
International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

21

Workload Aware Replicated Datapartitioning for Twitter

Shanty S.R.

Dept. of Computer Science &
Engineering

MACE, Kothamangalam
Kerala, India

Aby Abahai T.
Assistant Professor

 Dept of Computer Science &
Engineering

MACE, Kothamangalam
Kerala, India

Eldo P. Elias
Assistant Professor

 Dept of Computer Science &
Engineering

MACE, Kothamangalam
Kerala, India

ABSTRACT

Most of the queries in twitter include multiuser operations.

When a user login to twitter it requests the most recent tweets

of whom he follows. These data may be present in different

servers. The expense of these queries depends on how the data

is partitioned. Existing solution for data partitioning involve

hash or graph based partition. In this paper a new method for

reducing the interaction between the servers are proposed. For

this the data is partitioned such that most of the users that a

user interacts are placed on the same partition. In addition to

data partition selective replication is also implemented in the

proposed approach. The data about the users that are

requested most are replicated more than the other users.

Experimental analysis indicates that the proposed technique

provides significant improvements in the quality of the

partitions, especially under low replication ratios.

General Terms

Data partitioning; Selective replication; Social network;

Twitter; Cassandra.

Keywords
Data partitioning; Selective replication; Social network;

Twitter; Cassandra.

1. INTRODUCTION
The availability requirements of social networks are high due

to its fast growing nature and it has a dynamic structure.

These challenges are partially handled by using NoSQL (Not

Only SQL) systems, which use data partitioning and

replication to achieve scalability and availability. These

systems use hash-based partitioning and random replication of

data. It ignores the relationship between the users. So it often

leads to redundant replication which often leads to huge

number of writes on the replicas. This leads to performance

degradation.

Besides dealing with large amount of data, massive read and

write requests have to be responded without any latency. In

order to deal with these requirements, most of the companies

maintain clusters with thousands of commodity hardware

machines. Relational databases are not suitable in this domain,

because joins and locks influence performance in distributed

systems negatively. In addition to high performance, high

availability is a fundamental requirement of many companies.

Therefore, databases have to provide a failover mechanism to

deal with failures and should be easily replicable. They also

must be able to balance read requests on multiple slaves to

cope with access peaks which can exceed the capacity of a

single server. Since replication techniques in relational

databases are limited and these databases focuses on

consistency than availability, these requirements can only be

achieved with additional efforts.

Data partitioning is a data distribution technique used for

improving the query response time performances of I/O

intensive applications. The aim in partitioning is to optimize

the processing time of each query requested from distributed

servers. This is achieved by reducing the number of servers

required for a single user while answering a single query

In addition to partitioning, replication of data items to achieve

higher I/O parallelism has started to gain attention. There are

many replicated partitioning schemes proposed for optimizing

range queries. Recently, there are a few studies that address

this problem for arbitrary queries as well.

Data replication is widely applied in various application areas

for achieving fault tolerance and fault recovery. Data

replication can also be used to achieve higher I/O parallelism

in a partitioning system. However, while performing

replication consistency must also be considered, which arise

in update and delete operations. Furthermore, write operations

tend to slow down when there is replication. Finally,

replication means extra storage requirement and there are

applications with very large data sizes where even two-copy

replication is not feasible. Thus, if possible, unnecessary

replication has to be avoided and techniques that enable

replication under given size constraints must be studied.

The primary focus of this paper is to introduce a workload

aware replication and partitioning method for twitter. The

remaining sections are organized as follows: A review of the

related works on data partitioning and replication on social

network is provided in Section 1. Section 2 will present the

proposed model in details. Section 3 presents the experiments

and the results. Finally, section 4 concludes the paper.

2. RELATED WORKS
Several studies have been made for showing the problems

related to partitioning and replication in social networks. In

[7] a graph partitioning based database replication and

partitioning scheme called SCHISM is proposed for OLTP

type Web applications. The problem with this scheme is that it

requires generation of larger graph from the transaction graph.

Another disadvantage of this method is that it is not possible

to set the amount of replication.

In [5], for managing large graphs a new method called sedge

is proposed. For static primary partition it uses graph and

complementary partitioning and then it uses workload-aware

dynamic secondary partitions. [4] proposes graph partitioning

based models for processing time-dependent social network

queries. The problem with this approach is that it does not

solves the replication problem.

In [5] and [20], data partitioning and replication strategy for

social networks has been proposed. In [20] the WEPAR

partitioning and replication system is proposed. The main idea

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

22

in WEPAR is that the master copies of related records are

placed in the same node and then slave copies are generated

for records that receive more read queries. [5] is extended to

support selective replication and the algorithm generates

placements with respect to the replication constraints. When a

read miss occurs new replicas are added and removing

replicas when a read is not performed for a while and a write

occurs. It also uses temporal prediction of future request to

avoid undesired operations.

