
International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

18

GFUC: Gurmukhi Font and Unicode Converter

Gurjot Singh Mahi
Information Technology Lab,

Rajiv Gandhi National Institute of Youth
Development, Regional Centre,

Chandigarh, India

Amandeep Verma
Department of Computer Science,

Punjabi University Regional Centre for Information
Technology and Management,

Mohali, India

ABSTRACT

Growth of information technology has played a great role in

connecting the world together. The to and fro of information

is common in this world. Fonts play a key major role in this

communication process in digital domain. Common encoding

scheme for one language helps in loss-less digital

communication. Indian fonts lacks in this zone, as no Indian

font has standard encoding format for mapping characters.

Numerous indic fonts were created with diverse mapping

schemes. Gurmukhi as one of the prominent Indian script also

suffered from this negligence. This study investigates the

Gurmukhi font and Unicode converter, which works for font

to font substitution and font to Unicode substitution using an

algorithmic process taking intake of Gurmukhi text written in

OpenXML document. This converter works for 5 ASCII

based legacy Gurmukhi fonts and tries to handle the diverse

mapping scheme of these fonts. It gives the hustle free

substitution mechanism for both inter-font and Unicode

conversion. The performance of GFUC is measure of various

well-defined norms and gives 100% accuracy during

conversion.

General Terms

Natural Language Processing, Information Science,

Substitution Algorithm, Unicode, Algorithm, Rendering

Keywords

ASCII, Unicode, Gurmukhi fonts, Gurmukhi Font

Substitution, Conversion System.

1. INTRODUCTION
Technical development of any language depends upon the

availability of literature in digital format so that it can be used

in various natural language processing technologies. This

literature is kept in digital format using a scheme known as

encoding in various legacy documents. Encoding provides a

special byte code to each character in a particular language.

Indian fonts were also designed following this criterion. As

due to non-standardization of character mapping schemes,

many Indian fonts were encoded in miscellaneous manner

using ASCII [1] encoding format which was intended only for

English language. This can cause a problem in case of Indian

languages, as with the due course of time large amount of

literature was written using these ASCII legacy fonts which

do not contain any sematic meaning in digital domain and was

usually prone to information loss during substitution. The

studies like [2] and [3] has proven that information loss occurs

during substitution between various fonts of particular

language.

Digital Gurmukhi fonts are also suffering from this trouble

prevailing in digital domain, which prevents the growth and

development of natural language applications in Gurmukhi

language. To tackle this problem for Gurmukhi script the

present study was intended to develop an application –

Gurmukhi Font and Unicode Converter (GFUC). The GFUC

is designed to deal with two problem areas – “Publishing” and

“Machine Readability”. Book publishers tends to use the

ASCII Gurmukhi fonts in books publishing and from the term

machine readability, it is an attempt to make ASCII fonts

machine readable by performing substitution of one

Gurmukhi ASCII font into equivalent Unicode [4] format.

GFUC uses an algorithm process to address the problem for 5

Gurmukhi fonts – “Joy”, “Gurbani Akhar”, “Anandpur

Sahib”, “Akhar” and “Sukhmani”. GFUC design is focused

on two key areas – “Font to Font Substitution” and “Font to

Unicode Substitution”. In “Font to Font Substitution”, one

Legacy Gurmukhi font is substituted with another Gurmukhi

font, which resolves the problem in publishing domain and in

“Font to Unicode Substitution”, one ASCII Gurmukhi font is

substituted with its equivalent Unicode byte code depending

upon the type of font user choose, giving semantic meaning to

Gurmukhi ASCII bases text. GFUC is capable of giving 100%

Substitution accuracy for both Font to Font conversion and

Font to Unicode substitution. It is an application for NLP

domain which provides both type of conversions with

complete accuracy for mentioned 5 legacy Gurmukhi ASCII

fonts.

2. RELATED LITERATURE
There are various ideas closed to the said proposed work,

some of them are converters developed using various efficient

algorithmic techniques and some by using graph assimilation

process. It began when first Devanagari font converter was

published using an algorithmic approach in [5] in context of

Indian fonts. [6] developed an Intelligent Bengali Unicode

Converter (IBUC) in which authors have proposed an

algorithm for efficient conversion of Bengali ASCII based

fonts to Unicode. IBUC gives 100% accuracy rate as

compared to other Bengali font converters like Acro and

Nikosh, and is successful in converting the other Bengali fonts

like “AdarshaLipi” and “MoinaExpanded” which was not

considered in other font converters.

A language based font converter was developed by [7]. New

TF-IDF based approach was designed, in which a glyph

assimilation process was used for identification and

conversion of fonts. The proposed work has reported an

accuracy of 99% for 10 Indian languages. An omni font

convertor has been designed by [8] for Gurmukhi to

Shahmukhi transliteration purpose. This proposed work

identifies the Punjabi font using the character level trigram

language model. The trigram probability is calculated at word

level for conversion of Punjabi font into the Unicode format.

The system has achieved 99.75% ASCII to Unicode

conversion accuracy at word level.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

19

3. PROBLEM COMPLEXITY
Earlier studies, [3] and [9] clearly demonstrated that

information loss occurred during the substitution of one

Gurmukhi legacy font with other Gurmukhi legacy font. The

core basic reason for the design of GFUC is non-standardized

design of these Gurmukhi fonts. The other major problem

areas which were channelized during the design of GFUC are

discussed as follows:

3.1 Non Availability of Well-Defined Code

Points
Gurmukhi keys are mapped on different code points using

ASCII font encoding format. Due to different mapping

schemes, it become hard to design a natural language

processing application, as much of the text used for training

purposes in various learning algorithms is done using these

Gurmukhi fonts written using numerous fonts mapping

schemes. For example, the character “ੳ” is mapped on binary

value 01010100 in “joy” Gurmukhi font, on 01010000 in

“AnandpurSahib” font and on 01100001 in “GurbaniAkhar”

font. This is just one case of different code mappings for

similar character in different fonts, but same is the case with

available 255 Gurmukhi fonts. It cause a big hoax in the field

of language processing and confines the practice of Gurmukhi

script in language technology development. The decimal code

point for the keyword “ਪੰਜਾਬੀ” is represented in Table 1 [8].

