
International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

15

Dynamic Load Balancing in Cloud Computing using

Swarm Intelligence Algorithms

Abhijit Patil
Assistant professor

Department of Computer
Engineering

D.J Sanghvi College of
Engineering

Harshal Gala
Student

Department of Computer
Engineering

D.J Sanghvi College of
Engineering

Jai Kapoor
Student

Department of Computer
Engineering

D.J Sanghvi College of
Engineering

ABSTRACT

In today’s world, smart-phones and tablets have allowed

cloud computing to realize it’s true potential. It allows the

users to use software, services and data on the go. This has

resulted in increased study on cloud computing. With

increased research in cloud computing, emphasis has been

made in load balancing that allocates resources to multiple

devices. Load balancing has played an important role in cloud

computing by ensuring optimal use of resources with highest

efficiency. The use of load balancing in the form of software

and hardware has led many to discover new algorithms to

achieve the same with better efficiency and minimum

response time. This article discusses about the load balancing

algorithms especially, swarm intelligence algorithms that can

be used to balance load across devices. The algorithms taken

into account are-PSO, Ant Colony Optimization, GSO and

IWD.A study on advantages and limitations of the algorithm

is made in order to realize the advantages of use of each

algorithm in load balancing in it’s own way.

General Terms

Dynamic Load Balancing, Virtual Machines. Optimization.

Keywords

Cloud computing, load balancing, swarm intelligence.

1. INTRODUCTION
Cloud Computing
Cloud Computing can be defined as disconnecting of

software, hardware and applications from the actual computer

itself. In layperson’s terms, it can be stated as a philosophy of

storage of data and programs over Internet rather than on the

actual hardware device. Cloud Service Providers make use of

this structured model to scale up IT Infrastructure by

providing software and services [13] .They also ensure that

the access of resources by organization is secure and is done

efficiently. Cloud Computing can be deployed in three ways

based on importance of certain criterions like security,

efficiency etc. Private Cloud is a proprietary cloud service that

provides services within the control of the responsible

departments, it provides services only to a particular

organization thereby conforming to high security standards

[1]. Public Cloud on the other hand is basically used by Cloud

Service Providers which efficiently provide services to

multiple organizations/firms. Hybrid Cloud is a combination

of Private and Public Cloud which provides special as well as

public services depending on company to company

requirements.

Load Balancing in Cloud Computing
In simple terms, load balancing allocates load(work) across

multiple devices with an aim to use maximum resources with

highest efficiency and minimum response time along with

preventing single resource overload .It is essential for

reliability and sharing through redundancy. Load Balancing is

achieved mostly through a dedicated software or hardware to

distribute workload. The most optimal load balancer ensures

that no resource remains idle while other is being executed.

Loads can be migrated depending on the amount of workload

on a given resource. Load balancer also acts as a backup in

case a resource fails to act by allocating its workload to other

resources. Modifications can be achieved easily along with

the necessary stability. When load balancing is applied during

the process, it is dynamic load balancing whereas when load

balancing is applied before the process, it is static load

balancing.

Fig 1: Types of Load Balancing in Cloud Computing

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

16

2. Types of Load Balancing in Cloud

Computing

Static Load Balancing
Load Balancing is achieved by pre-storing the necessary data

about the system. The performance is evaluated after the

execution process. Once the job is allocated to a node, the

same job cannot be shifted to another node. The load here is

distributed without considering the current load and state of

the system which in turn affects the optimization of the

system as it changes the dynamics of distribution due to load

allocation.

Dynamic Load Balancing
Unlike Static approach, this does not require prior knowledge

about the system. It also takes the current state of the system

into evaluation Dynamic Load Balancing is classified into two

types based on processing and workload of the system-

Distributed and Non Distributed .In Distributed, the node

works side by side to achieve a common goal.

3. STATIC LOAD BALANCING

3.1 Round Robin Scheduling Algorithm

(RSS)
RSS algorithm is the simplest of the static load balancing

algorithms in which jobs are processed for equal amount of

time which is time quantum. The data centre controller then

requests to choose any randomly selected virtual machine.