Based on graph-partitioning, modular-optimization and

random partitioning Pujol et al. [2] proposes social network

partitioning schemes. The performance is measured via

metrics such as the number of internal messages. For small

partitions, graph-based approaches are shown to perform

superior, whereas for large partition, modular optimization

algorithms perform slightly better. Pujol et al. [3] extended

the work in [2] to include replication. This scheme replicates

all data items that are in partition boundaries. That is, data

items that might be required in many servers are replicated to

all of those servers. But this replication scheme creates too

much replication which often lead to high I/O.

[19] focuses on the creation of feed pages, pages containing

recent activities of followed/following. The activities of

news-sources are broadcasted to many users and feed pages

contain data collected from many news-sources. The proposed

scheme overcome the disadvantages mentioned above by

partitioning the users by considering the interactions and

selectively replicating the users by considering the logs.

3. PROPOSED APPROACH
The input to the partitioning system is a database,

representative workload, and the number of partitions that are

desired. The output is a partitioning and replication strategy

that balances the size of the partitions while minimizing the

interaction with external partition.

The basic approach consists of following steps:

Data pre-processing: The system computes read and write sets

for each request.

Creating the hypergraph: A node is created for each user.

Edges represent the usage of user within a request. When a

user login it requests the tweets from the users whom he

follows. This request is modeled by connecting the users by a

net. It also allows us to account for replicated users. For

simplicity the cost of a net is assumed to be 1. Each user in

the graph contains a state. The state of a user is A if it belongs

to partition A or B if it is partition B or AB if it is replicated in

both the partition.)(jnA denotes the number of users in

partition A for the net jn .)(jnB denotes the number of

users in partition B for net jn and)(jnAB denotes the

number of users which are replicated in both the partitions A

and B for the net jn . A net is said to be internal if all the

connections are in the same server. If a request requires data

from multiple servers the net is said to be external. An

example of a hypergraph is shown in fig 1. ui, uj, uk, up, uq

,un, um represents users. nj is the net.S1, S2, S3 are servers.

When user ui requests its home page it interacts with the other

users and gets the data from them. These request is connected

by the net jn .

Fig 1: Hypergraph model

A graph partitioning algorithm is used to produce a balanced

minimum-cut partitioning of the graph into k partitions. Each

partition is assigned to one physical node. The replicated

graph partitioning algorithm is described in section 2.3

3.1 Twitter on Cassandra
The proposed method is implemented by developing a twitter

clone called Twissandra which works on Cassandra Nosql

database. This twitter clone contains the basic functionalities

of twitter. Twissandra data model consists of six column

families: USER: Stores user information; key for each row is

username and columns contain user details such as passwords,

profile image url, banner image url. FOLLOWINGS: Stores

the users that are followed by a user. FOLLOWERS: Stores

the followers of a user; TWEET: Stores the tweets;

HOMETIMELINE: Stores the tweets of a the user which a

user follows; USERLINE: Stores all the tweets of a user;

Even if it is a twitter clone, it is possible to implement most of

the existing functionalities in Twitter. The focus is on the

operations performed when a user posts a tweet (which is

propagated to his followers), and when a user checks his

homepage (the latest tweets of his followings should be

loaded). These operations involve multiple users which may

be present on the same server or in another server. The former

involves multi-write operations where as the latter requires

multi-read operations.

Twissandra is designed such that, both multi-reads and multi-

writes require multi-way interactions. This is because the

actual tweet data is stored only in the servers where the

tweeting user is stored, and it is not stored in follower

HOMETIMELINEs. Replicating actual tweet data on all

followers can be expensive as it contains large pieces of data

such as videos or pictures.

3.2 Two Way Replicated Partitioning
In this the users are randomly partitioned into two partitions.

Some of the users may be replicated. These uses are selected

randomly or the users with higher number of followers can

also be chosen. Even though the initial bipartition is random it

is giving a good initial distribution to the partitioning

problem. These partitions are further improved by performing

three different operations such as move, replicate and

unreplicate.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

23

move gain (gm(iu)): the reduction to be observed in the

overall query processing cost, if user iu is moved to the

other partition,

 replication gain (gr(iu)): the reduction to be observed in the

overall query processing cost, if user iu is replicated to the

other partition,

 unreplication-from A gain (gu,A(iu)): the reduction to be

observed in the overall query processing cost, if a replica of

user iu is deleted from partition A , P
A
,

unreplication-from B gain (gu,B(iu)): the reduction to be

observed in the overall query processing cost, if a replica of

user iu is deleted from partition B,P
B

Unreplication gains are only meaningful for users that are

replicated. Similarly, in a two-way partition, move, and

replication gains are only meaningful for users that are not

replicated. Thus, for any user, only two gain values need to be

maintained.

The overall two-way replicated partitioning works as a

sequence of two-way refinement passes performed over all

users. In each pass, the initial operation gains of all users are

computed. Then iteratively perform the following

computations: find the user and the operation that produces

the highest reduction in the cost; perform that operation;

update gain values of neighboring user; lock the selected user

to further processing to prevent thrashing. These computations

are performed until there are no remaining users to process.