Table 1 shows the Gurmukhi script character “ਪ” is mapped

on 0067, 0066, 0070, 0050 and on 00EA decimal code points

in “Asees”, “Gold”, “Satluj”, “Sukhmani” and “P-RUBY”

Gurmukhi fonts respectively. This rigid and problematic

property of ASCII Gurmukhi fonts makes them hard to be

used by researchers for simple NLP tasks and for publishing

by various publishing houses.

Table 1. Decimal representation of “ਪੰਜਾਬੀ” in various

Gurmukhi fonts

Gurmukhi Font Decimal Representation of "ਪੰਜਾਬੀ"

Asees 0067+007A+0069+006B+0070+0068

Gold 0066+002E+0075+006A+0057+0067

Satluj 0070+00B5+006A+003B+0062+0049

Sukhmani 0050+005E+004A+0041+0042+0049

P-RUBY 00EA+00B3+00DC+00C5+00EC+00C6

3.2 Typing Complexity
Due to different code points for more than 255 Gurmukhi

fonts and use of dissimilar keyboard formats like Inscript and

Phonetic for plotting Gurmukhi characters on keyboard keys,

make it challenging for typewriters to type these fonts using

keyboard. As for example, Fig. 1 demonstrates the working of

various Gurmukhi keyboard formats. If we want to type

“ਸਮਾਜਜਕ” in “joy” font which is particularly designed using

Inscript keyboard design, then we have to press “; + w + k + f

+ I + e” keys and similarly, in “Sukhmani” font which is

designed using phonetic keyboard, we have to press “S + M +

A + E + J + K” keys. This uneven distribution of keys in these

fonts makes the Gurmukhi typing more difficult for typewriter

to type using one font which is not according to their learned

format of keyboard.

Fig. 1. Keyboard keys combination representation in two

fonts for typing “ਸਮਾਜਜਕ”

3.3 Unicode Rendering Problem
Although it is possible to convert the legacy Gurmukhi font

into Unicode standard but sometime this result in incorrect

semantic value of word, due to inappropriate rendering of

characters in some case. This indifference between rendering

of characters in ASCII and Unicode creates problem, as if we

want to type “ਜਕ” in Gurmukhi ASCII font, then we place

Gurmukhi vowel sign “I” and then Gurmukhi letter “KA”.

While if the same process is followed in Unicode, this result

in incorrect word with no sematic meaning in Gurmukhi script

as shown in Fig. 2.

Fig. 2. Rendering mechanism in Gurmukhi ASCII font

and Unicode

3.4 Handling Gurmukhi Special Vowels
Typically in legacy Gurmukhi ASCII fonts, long vowels like

KHHA(ਖ਼), GHHA(ਗ਼), ZA(ਜ਼), SHA(ਸ਼), LLA(ਲ਼) and FA(ਫ਼)

are typed with the help of two characters. Whereas, in

Unicode contains unique code values for these long vowels.

For example, if we want to type ਲ਼ in “joy” font, it is typed by

using the keys a + b, but in Unicode it is mapped special code

value - 0A33. This uneven arrangement between two different

standards of font creates problem in handling these long

vowels w.r.t. Gurmukhi script.

4 SYSTEM FRAMEWORK
The proposed application shown in Fig. 3 was designed to

enable the user to convert legacy Gurmukhi fonts efficiently

and without error. This entire system was designed on the PC

(Pentium(R) Dual-Core CPU T440 @ 2.20 GHz, 4GB RAM,

Windows 8 and Ubuntu Platform, Python). The time

complexity of this system is measured to be O(n).

The open XML file is used as the target file format to perform

substitution. Whole system design is divided in 4 stages:

1. Parsing OpenXML file document.

2. Design of mapping dictionaries.

3. Designing of substituted algorithm.

4. Assembling all Parts in GFUC System

Framework.

In the first step, parsing of OpenXML document takes place

and text is extracted. In second step, dictionaries were created

for GFUC system application in which manual font mappings

were developed to make the finale processed document error

free. Third step consist of designing of substitution algorithm

for extracted text. Finally, the modules were assembled to

make one Gurmukhi Font and Unicode Converter.

; + w + k + f + I + e (Joy)

S + M + A + E + J + K (Sukhmani)

ਜ + ਕ ਜਕ (Rendering in ASCII font)

ਜ ਜ + ਕ  ਜ ਕ(Rendering in Unicode)

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

20

CALL SUBSTITUTION ALGORITHM

PERFORM SUBSTITUTION

ONPUT TRADITIONAL OPENXML FILE

MAPPING

FOUND?

INDICATE ERROR
NO

YES

HANDLING GURMUKHI

VOWEL SIGN (I) IN

EXTRACTED TEXT

MAPPING

FOUND?

NO

YES

SELECT THE

RELEVANT FONT

TO FONT

MAPPING?

BASE FONT ==

TARGET FONT?

INDICATE ERROR

YES

NO

SELECT THE

RELEVANT FONT

TO UNICODE

MAPPING?

