSO and GA Applied to

TSP

Abdelhakim Gharib
Laboratoire LISER, ENSEM

UH2C
KM7, BP 8118 Route El Jadida

Casablanca, Morocco

Jamal Benhra
Laboratoire LISER, ENSEM

UH2C
KM7, BP 8118 Route El Jadida

Casablanca, Morocco

Mohsine Chaouqi
Laboratoire LISER, ENSEM

UH2C
KM7, BP 8118 Route El Jadida

Casablanca, Morocco

ABSTRACT

The aim of this article is to present a collective intelligence

approach to help solving optimization problems and apply it

in particular to the Travelling Salesman Problem. The

approach used is the particle swarm optimization (PSO)

whose main idea is to simulate the collective behavior of a

cloud. This article also compares the results obtained using

PSO algorithm with those obtained by using another famous

metaheuristic wich is the Genetic Algorithm.

Keywords

Traveling salesman problem; Particle Swarm Optimization;

Genetic algorithm

1. INTRODUCTION
In many applications in real world, there's always a need to

find optimal configurations from a discrete set of objects. This

is known as a combinatorial optimization problem. While

many of these combinatorial optimization problems can be

solved in polynomial time, a majority belongs to the class of

NP-hard problems [1]. To face these hard combinatorial

optimization problems, approximations and heuristics

algorithms were used as a compromise between the quality of

the solution and the computation time [2]. A class of heuristic

algorithms: meta-heuristic algorithms, was developed

showing, at the same time, promising results in the field of

combinatorial optimization. This class includes: Particle

Swarm Optimization (PSO), Simulated Annealing (SA), Tabu

Search (TS), Genetic Algorithms (GA) [3], Ant Colony

Optimization (ACO) [4]…etc

One of the benchmark problems used to test these heuristics

algorithms is the traveling salesman problem (TSP). In this

problem, the traveling salesman must visit n cities and get to

each city only once. The goal is to minimize the total distance

traveled. One of the first researchers who dealt with the TSP

and study it in detail was K. Menger [5]. There are two types

of the TSP problem, the asymmetric case and the symmetric

case. The symmetric TSP is a special case of the problem in

which locations have coordinates in a Euclidian plane [6] and

it was proven that this problem is NP-hard [7]. This means

that the time to find an optimal solution increases

exponentially depending on the size of the problem.

Solving this problem would require the use of very efficient

algorithms, therefore it was decided to opt for using two

famous algorithmic approaches: Particle Swarm Optimization

and Genetic Algorithms.

The goal of this work is to compare the PSO algorithm, in its

standard case, with another heuristic algorithm wich is the GA

at solving instances of the TSP [8]. For this reason, a simple

instance that we created, and three benchmark Euclidian

symmetric TSPs are used with increasing complexity.

The rest of the paper is organized as follows: the second

chapter dresses a state of art of the methods implemented

(PSO & GA) and the problem studied (TSP), the third and the

fourth chapter present the results of the different simulations

done and a comparison between the two heuristics, and the

final chapter concludes this work.

2. STATE OF THE ART

2.1 Particle Swarm Optimization
The particle swarm optimization (PSO) is a stochastic

optimization method developed by EBERHART and

KENNEDY in 1995 [9]. It draws the origin of the ecosystem,

specifically the social behavior of animals living in swarms,

such as schools of fish and grouped flights of birds.

In its application to optimization problems, this method relies

on a set of individuals, originally arranged randomly, called

particles. This particles move in the search space. Each one is

considered as a solution of the problem, since they have a

position Xid and a speed Vid. In addition, each particle has a

memory about his best position visited Pid and the

neighborhood’s one Pgd.

The evolution of the algorithm equations is given as

following:

Vid
t+1 = ω Vid

t + C1R1 (Pid - Xid) + C2R2 (Pgd - Xid)

Xid
t+1 = Xid

t + Vid
t+1

ω denotes the coefficient of inertia , the coefficients C1 and C2

are constants determined empirically according to the

relationship C1 + C2 ≤ 4 , and finally, R1 and R2 are random

positive numbers following a uniform distribution on [0,1]

[9].