Servers and destination nodes are classified based on their

processing times. Once the VMs are allocated a job then it

moves to the end of the list. The disadvantage of this

assignment is that the works are distributed unevenly (some

nodes have high workload and others have not) and

considering that the VM is not unoccupied then the

unprocessed jobs have to stand in waiting (queue). This would

make the process less efficient resulting in more Response

time and inappropriate management of resources. No process

is going to wait for its processing thereby removing starvation

in the algorithm along with ensuring low throughput.

3.2 Weighted- Round Robin Scheduling

Algorithm (WRRS)
WRRS algorithm was introduced to analyze the above

problem found in Round Robin Scheduling such as starvation

and priority scheduling. The algorithm is preemptive. In this

algorithm, every node bears a weight depending on which

requests are gathered, so requests are received as per the

allotted loads. The load here is distributed evenly which

would lead to high efficiency and appropriate management of

resources.

3.3 Randomized Algorithm
In addition to the input, the algorithm uses a source of pseudo

random numbers. Random decisions are taken depending on

those random numbers. The output can vary if more test cases

are performed on the same input.

It is simple and easy to implement. The algorithm is speedy

with better probability and has better chances of producing

optimum output.

The number of incorrect answer is finite. However, the

number of wrong answers can be made small by the repeated

continuous use of randomness. Randomized algorithm uses

random numbers to choose slave processors. The slave

processors are chosen at random as random numbers are

generated based on the statistical distribution. Randomized

algorithm will provide optimal performance among all load

balancing algorithms for particular special purpose

applications.

3.4 Central manager Algorithm
Central Manager Algorithm, is a step by step algorithm, in

every step, central processor will choose a target processor to

be given a job. The chosen target processor is the processor

having the minimum load. The main processor is able to

gather all target processors load information, thereby the

choosing based on this algorithm are possible to be

performed. The load manager makes load balancing decisions

based on the system load data, allowing the best choice when

of the process is been created. High degree of inter-process

communication could make it a narrowing route state .This

algorithm is expected to perform better than the parallel

applications, especially when dynamic activities are created

by different hosts.

3.5 Threshold Algorithm
Processes are allocated to the hosts as soon as it is created. To

select hosts for new process locally, there is no need to send

remote messages. Every processor stores a personal copy of

the information about the load of the system. The processor’s

load is marked by three notable levels-underloaded, medium

and overloaded. Two threshold parameters f_low and f_high

can be used to describe these levels.

Below par loaded: load < f_low,

Medium; f_low ≤ load ≤ f_high,

Excessive Overload: load > f_high.

Initially, all the processors are initialized to underloaded state.

When the current workload of a processor exceeds the given

limit, then it sends messages regarding the new load state to

all remote processors, regularly updating them as to the actual

load state of the entire system.

4. DYNAMIC LOAD BALANCING

4.1 Throttled Load Balancing Algorithm

(TLB)

TLB algorithm is a dynamic algorithm which completely

establishes on virtual machines. In this assignment, the client

appeals the TLB to find the suitable virtual machines to

perform the operation. The virtual machines are assembled

according to the invocations they can manage. Here the client

first requests the load balancer to check the right virtual

machine which access that load easily and perform the

operations which is given by the client. The issue of this

allotment is that the load balancer has to explore for the

suitable virtual machine, which would cause delay in

operation.

4.2 Modified Throttled Load Balancing

Algorithm (MTLB)

This algorithm is Throttled Load Balancing Algorithm with

some modification. MTLB Algorithm maintains a set of

virtual machines named as virtual machine’s index table and

state the condition of the virtual machines i.e (avail/not-

avail)[1].Virtual machine at first index is initially chosen

depending upon the state. If Virtual Machine is accessible,

then the request is assigned and if it is not discovered then it

returns (- 1) to the Data Centre Controller. When the next

requirement arrives, the machine next to the already allocated

virtual machine is selected. Until the index table size is

reached the process is repeated continuously. This algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

17

focuses mainly on how incoming jobs are assigned to the

available virtual machines intelligently.

4.3 FCFS Algorithm:

It is the most basic parallel task ordering dynamic load

balancing algorithm. The working takes place by selecting the

correct order of jobs. The job would only be allotted with the

virtual machine for first execution, when the user requests

which comes first to the Data Centre Controller. The

operation of FCFS policy is simply done with FIFO queue.