SELECT BASE FONT
SELECT

BASE

FONT

SELECT

TARGET

FONT

LEGACY GURMUKHI FONT

TO FONT MAPPING

DICTIONARY

LEGACY GURMUKHI FONT

TO UNICODE MAPPING

DICTIONARY

LOAD GURMUKHI FONT TO

FONT SUBSTITUTION

FUNCTION

LOAD GURMUKHI FONT TO

UNICODE SUBSTITUTION

FUNCTION

INPUT TRADITIONAL OPENXML FILE

WRITTEN IN LEGACY GURMUKHI FONT

SELECT THE TYPE TO SUBSTITUTION

1. FONT TO FONT SUBSTITUTION

2. FONT TO UNIOCDE SUBSTITUTION

START

Fig. 3. System framework of GFUC

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<?mso-application progid="Word.Document"?>

<pkg:package xmlns:pkg="http://schemas.microsoft.com/office/2006/xmlPackage">

.

.

.

.

.

<w:body>……<w:rFonts w:ascii="Joy" w:hAnsi="Joy"/>……<w:t>gzikph fposKs dh ouBkFftT[As ns/ f;oiDekoh ftu ;wkfie fBnK ns/

wkBtFw[esh dh ;zebgkswesk e/doh d/ o{g ftu rsh ojh. </w:t>
.

.

.

.

</pkg:package>

 Fig. 4. Internal representation of Gurmukhi OpenXML document

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

21

4.1 Parsing OpenXML File Document
The initial step of GFUC mechanism was to extract the

Gurmukhi text from the traditional Microsoft word file which

is saved using .doc or .docx extension. The beauty of these

format is that Microsoft document at back-end is saved in

OpenXML format as shown in Fig. 4, which is usually said as

original ECMA-376[10] standard, which is now represented

under ISO as ISO/IEC 29500-1:2008 standard. This standard

defines the XML set of vocabularies to represent the word-

processing document [11]. We have used Textract 1.2.0 [12]

to parse and extract the text from OpenXML word document.

This structured Gurmukhi text is the data for which

substitution function will be executed in upcoming steps.

4.2 Design of Mapping Dictionaries
Dictionaries, known as the abstract data types are chosen as

the standard data-type for database creation. The basic aim of

taking dictionaries as a standard data-type for our system was

that dictionaries are accessed by their keys and not via its

position [13], as in case of using arrays and linked lists as a

data type for storage medium that could put unnecessary

burden on the system design. Mappings were created for total

61 characters in Font to Font substitution and 70 characters in

Font to Unicode substitution. This leads us to creation of total

25 dictionaries for substitution purpose, in which 20

dictionaries were created for font to font substitution purpose

and 5 for font to Unicode substitution. Each Gurmukhi font

key in dictionary is mapped to its relevant key in another

Gurmukhi font and vice-versa. In this way Gurmukhi

character keys were manually mapped to each other for 5

Gurmukhi fonts and same thing was achieved for Unicode

Conversion. The example of Joy to GurbaniAkhar and Joy to

Unicode dictionary is showcased in Fig. 5 and Fig. 6.

4.3 Text Substitution Algorithm
To make the Substitution work, we came up with a Gurmukhi

text substitution algorithm. It is a 5 step algorithm. We have

used five python inbuilt functions to create our own

Gurmukhi font replacement module. KWARGS, join,

enumerate, idx and get are five inbuilt functions used.

SUBSTITUTION algorithm was created as an internal part of

SUBSTITUTED_TEXT algorithm. It is designed to replace

each character extracted from the Gurmukhi OpenXML

document file from base font to target font selected in

SUBSTITUTED_TEXT algorithm. The text extracted from

the OpenXML document and dictionary chosen in the

SUBSTITUTED_TEXT algorithm is passed to

SUBSTITUTION algorithm by using

OPENXMLDOCUMENTTEXT and KWARGS keyword.

Selected Gurmukhi key dictionary is created using a comma

separated list of ’key’:’value’ pairs within curly braces, an

example is shown in Fig. 5 and Fig. 6. As said earlier, the

selected dictionary is passed to SUBSTITUTION function

using KWARGS keyword. KWARGS permits

SUBSTITUTION function to pass arbitrary number of

keyword arguments from SELECTED_DICTIONARY. All

unique dictionary character keys are loaded in the

All_Characters in step 1 using KWARGS.keys(), in which

keys module return the list of each available key to

All_Characters. All_Characters now holds the entire list of

unique keys in dictionary, like

[[T],[n],[J],[;],[j],[e],[y],…………].

In step 2, step 3 is repeated to compute the index value (idx)

and unique keyword (k) in OPENXMLDOCUMENTTEXT

using enumerate keyword which iterates the Gurmukhi text

keywords one by one.

In step 3, step 4 is repeated for each key variable in

All_Characters. In step 4, if unique keyword k is present in

enumerated OPENXMLDOCUMENTTEXT text, which is

performed using ".join(key) then that unique key k is replaced

by its index (idx) position in enumerated

OPENXMLDOCUMENTTEXT using:

OPENXMLDOCUMENTTEXT[idx]=

KWARGS.get(".join(key))

where .get function encapsulate the new value for unique

''.join(key) value against old key at idx. Step 5 joins the

replace key k in OPENXMLDOCUMENTTEXT using

".join(OPENXMLDOCUMENTTEXT) and returns the

substituted text.

We now formally state the substitution algorithm in Fig. 7.