The displacement strategy of a particle, as shown in Fig1, is

influenced by the following three components:

1. A component of inertia (ω Vid
t): the particle tends to

follow its current direction of travel;

2. A cognitive component (C1R1 (Pid - Xid)): the particle

tends to move towards the best site for which it has

already crossed over;

3. A social component (C2R2 (Pgd - Xid)): the particle

tends to rely on the experience of its congeners and thus

to head for the best site already achieved by its

neighbors.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

35

Fig 1: Particles movement

The operations made in the PSO algorithm are explained in

Fig 2 as follows:

Fig 2: Launch chart of the PSO algorithm

2.2 The Genetic Algorithms
Genetic Algorithm was introduced by Holland et al. [10]. It is

inspired by Darwin's theory about evolution and based on

mimicking the survival of the fittest among the species

generated by random changes in the gene-structure of the

chromosomes in the evolutionary biology [11].

In the Genetic Algorithm logic, a solution vector is called

individual or chromosome. Each chromosome is made of

discrete units called genes and each gene controls one or more

elements of the chromosome. Normally, a chromosome is a

unique solution in the solution space. GA operates with a set

of chromosomes, called population. The population is

normally initialized randomly [11].

The basic process for a genetic algorithm is:

1. Initialization: Create an initial population. This

population is usually randomly generated and can be any

desired size, from only a few individuals to thousands.

2. Evaluation: Each member of the population is then

evaluated and a 'fitness' value for that individual is

calculated.

3. Selection: Discard the bad designs and keep only the best

individuals in the population.

4. Crossover: Create new individuals by combining aspects

of the selected individuals. This is like mimicking

reproduction in nature. The hope is that by combining

certain traits from two or more individuals, an even

'fitter' offspring which will inherit the best traits from

each of its parents, will be created.

5. Mutation: Maintain genetic diversity from one generation

of a population of genetic algorithm chromosomes to the

next by making small changes at random to an

individual’s genome.

6. Repeat: After obtaining the next generation, start again

from step two until reaching a termination condition.

2.3 Traveling Salesman Problem
The traveling salesman problem (TSP) is a well-known and

important combinatorial optimization problem.

Generally, the process is as follows: start by choosing any city

in a given list and end up by returning to the departure one.

The traveled distance must be minimized knowing that the

distances between cities are known. The notion of distance

may be replaced by the time or the cost.

According to Kemighan [12], the definition of the traveling

salesman problem is as following:

Given a graph G = (N, A), where N = {v0, v1….. vn} is the set

of nodes (cities). And let A = {(vi, vj) / vi, vj Є N, i <j} be the

set of stops that connect the nodes if the distances are

symmetrical and A = {(vi, vj) / vi, vj Є N i ≠ j} represents the

arcs if the distances are asymmetric. In other words, the

problem is symmetrical if the distance for the trip from town

A to town B is the same as the reverse one.

Despite the simple problem statement, solving the TSP is

difficult since it belongs to the class of NP-Hard problems [7].

In the symmetric case, according to this study, a calculation of

the complexity of the problem shows that the number of

feasible solutions is given by the formula:

(n-1)! /2; where n is the number of cities.

Considering the computation time for a trip as equal to 1 µs,

the calculation time found is big enough as shown in Table 1.

Table 1. Calculation time and number of possibilities

Number of

cities

Number of

possibilities

Time calculation

4 3 3 µs

14 3113510400 52 min

20 60E+15 1928 year

52 7.8E+65 2.5E+43 millard

years

280 4.66E+157 2.5E+43 milliard

years

To test the algorithmic approaches, it was decided to run

several experiments, varying the complexity of the TSP. The

two algorithms are tested on three benchmark instances and

one personal instance wich coordinates are:

 X {30, 50, 43, 40, 40, 36, 21, 8, 16, 7, 3, 80, 55,

60, 45, 1, 30, 45, 25, 3};

 Y {5, 9, 10, 30, 20, 43, 48, 40, 36, 21, 18, 16, 27,

17, 80, 1, 12, 21, 65, 4};

TSPLIB: http://www.iwr.uni-heidelberg.de/iwr/comopt/soft/

TSPLIB95/TSPLIB.html, provides most of the benchmark

problems. It offers problem coordinates, best tour and the

optimum solutions for the three test problems

The benchmark TSPs used are Berlin52, Eil101, and A280.

https://en.wikipedia.org/wiki/Genetic_diversity
https://en.wikipedia.org/wiki/Genetic_algorithm
https://en.wikipedia.org/wiki/Chromosome_(genetic_algorithm)

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

36

3. RESULTS AND DISCUSSIONS
All the simulations were completed on a Windows 64 bits

personal computer with an i7-4710 processor clocked at

2.50GHz, and 8 GB of Ram. The Genetic algorithm was

developed in MATLAB. The Particle Swarm optimization

algorithm was written in JAVA.