The Data Center Controller finds for virtual machine which is

in empty (free) or full. Then the initial request from the queue

is removed and is given to one of the virtual machine through

the VM Load Balancer. The assignment of request is done in

two ways: Either the requests can be sequenced in a queue

manner or by assigning heavy load node less work and lower

load node with more work. Many operation conditions can be

taken into account in order to compute the present actual load

weighing value and the load weighing value.

5. SWARM INTELLIGENCE
The science of calculations inspired by the idea of 'collective

intelligence'. Collective Intelligence can be defined as

cooperation of large numbers of similar agents in an

environment for a better collective living of the system.

Examples include schools of fish, flocks of birds, and colonies

of ants. Such intelligence is collective rather than a centralized

one and is distributed throughout the system. In nature such

systems are commonly used to solve problems such as

effective foraging for food, prey evading, or colony

relocation. The information is stored in the agent itself and

communication is done through the agent’s transmitter. A

transmitter is basically the source of communication between

two agents. For example , a pheromone which is dropped

when ant travels from one node to another. Here, we discuss

the impact of different type of swarm intelligent algorithms in

load balancing.

Fig 2: Types of Swarm Intelligence Algorithms

5.1 Particle Swarm Optimization:
It is an inspiration from group of flocking birds who are in

search for some food. Every bird has its own knowledge

regarding itself, location and obstacles. It also has knowledge

through global coordinating system where each bird shares its

own knowledge with others. The birds are benefited from the

extra information they receive from other birds. A collective

intelligence is available through information pool. This

intelligence helps every bird to find food for itself. The same

inspiration is used in load balancing where optimization is

achieved through several iterations of improving a solution

with regard to some measure of quality. There are a set of

solutions where in particles are moved around in search space

and evaluated by particle’s position and velocity. Each

movement of the particle is influenced by its local maxima

and is also guided towards the best learnt positions and are

constantly updated as found by other particles. However, this

optimization does not guarantee optimal solution. When

improved observations are obtained, these observations guide

the movement of the swarm. This process is repeated for

every generation with an aim to achieve optimal solution.

PSO can therefore also be used on optimization problems that

are partially irregular, noisy, change over time, etc.

Algorithm

Algorithm Parameters[13] :

A:Population of Agents, pi: Position of agent ai in solution

space, f: objective function ,vi: velocity of agent’s ai

,v(ai):Neighborhood of agent ai(fixed)

[x*] = PSO()

P = Particle_Initialization();

For i=1 to it_max

 For each particle p in P do

 fp = f(p);

 If fp is better than f(pBest)

 pBest = p;

 end

 end

gBest = best p in P;

For each particle p in P do

v = v + c1*rand*(pBest – p) + c2*rand*(gBest – p);

 p = p + v;

end

end

Particle Update Rule

Particle update rule

p = p + v with

v = v + c1 * rand * (pBest – p) + c2 * rand * (gBest – p)

where

• p: particle’s position

• v: path direction

• c1: weight of local information

• c2: weight of global information

• pBest: best position of the particle

• gBest: best position of the swarm

• rand: random variable

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

18

General Algorithm

1. Create a ‘population’ of agents (particles) uniformly

distributed over X

2. Evaluate each particle’s position according to the

objective function

3. If a particle’s current position is better than its

previous best position, update it

4. Determine the best particle (according to the

particle’s previous best positions)

5. Update particles’ velocities:

6. Move particles to their new positions:

7. Go to step 2 until stopping criteria are satisfied

The particles generated depend upon the amount of processing

devices used, number of tasks and predefined population size.

Initially there is a random generation of particles and the

fitness value decides goodness of schedule and allocation of

tasks. The pBest and gBest values are calculated. Then the

velocity and positions are updated. The process is repeated for

maximum number of iterations possible. The optimal solution

is obtained. Each candidate solution represents each particle

due to which each particle corresponds to a decision for task

assignment using vector of r elements and each element

holding a value from 1 to n. As soon as maximum iterations

are processed, the algorithm terminates. Due to this, the near

optimal solution is obtained.

5.2 Ant Colony Optimization
Graph Searching Technique to find the shortest path from

source to the destination nodes. An analogy here is drawn

from ants who collectively come together and carry out tasks

as a team. An ant explores some kind of food and as it

explores, it drops in some kind of chemicals named

pheromones in its path. Due to this, the other ants can know

about the kind of path using the already dropped pheromones.