4.4 Assembling all Parts in GFUC System

Framework
In the first step, test was extracted/parse from the OpenXML

document, in second step mappings were manually designed

and in third step text substitution algorithm was proposed. In

the last step, user defined function is implemented in the form

of Gurmukhi font and Unicode Converter (GFUC). The user

defined function is further divided in two categories:

joy2gurbaniakhar = { 'T':'a', 'n':'A', 'J':'e', ';':'s', 'j':'h', 'e':'k', 'y':'K', 'r':'g', 'x':'G',

'C':'|', 'u':'c', 'S':'C', 'i':'j', 'M':'J', 'R':'\\', 'N':'t', 'm':'T', 'v':'f', 'Y':'F', 'D':'x',

's':'q', 'E':'Q', 'd':'d', 'X':'D', 'B':'n', 'g':'p', 'c':'P', 'p':'b', 'G':'B', 'w':'m', ':':'X',

'o':'r', 'b':'l', 't':'v', 'V':'V', 'ô':'S', 'õ':'^', 'ö':'Z', '÷':'z', 'ø':'&', 'ÿ':'L', ']':'IN',

'A':'N', '/':'y', 'k':'w', 'f':'i', 'h':'I', '?':'Y', '[':'u', '{':'U', '\'':'o', '\"':'O', 'U':'E',

'K':'W', 'Q':'H', 'P':'H', 'q':'R', 'z':'M', 'Z':'~', 'L':':', '.':'[', 'F':'-', 'H':'.', 'W':'hY'}

joy2unicode = {'T':'ੳ', 'n':'ਅ', 'J':'ੲ', ';':'ਸ', 'j':'ਹ', 'e':'ਕ', 'y':'ਖ', 'r':'ਗ', 'x':'ਘ', 'C':'ਙ',
'u':'ਚ', 'S':'ਛ', 'i':'ਜ', 'M':'ਝ', 'R':'ਞ', 'N':'ਟ', 'm':'ਠ', 'v':'ਡ', 'Y':'ਢ', 'D':'ਣ', 's':'ਤ',
'E':'ਥ', 'd':'ਦ', 'X':'ਧ', 'B':'ਨ', 'g':'ਪ', 'c':'ਫ', 'p':'ਬ', 'G':'ਭ', 'w':'ਮ', ':':'ਯ', 'o':'ਰ',
'b':'ਲ', 't':'ਵ', 'V':'ੜ', 'ô':'ਸ਼', 'õ':'ਖ਼', 'ö':'ਗ਼', '÷':'ਜ਼', 'ø':'ਫ਼', 'ÿ':'ਲ਼', 'z':' ੰ', 'k':' ਾ',
'h':' ੀ', 'f':'ਜ ', '/':' ', 'q':' ', 'H':'.', '[':' ', '{':' ', '\'':' ', '\"':' ', 'K':' ਾ ', 'F':'-

','.':'।', 'A':' ', 'Z':' ', '?':' ', '+':' ', 'ý':'ੴ', 'ú':'ਓ', 'J[':'ਏ', 'T{':'ਊ', 'T[':'ਉ', 'Jh':'ਈ',
'fJ':'ਇ', 'nk':'ਆ', 'n\"':'ਔ', 'n?':'ਐ', 'W':'ਹ ', 'ù':'ਨ ੰ '}

Fig. 5. Implemented Joy to Gurbani Akhar key mapping dictionary

Fig. 6. Implemented Joy to Unicode key mapping dictionary

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

22

1. Font to font conversion.

2. Font to Unicode conversion.

Both the functionalities are user defined. From the user-

defined we mean to say that the user has been given power to

choose base font in which the legacy OpenXML document

has been written and also the target font is selected, in which

user want to convert the base font. One cannot select the same

Gurmukhi font as the base font and target font. A constraint

has been added in which system will raise an error in this type

of scenario and to restrict this action by the user. If the user

selected the different base font and target font, the relevant

font mapping dictionary will be selected from the database

which is mentioned in step 1 of this system. Also is the

dictionary is not available in the database, the constraint has

been added to the system which show error in this case. To

make the conversion happen the substitution function was

created and implemented. If the dictionary is found, the

extracted text is sent to this substitution function and

substituted text OpenXML file is taken as output. In the same

way, second functionality includes all the steps but instead of

selection of both base and target font, only base font in

selected and equivalent font mapping dictionary is extracted

from database. If the mapping is found the substitution is

performed and resultant substituted OpenXML file with

Unicode encoding is taken as output at the end

The proposed is intended to extract text from the Open XML

document and perform the conversion from ASCII Base

Gurmukhi font to any other ASCII target Gurmukhi font or

into Unicode. To perform this conversion, we came up with

an algorithm –Font Selection and Conversion Algorithm

showcased in Fig. 8.

5. FONT SELECTION AND

CONVERSION ALGORITHM
Initially, in step 1, the algorithm takes the user based type of

font substitution i.e. font to font substitution (FONT2FONT)

or font to Unicode substitution (FONT2UNICODE) and this

user based selection is passed to CHOICE variable.

Eventually after the selection of user based font conversion,

the target conversion is obtained as follows:

In step 2, If CHOICE == FONT2FONT, then the user is asked

to select BASEFONT and TARGETFONT, where the

BASEFONT is the basic Gurmukhi font in which the

OPENXMLDOCUMENTTEXT is written and

TARGETFONT is the font in which user want to convert the

BASEFONT. Eventually after the selection of Gurmukhi

fonts, the target conversion is obtained as follows:

(a) If BASEFONT == TARGETFONT, then we obtain

an ERROR, and begin Font selection again. Else,

FONTTOFONTDATABASE is searched for relevant

Gurmukhi DICTIONARY for the selected BASEFONT

and TARGETFONT.

(b) If DICTIONARY is not found in

FONTTOFONTDATABASE, then we obtain an ERROR

and algorithm terminates its functionality. Else, after

successful search the relevant Gurmukhi font

DICTIONARY is assigned to

SELECTED_DICTIONARY variable. Now, the parsed

OPENXMLDOCUMENTTEXT and

SELECTED_DICTIONARY are passed to

SUBSTITUTION algorithm to perform substitution.

The SUBSTITUTION algorithm returns the converted text to

OUTPUT_TEXT.