3.1 Particle Swarm Optimization
3.1.1 Personal Instance
The first instance to test the PSO is the personal instance with

20 locations and coordinates as follows:

X {30, 50, 43, 40, 40, 36, 21, 8, 16, 7, 3, 80, 55, 60, 45, 1, 30,

45, 25, 3};

Y {5, 9, 10, 30, 20, 43, 48, 40, 36, 21, 18, 16, 27, 17, 80, 1,

12, 21, 65, 4};

The PSO finds the best tour in 3.987 seconds. Fig 3 presents

the evolution of the objective function wich is the distance

over time.

Fig 3: Evolution of PSO results over time in the personal

instance

3.1.2 Berlin 52
The second instance is Berlin 52 with 52 locations in Berlin

(Groetschel) [13]. The PSO gives average results but doesn’t

find the optimal solution. The convergence time is

considerably short: 19.23 seconds. The PSO returns an

optimal tour equals to 12568.

Fig 4: Evolution of PSO results over time in Berlin 52

3.1.3 Eil 101
The third instance is Eil101 with 101 cities. It is considered a

large TSP instance [13]. The PSO gives average results but

doesn’t find the optimal solution. It returns an optimal tour

equals to 1576 in 53.346 seconds.

Fig 5: Evolution of PSO results over time in Eil 101

3.1.4 A 280
A280 is the largest instance in this work. It has 280 location

and its optimal tour is 2579 [13]. It requires more

computational time due to its complexity. Even if the PSO

doesn’t find the optimal tour, its convergence is considerably

good. It starts with a value equals to 20702 and ends with a

value equals to 7437 in 1563.709 seconds.

Fig 6: Evolution of PSO results over time in A280

3.2 Genetic algorithms
3.2.1 Personal instance
The GA converges quickly and finds the optimal tour in 1.371

seconds.

Fig 7 illustrates the performance of the GA in providing the

best tour

Fig 7: Evolution of GA results over time in the personal

instance

3.2.2 Berlin 52
The GA converges quickly in this instance too but doesn’t

find the optimal tour wich is 7542 [13]. It finds a tour of

length 7935 in 119.394. The evolution can be described as a

set of two phases: The first one, where the algorithm

converges rapidly and provides a tour with a distance equals

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

37

to 8988 in less than 10 seconds. The second phase where the

improvement goes slowly.

Fig 8: Evolution of GA results over time in Berlin 52

3.2.3 Eil 101
Eil101 optimal tour is 629. The GA maintains the same two

phases’ behavior; it converges to a tour of 808 in 46 seconds

and then its evolution goes slowly. Then it returns an overall

best tour of 728 after 227.611 seconds.

Fig 9: Evolution of GA results over time in Eil 101

Table 2. Comparison between PSO and GA

3.2.4 A 280
This instance is large and the evolution of the GA changed a

little but it treats this case with a good improvement factor as

seen in Fig 10 and returns a best tour of 2818 in 402.101

seconds.

Fig 10: Evolution of GA results over time in A 280

4. COMPARISON OF THE RESULTS
Qualitative and quantitative comparisons were made to

compare these two algorithmic approaches. Both algorithms

give acceptable results in solving this NP-hard optimization

problem. They are both efficient in attacking all instances of

the TSP even if the search space is large and complex. Table 2

shows the computational results, and Fig 11 compares the best

tours obtained with the two heuristics.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

38

Fig 11: Best Tours obtained with PSO and GA

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

39

Even if the starting values of the PSO is smaller than the GA’s

one, except for Berlin 52, the GA provides more satisfying

results than the PSO over the four instances and its

convergence time is less than the PSO’s one.