When an ant reaches a node, it leaves in chemicals in the

entire route it has followed. Every ant follows a similar

process. Once the ant reaches the node, the magnitude with

which the ant drops in chemicals is directly proportional to the

goodness of the path. Basically, the ant will leave more

pheromones if the path is the shortest one and conversely, it

will leave few pheromones for the largest path. The use of

pheromones is to direct the ants of new generation by giving

them knowledge about the path. The path optimization keeps

on improving along with every generation. Any ant considers

two factors while it moves-attractiveness and traits. The

attractiveness basically is based on how far the node is from

the destination. It is a kind of heuristics which allows to move

ant as close to destination as possible. Traits measure the

content of pheromones. It infers the fitness value by measure

of pheromones dropped by ants of every generation. It

determines how good a path is, as decided by earlier ants. The

probability p that any ant i from location j to move to edge k

is equal to summation of traits and attractiveness [7].

Algorithm

Initialize the base attractiveness, τ, and traits, η, for each edge;

for i < IterationMax do:

for each ant do:

choose probabilistically (based on

previous equation) the next state to move

into; add that move to the tabu list for

each ant;

repeat until each ant completed a solution;

end;

for each ant that completed a solution do:

update attractiveness τ for each edge that

the ant traversed;

end;

if (local best solution better than global solution)

 save local best solution as global solution;

end;

end;

Fig 3: Ant Colony Optimization

Load balancing can be achieved effectively especially when it

comes to balancing cloud based dynamic applications. A

proposed optimization on ant colony algorithm has been

performed that provides highly efficient load balancing for

web services. By maximizing or minimizing different

parameters of performance like processing load, memory

available, delay or network load for the clouds of different

sizes, one can develop an effective load balancer using ant

colony optimization algorithm.

5.3 Intelligent Water Drops
One surprising observation noted while looking at the

changing paths of the rivers makes us wonder the science

behind it. If we manage to comprehend the science of this, we

can use the same concept in developing algorithms for

artificial intelligence and load balancing. The IWD algorithm

is an attempt to model the dynamics that occur in a flowing

river and then shape it in the form of an algorithm. The IWD

algorithm is based on two properties-velocity and soil. Both

the properties are dynamic and change during the span of an

IWD. An IWD’s path is from a source to a destination. The

IWD starts with a predefined initial velocity and soil. During

the process, it travels in the surrounding from which it

removes some soil and in turn, gains some velocity. An IWD

is organized (flown) in distinct steps. While moving from

present location to its next location, the IWD velocity is

escalated and is non-linearly proportional to the inverse of the

amount of soil present in the two areas. Hence we can infer

that the route with less soil will result in relative increment in

velocity of the IWD as compared to the route with more soil

[11]. The IWD accumulates soil during its trip in the

environment. This soil is removed from the path joining the

two locations. The amount of soil that is accumulated by IWD

to pass from its present location to the next location, is non-

linearly proportional to the inverse of the time needed for the

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

19

IWD. This time interval can be computed by the physics of

linear motion. Thus, observed time is reliant on the velocity of

the IWD and inversely proportional to the separation between

the two points. It can be claimed that soil is the origin for

information providing such that the environment and water

drops both have information of soil. An IWD needs a system

to select the path to its next destination. This system makes

the IWD prefer the paths having low soil content to the paths

having high soil content. This path selection is achieved by

imposing an evenly randomized distribution on the soils of the

untraversed paths. Then, the odds of the next path to select is

reversely proportional to the soils of the already traversed

paths. Therefore, paths with lower soils have better

probability to be selected by the IWD.

The IWD algorithm has two types of parameters: Static and

Dynamic parameters. Static parameters remain unchanged

during the process of the IWD algorithm. On the other hand,

dynamic parameters are updated after each iteration of the

IWD algorithm. The pseudo-code of an IWD-based algorithm

may be specified in eight steps[1]:

1. Initialization of Static Parameters

- Graphical Representation of a Problem G

- Updating values of Static Parameters

2. Initialization of Dynamic Parameters: amount of soil and

velocity of IWDs

3. Even Random Distribution of IWDs on G(Graphical

representation of the Problem)

4. Construction of Solution by IWD along with updation of

amount of soil and velocity

- Local soil updating on the graph

- Soil and velocity updating on the IWDs

5. Local searching for each IWD’s solution. This is an

optional solution for better results

6. Updation of global soil values

7. Updating the best optimal solution

8. Go back to step b if ending condition is falsified

Intelligent Water Drops Algorithm provides an effective way

for achieving load balancing especially when it comes to web

service composition .The possibilities of implementing this in

load balancers is much easier than PSO [6].It is also much

more effective when it comes to composition based services.