In step 3, Else if CHOICE == FONT2UNICODE, the user is

asked to select BASEFONT. Again, the

FONTTOUNICODEDATABASE is searched for relevant

Gurmukhi Unicode DICTIONARY for the selected

BASEFONT. After the search is performed the Unicode

conversion worked as follows:

(a) If, DICTIONARY is not found

FONTTOUNICODEDATABASE, then we obtain an

ERROR and algorithm terminates its functionality.

(b) Else, the selected Gurmukhi font Unicode

DICTIONARY is assigned to

SELECTED_DICTIONARY variable. Regular

expressions has been used to handle the rendering

problem of Gurmukhi vowel Sign I (ਜ), located at 0A3F

code value in [14]. We have used four inbuilt regular

expression functions to solve this problem. RE,

COMPILE, SUB, LAMBDA and GROUP are four

regular expression functions used. For the relevant

BASEFONT, Gurmukhi vowel Sign I is selected from

the FONTTOUNICODEDATABASE and initiated to

I_key_OF_BASE_FONT variable. A regular expression

search function is created as:

RegularExpression <-

RE.COMPILE(r’(I_key_OF_BASE_FONT)(\S)’)

SUBSTITUTION(OPENXMLDOCUMENTTEXT, KWARGS)

OPENXMLDOCUMENTTEXT: Text extracted by parsing Gurmukhi OpenXML document

KWARGS: Selected dictionary in SUBSTITUTED_TEXT Algorithm

1. Set All_Characters <- [[ab for ab in k] for k in KWARGS.keys()]

2. Repeat 3, for idx, k in enumerate(OPENXMLDOCUMENTTEXT):

3. Repeat 4, for key in All_Characters:

4. if k in ".join(key), then:

 OPENXMLDOCUMENTTEXT[idx] = KWARGS.get(".join(key))

 [end of if Statement]

 [End of inner loop]

 [End of outer loop]

5. Return ".join(OPENXMLDOCUMENTTEXT)

 Fig. 7. Substitution algorithm

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

23

RE.COMPILE(r’(I_key_OF_BASE_FONT)(\S)’)

search for the I (ਜ) key with its following next character.

This regular expression working is divided in two working

groups as shown in Fig. 9. Developed regular expression

functioning is also demonstrated using finite automata given

in Fig. 10. The whole process of searching and swapping the

key values is divided in two steps - Glyph Segregation and

Glyph Interchange. In the glyph segregation process, I key

and the following next character is examined and in glyph

interchange phase the keys segregated is swapped with respect

to its position as shown in Fig. 11.

SUBSTITUTED_TEXT(FONT2FONT, FONT2UNICODE, SUBSTITUION_FUNCTION,

FONTTOFONTDATABASE, FONTTOUNICODEDATABASE, OPENXMLDOCUMENTTEXT,OUTPUT_TEXT)

FONT2FONT: Font to Font Convesion

FONT2UNICODE: Font to Unicode Conversion

SUBSTITUION: Gurmukhi text Substitution Algorithm

FONTTOFONTDATABASE: Gurmukhi Font to Font Key mappping Dictionaries

FONTTOUNICODEDATABASE: Gurmukhi Font to Unicode Key mappping Dictionaries

OPENXMLDOCUMENTTEXT: Text extracted by parsing Gurmukhi OpenXML document

OUTPUT_TEXT: Substituted Gurmukhi Text (Output)

1. Set CHOICE <- {Enter user based selection - FONT2FONT or FONT2UNICODE}

2. if CHOICE == FONT2FONT, then:

 Set BASEFONT <- Select Base Font

 Set TARGETFONT <- Select Target Font

 if BASEFONT == TARGETFONT, then:

 RAISE ERROR

 Print "Select different Target Font"

 Go to Step 2

 Else:

 Search for DICTIONARY in FONTTOFONTDATABASE for

selected Base and Target font

 If DICTIONARY is not found, then:

 RAISE ERROR

 Print "Dictionary not Found" and Exit.

 Else:

 SELECTED_DICTIONARY <- Selected

Dictionary

 OUTPUT_TEXT <- Set

SUBSTITUTION(OPENXMLDOCUMENTTEXT, SELECTED_DICTIONARY)

 [End of inner if Statement]

 [End of middle if Statement]

 [End of outer if Statement]

3. Elseif CHOICE == FONT2UNICODE, then:

 Set BASEFONT <- Select Base Font

 Search for DICTIONARY in FONTTOUNICODEDATABASE for selected Base font

 If DICTIONARY is not found, then:

 RAISE ERROR

 Print "Dictionary not Found" and Exit.

 Else:

 SELECTED_DICTIONARY <- Selected Dictionary

 I_key_OF_BASE_FONT <- Select the Long Vowel I from

selected DICTIONARY

 RegularExpression <-

RE.COMPILE(r’(I_key_OF_BASE_FONT)(\S)’)

 I_HANDLED_TEXT <- RegularExpression.SUB(LAMBDA(j):

j.GROUP(2)+j.GROUP(1), OPENXMLDOCUMENTTEXT)

 OUTPUT_TEXT <- set SUBSTITUTION(I_HANDLED_TEXT,

SELECTED_DICTIONARY)

 [End of inner if Statement]

 [End of outer if Statement]

4. Else:

 Print "You entered wrong Choice" and Exit.

5. Exit

Fig. 8. Font selection and conversion algorithm

Fig. 9. Regular expression working group explanation

(I_key_OF_BASE_FONT)(\S)

 1st Capturing group (I_key_OF_BASE_FONT)

o I_key_OF_BASE_FONT matches the Gurmukhi vowel Sign I (‍ਜ) of base

font (case sensitive).