This is due to the fact that PSO in its standard configuration

falls into local optima. This is because the major problem

when it comes to using the PSO is in the limits of the search

area. If the particles are functioning normally, they borrow

many solutions that contain a lot of visits per node. It is also

possible that the next node in the tour will be the current node.

Both of these problems lead to a large number of possible

solutions that are illegitimate. Indeed, the search space

changes in the same manner as (nn), while the number of

possible solutions grows proportionally to (n!), where “n” is

the number of nodes. To limit the search space methods have

been developed to contain and move the particles around. [14]

5. CONCLUSION
This paper presented a comparison of two famous

metaheuristics: PSO and GA. It was found that the GA

provides better solutions than the standard PSO.

Although the PSO algorithm to its initial state, without

modification or hybridization, showed a success on a variety

of continuous functions, limited success has been shown to fit

the PSO algorithm to more complex and richer areas such as

combinatorial optimization.

This was the case in this research because the algorithm using

simple PSO can not find better solutions than the GA for the

four benchmark instances. It falls into local optimum.

For this reason, thinking about making an automatic tuning

for the different parameters of the PSO (ω, C1, C2 and the

number of particles) in order to find the best combination

between the four parameters that may give better results,

seems to be an effective solution. This would be done by

hybridizing the PSO algorithm with other heuristic

optimization algorithms such as neural network and compare

the results that will be obtained with the actual results.

6. REFERENCES
[1] Aardal, K., Hoesel, S. v., Lenstra, J. K. and Stougie, L.

(1997). A Decade of Combinatorial Optimization.

Department of Information and Computing Sciences,

Utrecht University, UU-CS-1997-12.

[2] Festa, P. and Resende, M. G. C. (2008). Hybrid Grasp

Heuristics. AT&T Labs Research, Florham Park, July.

[3] El Hassani Hicham, Said Benkachcha, Jamal Benhra,

“New genetic operator (jump crossover) for the traveling

salesman problem”. International Journal of Applied

Metaheuristic Computing, 6(2), 33-44, April-June 2015

33.

[4] A. H. Sabry, A. Bacha, and J. Benhra, "A contribution to

solving the traveling salesman problem using ant colony

optimization and web mapping platforms Application to

logistics in a urban context," in Codit'14, Metz, France,

2014.

[5] K. Menger, Ergebnisse eines mathematischen

Kolloquiums: Deuticke, 1932Tavel, P. 2007 Modeling

and Simulation Design. AK Peters Ltd.

[6] A. Punnen, "The Traveling Salesman Problem:

Applications, Formulations and Variations," in The

Traveling Salesman Problem and Its Variations. vol. 12,

G. Gutin and A. Punnen, Eds., ed: Springer US, 2007,

pp. 1-28.

[7] C. H. Papadimitriou, "The Euclidean travelling salesman

problem is NP-complete," Theoretical Computer

Science, vol. 4, pp. 237-244, 1977.

[8] Goldbarg, E.F.G; Souza, G.R. & Goldbarg, M.C.

(2006a). Particle swarm for the traveling salesman

problem, Proceedings of the EvoCOP 2006, Gottlieb, J.

& Raidl, G.R. (Ed.), Lecture Notes in Computer Science,

Vol. 3906, pp. 99-110, Budapest, Hungary, April 2006,

Springer, Berlin.

[9] Kennedy, J. and Eberhart, R. (1995). Particle Swarm

Optimization, Proceedings of IEEE International

Conference on Neural Networks, pp. 19421948, 27th

November – 1 December, 1995.

[10] J. H. Holland, "Adaption in Natural and Artificial

Systems," The University of Michigan Press, 1975.

[11] D.E. Goldberg. "Genetic Algorithms in Search,

Optimization, and Machine Learning". AddisonWesley,

New York, 1989.

[12] Kemighan, L. S. (1973). "An Effective Heuristic

Algorithm for the Traveling Salesman Problem."

Opérations Research 21: 2245-2269.

[13] G. Reinelt, "TSPLIB—A Traveling Salesman Problem

Library," ORSA Journal of Computing, vol. 3, pp. 376-

384, 1991.

[14] Shi XH, Liang YC, Lee HP, Lu C, Wang QX, “Particle

swarm optimization-based algorithms for TSP and

generalized TSP”, Inf Process Lett 103(5), 2007, pp.169–

176.

IJCATM : www.ijcaonline.org