5.4 Glowworm Swarm Optimization
It is one of a swarm intelligence algorithm. The behavior

pattern of glowworm is the apparent capability of glowworm

to change the intensity of the luciferin emission and thus

arrive to light at different intensities. Luciferin is a term for

the light-emitting compound found in organisms that generate

bioluminescence. They typically undergo an enzyme-

catalyzed oxidation resulting to a state that emits light upon

decaying to its ground state .The GSO algorithm was

developed and introduced in the Indian Institute of science,

Bangalore in 2005 [2].

Algorithm

GSO algorithm makes the agents radiance at intensities

approximately proportional to the operation value being

optimized. It is assumed that glowworms of brighter

intensities allure glowworms that have lower intensity. It

assimilate an influential decision ranging by the effective

distant glowworm is lessened when a glowworm has

satisfactory number of nearby glowworms or which ranges

beyond the approach of the glowworms

Working Of Algorithm:

1. The glowworms are spread all around the region

2. The swarm slowly gathers based on their distance to the

optimum peaks and sufficient no. of nearby glowworms

beyond the range of perception of the glowworm.

3. The swarm slowly goes to their optimum peaks

4. Swarm clusters in their optimum solution

Fig 4: Glowworm Swarm Optimization

Load Balancing with GSO

In GSO, each glowworm scatters in the objective function

definition space. These glowworms carry own luciferin values

and have the respective field of idea scope called local-

decision range. As the glow seeks for the neighbor set in the

local-decision range [10], a brighter glow has a higher affinity

to attract this glow toward this traverse, and the flight

direction each time different will change along with the

choice of nearest glowworm. Also, the local-decision range

size will be influenced by the neighbor quality, when the

neighbor density is less, glowworm’s policy making radius

will enlarge favors and seek for more neighbor.

Each glowworm g encodes the object function value W(xg(t))

at its present location xg(t) into a luciferin value lg and

transmits the same within the neighborhood. The set of

neighbors (Mg(t))of glowworm g consists of those

glowworms with high luciferin value and that are present

within a dynamic domain and the formula at each iteration.

Local-decision range update is given by equation (1)[12]:

kd
g(t+1)=min{ks, max{0,kd

g(t)+α(yt-|Rg(t)|)}} (1)

and kd
g(t+1) is the glowworm g’s location-decision range at

the t+1 iteration, ks is the sensor range ,yt is the neighborhood

range, α which affects the rate of change of neighborhood

range. The quantity of glow in local-decision range is given

by equation (2):

Rg(t)={j:||xj(t)-xg(t)}||< kd
g; lg(t)<lj(t)} (2)

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

20

here, xj(t) is the glowworm g’s luiferin at the t iteration; the

set of neighbors of glowworm g consists of those glowworms

that have a relatively higher luciferin value and that located

within a dynamic decision domain whose range kd
g is

bounded about a range kd(0<kd
g< kd).Every glowworm in

equation (3) g selects a neighbor j with a probability Pgj(t) and

process as. kERg(t)

Pgj(t)=
lj t −lg(t)

∑k∈Rg(t)lu t −lg(t)
 (3)

Movement update is shown by (4):

Xg(t+1)=xg(t)+s(
xj(t)−xg(t)

||xj(t)−xg(t)||
) (4)

Luciferin-update is in equation (5):

lg(t)=(1-P)lg(t-1)+¥J(xg(t)) (5)

here, lg(t) is a luciferin value of glowworm g at the t iteration,

P(0,1) lead to reflection of the cumulative kindness of the path

followed by the glowworms in their present values, the

parameter ¥ only scales the function values, J(xg(t) is the

value of test function.

The heading of a section should be in Times New Roman 12-

point bold in all-capitals flush left with an additional 6-points

of white space above the section head. Sections and

subsequent sub- sections should be numbered and flush left.