 2nd Capturing group (\S)

o \S match any non-white space character [^\r\n\t\f] next to Gurmukhi vowel

Sign I.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

24

Glyph interchange process is carried out by using the

following function:
RegularExpression.SUB(LAMBDA(j):j.GROUP(2

)+j.GROUP(1), OPENXMLDOCUMENTTEXT)

This function, SUB function is used to substitute the

positions of I key and following next character key, which

was put on GROUP(1)and GROUP(2) respectively using
RE.COMPILE(r’(I_key_OF_BASE_FONT)(\S)’)

function. The SUB function substitute the pattern passed in

RegularExpression variable, using LAMBDA()

function with j variable, which act like a syntactic sugar for

declaring the normal function definitions. It is an iteration

function which perform replacement switch using

j.GROUP(2)+j.GROUP(1) function to concatenate the

two characters using position values. This function is

performed for each and every pattern matches for I Gurmukhi

key and the result is saved to I_HANDLED_TEXT, which

contains glyph assimilated document text. The substituted

I_HANDLED_TEXT and SELECTED_DICTIONARY are

passed to SUBSTITUTION algorithm to perform the

Unicode substitution for Gurmukhi characters. The

SUBSTITUTION algorithm again returns the converted text

to OUTPUT_TEXT.

Else, in Step 4, if the user selects wrong value for CHOICE

variable, the algorithm shows an error. This step 4 condition

signals the CHOICE selection as incorrect and program gets

terminated in Step 5.

6. ACCURACY ASSESSMENT

CRITERION
We followed some standard set of procedures character level

substitution and word level substitution. The set of procedures

followed in the assessment are as follows:

6.1 Percentage of Accuracy
In the percentage of Accuracy, the GFUC is analysed for its

substitution accuracy mechanism. For this we came up with

equation 1. In this equation, Matched Characters or Words are

the number of characters or words in Gurmukhi substituted

font OpenXML document file, which match with the original

Gurmukhi OpenXML document. Whereas, Total Characters

or Words represents the total number of characters in the base

OpenXML document.

 (1)

6.2 Overall accuracy
To calculate the Overall accuracy of GFUC application, we

have used equation 2 and 3 [15]. These equations comprise to

tell the overall accuracy of substitution mechanism installed in

GFUC. represents the overall accuracy to be computed,

Off diagonal components in the matrix is represented by using

the NT, Major diagonal component sums up in eii and total

number of columns are represented using nc.

 (2)

 (3)

‍[A-Z][a-z][0-9] [-^&*()_+|~=`{}\[\]:";'<>?,.\/]

‍ਜ

q

1
q2 qf

Fig. 10. Finite state representation of regular expression

 ਸਮਾਜਜਕ (Gurmukhi ASCII Font)

ਸਮਾਜਜਕ (Unicode)

ਸ + ਮ + ਾ + ਜ + ਜ + ਕ (Glyph Segregation)

 ਸ + ਮ + ਾ + ਜ + ਜ + ਕ (Glyph Interchange)

Fig. 11. Regular expression swapping mechanism for Gurmukhi vowel “ਜ ”

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

25

6.3 Kappa Coefficient
We have used Kappa coefficient to measure the inter-rater

reliability of the GFUC results. Kappa takes all columns and

rows in account while computing the confusion matrix

whereas overall accuracy is computed only for the major

diagonal [16]. Kappa is used to find the complete

trustworthiness of GFUC. Landis and Koch (1977) standard

of agreement was used to see the result (= poor, .01-.20

= slight, .21 - .40 = fair, .41 - .60 = moderate, .61 - .80 =

substantial, .81 – 1 = almost perfect)[17]. Total number of

cells in confusion matrix is represented using N, nc represent

the total number of columns in confusion matrix, sum of

column i is given using i+, sum of row i is given using +i, and

Xii signifies the total number of correct cells in confusion

matrix.

 (4)

7. RESULTS
The GFUC substitution accuracy was analysed on two

criteria’s – character level and word level. At character level

substitution, Gurmukhi characters were analysed for

substitution accuracy following the same set of standard

procedures described in [3] and established of procedures

mentioned in [6] is used to calculate the accuracy at word

level.

It is not feasible to calculate the number of correctly

substituted characters or words manually as data is large in

number. To handle this problem for analysis phase, we

develop two small applications to calculate our accuracy at

character and word level using the above mention accuracy

assessment criterion as shown in Fig. 12 and Fig. 13. This

application was deigned on the same configuration mentioned

in system design with the use of additional tool known as

NLTK.

Fig. 11 shows the application made to record the results of

font to font substitution mechanism and Fig. 13 showcases the

application made to record the results of font to Unicode

substitution of GFUC. These applications contain two phases

– Data Arrangement and Analysis phase. In the data

arrangement phase of Fig. 12 one OpenXML document which

is written using Base font is substituted using GFUC font to

font substitution and termed as Target font OpenXML

Document File. Now these both files are further sent to GFUC

font to Unicode mode to make the written data machine

readable in these both files. These files are further sent to

analysis phase to identify the performance of our installed

mechanism in the form of GFUC. In analysis phase, the files

are tokenized and application sees that if characters or words

are equal in number. If they are not equal then it displays error

otherwise, it is further sent to text matcher. After analysis

phase we get our results. The Data Arrangement phase of Fig.

13 is slightly different from Fig. 12. As, it is used to analyse

the results of GFUC font to Unicode conversion so, we

haven’t installed GFUC Unicode conversion for Target

OpenXML file as it is initially in the Unicode form. The

subsequent steps are similar to Fig. 12.

7.1 Character Level Analysis
To carry out character level assessment for GFUC font to font

substitution module, 61 diverse Gurmukhi characters were

taken

 in an OpenXML document and passed through our

application designed to perform our experiment as showcased

in Fig. 12. The output results of the experiment are displayed

in the form of confusion matrix given in Table 2. In this major

diagonal contain the number of characters matched during the

experiment and off diagonal on both side of major diagonal

contain the number of characters not matched in experiment.

Table 2 is analysed on the given accuracy assessment criterion

mentioned in Section 6 of this paper. The overall accuracy is

calculated using equation 2 and 3. The overall accuracy

results are shown in Table 3. Using equation 4 on Table 2, the

kappa coefficient was calculated which is represented in Table

4.

Using experimental setup demonstrated in Fig. 13, we started

to analyse the GFUC Font to Unicode module by taking the

dataset which comprises of total 70 Gurmukhi characters,

containing the additive form of Gurmukhi special and long

vowels. The result of performed experiment is represented in

Table 5. Equation 1 was used to calculate the amount of

accuracy for the demonstrated results at character level, which

are shown subsequently with correctly recognized characters

in Table 5.

7.2 Word Level Analysis
For character level analysis, we took a 5 OpenXML document

files containing different amount of words in 5 different fonts.

The amount of words taken for analysis each font is shown in

Table 6. Same set of procedure was followed as given in Fig.

12 to calculate the accuracy at word level for Font to Font

substitution mechanism of GFUC. The files containing

different amount of words is passed to Fig. 12 taking account

of result at the end of experiment. The results taken down

during the course of experiment are shown in Table 7.

Using equation 1, the amount of accuracy was checked for the

acquired number of words converted in this module. The

accuracy is also given in Table 7.

At the last to know about the accuracy at word level in

Unicode module of GFUC, the same set of document file

containing different amount of words is given to Fig. 13

application. The results and discovered accuracy is given in

Table 8. For this purpose also, equation 1 was used in which

the total number of words correctly converted was checked to

give the output results.

8. DISCUSSION
The results got after performing the analysis on various

parameters are discussed in this section. The results were

analysed by making the comparative study which includes,

percentage of accuracy, overall accuracy and kappa statistics,

which showcase us the overall reliability of legacy

substitution mechanism in documents and Gurmukhi Font and

Unicode Converter at character level and word level. For

Font to Font substitution mechanism of GFUC, overall

accuracy in Table 3 that was got after examination comes out

to be 100%, which is excellent at character level. The kappa

statistics () in Table 4 come out to be 1, which according to

the Landis and Koch (1977) standard of agreement is perfect.

The Table 5 shows us 100% loss-less font substitution for font

to Unicode mechanism of GFUC at character level. Table 7

tells us that about the word level analysis for GFUC Font to

Font substitution. It shows us the 100% accuracy at word

level for 5 Gurmukhi fonts. Also, Table 8 shows 100%

accuracy at Unicode level without any information-loss of

Gurmukhi character “I”.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

26

This result demonstrate us that by using the GFUC, the

information loss was handled at bigger scale. The indicators

like 100% accuracy at 2 levels of assessment, provides us

with base of saying that GFUC is capable of handling the

information loss for Gurmukhi script for 5 legacy Gurmukhi

fonts and provide us with full document conversion without

any knowledge of font key-mappings.

CHARACTERS/WORDS

ARE EQUAL?

DATA ARRANGEMENT

BASE

FONT OPEN XML

DOCUMENT

TARGET

FONT OPEN XML

DOCUMENT

GFUC

(FONT TO FONT

CONVERSION)

GFUC

(FONT TO FONT

CONVERSION)

GFUC

(FONT TO FONT

CONVERSION)

ANALYSIS

YES

TOKENIZER

NO

 ERROR

TEXT MATCHER

RESULT

Fig. 4. Application Framework for analysis for Font to Font mechanism of GFUC

DATA ARRANGEMENT

BASE

FONT OPEN XML

DOCUMENT FILE

UNICODE

FONT OPEN XML

DOCUMENT FILE

GFUC

(FONT TO UNICODE

CONVERSION)

GFUC

(FONT TO UNICODE

CONVERSION)

ANALYSIS

YES

TOKENIZER

CHARACTERS

/WORDS ARE

EQUAL?

NO
 ERROR

TEXT MATCHER

RESULTS

Fig. 13. Application Framework for analysis for Font to Unicode mechanism of GFUC