For a section head and a subsection head together (such as

Section 3 and subsection 3.1), use no additional space above

the subsection head.

Fig 5: Comparison Of Swarm Intelligence Algorithms

6. FUTURE WORK
Ant Colony Optimization: Better efficiency can be achieved

if clusters can be developed to implement the total solution of

load balancing. By altering and experimenting with different

parameters like processor load, memory capacity, delay for

clouds of different requirements[7][8]. A heuristic algorithm

can be developed to change the pheromone measuring

mechanism to minimize make span of cloud services and

achieve portability of request servicing. Fault tolerant issues

can be considered in future experiments and research.

Particle Swarm Optimization: A mathematical analysis has

been made by Clerc and Kennedy (Clerc M, Kennedy J ,

2002) on convergence from Math’s point of view. By

studying the stability of the condition transmitting matrix,

limited conditions can be observed where particles can move

stably[8]. Later studies explored the effect of casualty on the

locus of the particle, and convergence was studied from point

of measuring space. Though the theory remains unproved, it

still provides substantial information for performing future

work on this. Research can be carried out to study the

topology of the particle .The mimicking of different societies

can redefine neighboring topology .By studying different

topologies, we can achieve better spread of algorithm and best

property for PSO. By implementing PSO along with other

algorithm can be also a focus for research. Advantages of

PSO along with advantages of other algorithms that can

overcome the disadvantages of PSO can do wonders in

achieving optimal solution. For example, the particle swarm

optimization algorithm can achieve better optimization and

efficiency with the simulated annealing (SA) approach [9]. It

can be connected with the hereditary agents, the algorithm of

a colony of ants, vague method and etc.

Intelligent Water Drops: The ever increasing demand of web

services has made it necessary to solve the difficulty of

service selection to satisfy user demands in web service

composition. Web services composition is a new software

development paradigm, and it is a key point to achieve service

oriented computing currently. IWD allows better than PSO

when it comes to correctness of the value, feasibility and

efficiency [6]. More focus can be made on studying the

computational overhead with a myriad number of services.

Focusing on achieving the same efficiency with large number

of services can help in achieving the most optimal solution for

load balancing.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.15, November2015

21

GSO:A study can be made on discontinuities in chosen

objective function. Several intriguing questions about the

relation of parameter values and algorithm refining, based on

different applications can be raised[2]. An analysis can be

made on effects of different aspects of algorithm on its

performance along with its comparison with other swarm

intelligence algorithms. Blending with other algorithms for

more effective load balancing can also be studied.

7. ACKNOWLEDGMENTS
We take this opportunity to express our profound gratitude

and deep regards to our professor for his exemplary guidance,

monitoring and constant encouragement throughout the

process. We would also like to thank various laboratories for

their invaluable guidance.

8. REFERENCES
[1] https://en.wikipedia.org/wiki/Cloud_computing

[2] Multiagent and Grid Systems – An International Journal

2 (2006) 209–222 209 IOS Press Glowworm swarm

based optimization algorithm for multimodal functions

with collective robotics applications.

[3] Analysis of Particle Swarm Optimization Algorithm.

[4] Glowworm swarm based optimization algorithm for

multimodal functions with collective robotics

applications

[5] 2015 2nd International Conference on Signal Processing

and Integrated Networks (SPIN) Performance Study of

Some Dynamic Load Balancing Algorithms in Cloud

Computing Environment.

[6] An intelligent water drops algorithm based service

selection and composition in service oriented

architecture.

[7] Load balancing in a network using Ant colony

optimization technique.

[8] International Journal of Computer Applications (0975 –

8887) Volume 63– No.15, February 2013 8 Comparative

Analysis of Various Evolutionary Techniques of Load

Balancing: A Review

[9] International Journal of Computer Applications (0975 –

8887) Volume 5– No.4, August 2010 1 Comparative

Analysis of Ant Colony and Particle Swarm

Optimization Techniques

[10] 2014 International Conference of Intelligent Computing

Application-A load balancing model in public cloud

using ANFIS and GSO

[11] Intelligent water drops algorithm A new optimization

method for solving the multiple knapsack problem

[12] Journal of Convergence Information Technology volume

6 number 2-Feb 2011-Using Load Swarm Optimization

Algorithm for Clustering Analysis

IJCATM : www.ijcaonline.org