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

27

Table 3. Overall accuracy

Overall Accuracy Calculated Value

 100%

Table 4. Kappa coefficient

Kappa coefficient Calculated Value

 1

Table 2. GFUC Font to Font Substitution Accuracy Assessment

Base Font

Substituted Font

Joy
Gurbani

Akhar

Anandpur

Sahib
Akhar Sukhmani

Joy 61 0 0 0 0

Gurbani Akhar 0 61 0 0 0

Anandpur Sahib 0 0 61 0 0

Akhar 0 0 0 61 0

Sukhmani 0 0 0 0 61

Table 7. GFUC Font to Font Substitution Accuracy Assessment at Word Level

Document File

(Base Font - Target Font)
Words

Number of

Correctly

Converted Words

Accuracy

Joy - Anandpur Sahib 3488 3488 100%

Joy - Gurbani Akhar 3488 3488 100%

Joy - Akhar 3488 3488 100%

Joy - Sukhmani 3488 3488 100%

Anandpur Sahib - Joy 4026 4026 100%

Anandpur Sahib - Gurbani Akhar 4026 4026 100%

Anandpur Sahib - Akhar 4026 4026 100%

Anandpur Sahib - Sukhmani 4026 4026 100%

Gurbani Akhar - Joy 2156 2156 100%

Gurbani Akhar - Anandpur Sahib 2156 2156 100%

Gurbani Akhar - Akhar 2156 2156 100%

Gurbani Akhar - Sukhmani 2156 2156 100%

Akhar - Joy 2390 2390 100%

Akhar - Anandpur Sahib 2390 2390 100%

Akhar - Gurbani Akhar 2390 2390 100%

Akhar - Sukhmani 2390 2390 100%

Sukhmani - Joy 2491 2491 100%

Sukhmani - Anandpur Sahib 2491 2491 100%

Sukhmani - Gurbani Akhar 2491 2491 100%

Sukhmani - Akhar 2491 2491 100%

Table 5. GFUC Font to Unicode Substitution Accuracy Assessment

Base Font

Unicode

Total Character in Base

Font

Characters Correctly

Substituted to Unicode

Accuracy at

Character Level

Joy 70 70 100%

Gurbani Akhar 70 70 100%

Anandpur Sahib 70 70 100%

Akhar 70 70 100%

Sukhmani 70 70 100%

Table 6. Number of words for testing in 5 diverse Gurmukhi fonts

Gurmukhi Font Number of Words for Testng

Joy 3488

Anandpur Sahib 4026

Gurbani Akhar 2156

Akhar 2390

Sukhmani 2491

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.3, November 2015

28

9. CONCLUSION AND FUTURE WORK
Gurmukhi Font and Unicode Converter (GFUC) is proposed

in this research. Non-Standardization is stopping the

automation of Gurmukhi scripts in digital domain in digital

documents. To handle this information loss GFUC was

designed. GFUC is capable of giving inter font and Unicode

conversion without rendering problems. Inter-font conversion

was made for 5 Gurmukhi fonts and it is capable of giving

loss-less font conversion between these Gurmukhi fonts.

Also, our GFUC is capable of giving Font to Unicode

conversion without any rendering problem in Gurmukhi

glyphs. GFUC performance was analysed and checked on

various parameters like percentage of Accuracy, Overall

Accuracy and Kappa Coefficient matrices. GFUC gives 100%

accuracy in both domains of substitution mechanism and

handled information loss efficiently.

Gurmukhi font conversion system application is realized in

this study. However, this system application can further be

extended. In this study, 5 Gurmukhi fonts were taken into

consideration to make inter-font conversion application and to

design a font to Unicode conversion system. An extension to

this research work can be done is following manner:

 Graphical User Interface (GUI) will be created to make

the GFUC available to mass users.

 More Gurmukhi fonts can be added to make it useful in

wide range.

 Study can also be extended to another available Indian

scripts.

10. REFERENCES
[1] “ANSI X3.4: Coded Character Set-7-Bit American

National Standard Code for Information Interchange,”

New York, 1986.

[2] G. Brown and K. Woods, “Born Broken: Fonts and

Information Loss in Legacy Digital Documents,” Int. J.

Digit. Curation, vol. 6, no. 1, pp. 5–19, 2011 [Online].

Available:

http://www.ijdc.net/index.php/ijdc/article/view/159.

[Accessed: 31-Jan-2015]

[3] G. S. Mahi, A. Verma, K. S. Bajwa, and G. Singh,

“Information Loss in Digital Documents,” in IEEE

international symposium on emerging trends and

technologies in libraries and information services,

2015, pp. 118–121.

[4] “The Unicode Consortium.” [Online]. Available:

www.unicode.org

[5] A. Bharati, N. Sangal, V. Chaitanya, R. Sangal, and G.

U. M. Rao, “Generating Converters between Fonts

Semi-automatically,” in SAARC conference on Multi-

lingual and Multi-media Information Technology, 1998.

[6] S. S. Rahaman, M. R. Islam, and M. a. H. Akhand,

“Design and development of a Bengali unicode font

converter,” in 2013 International Conference on

Informatics, Electronics and Vision (ICIEV), 2013, pp.

1–4 [Online]. Available:

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?ar

number=6572667

[7] R. Arokia, A. Anand, and K. Prahallad, “Identification

and Conversion on Font-Data in Indian Languages,” in

ICUDL, 2007.

[8] G. S. Lehal, T. S. Saini, and S. K. Chowdhary, “An

Omni-font Gurmukhi to Shahmukhi Transliteration

System,” in COLING, 2012, vol. 3, no. December 2012,

pp. 313–320.

[9] G. S. Mahi and A. Verma, “Wrecked Indian Fonts: A

Problem for Digitalization of Indic Documents,” in 60th

International Conference on Embedded Librarianship

and Technological challenges in Digital Age, 2015, pp.

905–914.

[10] “ECMA-376,” 2012. [Online]. Available:

http://www.ecma-

international.org/publications/standards/Ecma-376.htm

[11] “ISO/IEC 29500-1:2008,” 2008. [Online]. Available:

http://www.iso.org/iso/catalogue_detail?csnumber=514

63

[12] “Textract 1.2.0.” [Online]. Available:

https://textract.readthedocs.org/en/latest/

[13] “Python Dictionaries.” [Online]. Available:

www.python-course.eu/python3_dictionaries.php

[14] “Gurmukhi Unicode Standard, Version 6.3,” 2013

[Online]. Available:

unicode.org/charts/PDF/U0A00.pdf

[15] R. G. Congalton, “A review of assessing the accuracy

of classification of remotely sensed data,” Remote Sens.

Environ., vol. 37, pp. 35–46, 1991.

[16] J. Cohen, “A coefficient of agreement of nominal

scales,” Educ. Psychol. Meas., vol. 20, pp. 37–46, 1960

[Online]. Available:

http://epm.sagepub.com/cgi/doi/10.1177/001316446002

000104

[17] J. R. Landis and G. G. Koch, “The measurement of

observer agreement for categorical data.,” Biometrics,

vol. 33, pp. 159–174, 1977.

Table 8. GFUC Font to Unicode Substitution Accuracy Assessment at Word Level

Document File

(Base Font - Unicode)
Words

Number of Correctly

Converted Words
Accuracy

Joy 3488 3488 100%

Anandpur Sahib 4026 4026 100%

Gurbani Akhar 2156 2156 100%

Akhar 2390 2390 100%

Sukhmani 2491 2491 100%

IJCATM : www.ijcaonline.org