This process is repeated until the state where the best

reduction is obtained during the pass or if the obtained

improvement in the current pass is above a threshold or if the

number of passes performed is below some predetermined

number. After obtaining a two-way partition, the two-way

partitioning algorithm is recursively applied on each of these

partitions to obtain any number of partitions.

After initializing the gains, retrieve the highest gains and the

associated user for each operation type and by comparing

these gains select the best operation to perform. If there are

any possible unreplication operations which do not increase

the total cost of the system (i.e., with zero unreplication gain),

those unreplication operations are performed first. After

finishing possible unreplications, compare the gains to be

obtained by move and replication operations. If the gains are

the same, perform move operations.

After performing an operation (move, replication, or

unreplication) on a user, update the gains of operations related

with the users that are neighbors of the given user.

3.3 Algorithms
In this section,detailed explanations of the algorithms used in

replicated data partitioning is presented. For that a temporal

activety hypergraph is constructed. This hypergraph contains

nets which represents the interaction between users when a

user requests tweets.The input to the algorithms is this

temporal activity hypergraph.

2.3.1 Initial gain computation.

The initial gain computation consists of two main loops. The

first loop computes the initial gain values by traversing users

and the second loop updates the initialization of gain values

by traversing all nets. The move and replication gains are

computed according to the nets that connect these users which

are critical and external, whereas the unreplication gains are

modified according to the internal and critical nets that

connect these users. The move and replication gains of the

non-replicated users are initially set to their minimum possible

values (lines 3–4). If a net jn is external and move critical or

replication critical, the move and replication gains of the users

connected by jn must be incremented by c(jn) (lines 12–

13), since it can be saved from the cut with either one of these

operations. In contrast to move and replication gains,

unreplication gains are initially set to their maximum possible

values (lines 6–7). If a net jn is internal and thus

unreplication critical, the unreplication gains of the replicas of

the replicated users connected by jn may need to be

updated. If jn connects at least one non-replicated users that

is in the same part with this net then the unreplication gains

of the replicas that are in the same partition with the internal

net should be decremente by c(jn) (lines 14–18).

Algorithm 1: Initial move, replication, and unreplication gain

computation.

H is the hypergraph and Π
R

 is the replicated partitioning of

the hypergraph. P
A
,P

B
 are the partitions. U is the set of users

N is the set of nets.

Input: H = (U,N), Π
R

 = {P
A

,P
B

}

1 for each iu ∈ U do

2 if State(iu)  AB then

3 gm(iu) ← −c(InternalNets(iu))

4 gr (iu) ← 0

5 else

6 gu,A(iu) ← 0

7 gu,B(iu) ← 0

8 for each jn ∈ N do

9 for each iu ∈ Users(jn) do

10 if State(iu)  AB and jn is external then

11 if ()(jnA) = 1 and State(iu) = A) or ()(jnB) = 1

and State(iu) = B) then jn is critical to P
A

 or P
B

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

24

12 gm(iu) ← gm(iu) + c(jn)

13 gr (iu) ← gr (iu) + c(jn)

14 else if State(iu) = AB and jn is internal then

15 if)(jnA > 0 and)(jnB = 0 then jn is critical to

P
A

16 gu,A(iu) ← gu,A(iu) − c(jn)

17 else if)(jnB > 0 and)(jnA = 0 then jn is critical

to P
B

18 gu,B(iu) ← gu,B(iu) − c(jn)

2.3.2 Gain updates after a move operation

Algorithm 2: Gain updates after moving u∗ from P
A

 to P
B

.

Input: H = (U,N), Π
R

 = { P
A

, P
B

}, u∗ ∈ P
B

1 State(u∗) ← B

2 Lock u∗

3 for each jn ∈ Nets(u∗) do

4)(jnA ←)(jnA − 1

5 if)(jnA = 0 then jn becomes critical to P
B

6 for each unlocked iu ∈ Users(jn) do

7 if State(iu) = B then

8 gm(iu) ← gm(iu) − c(jn)

9 else if State(iu) = AB then

10 gu,B(iu) ← gu,B(iu) − c(jn)

11 else if)(jnA = 1 then jn becomes critical to P
A

12 for each unlocked iu ∈ Users(jn) do

13 if State(iu) = A then

14 gm(iu) ← gm(iu) + c(jn)

15 gr (iu) ← gr (iu) + c(jn)

16)(jnB ←)(jnB + 1

17 if)(jnB = 1 then jn was critical to P
A

18 for each unlocked iu ∈ Users(jn) do

19 if State(iu) = A then

20 gm(iu) ← gm(iu) + c(jn)

21 else if State(iu) = AB then

22 gu,A(iu) ← gu,A(iu) + c(jn)

23 else if)(jnB = 2 then jn was critical to P
B

24 for each unlocked iu ∈ Users(jn) do

25 if State(iu) = B then

26 gm(iu) ← gm(iu) − c(jn)

27 gr (iu) ← gr (iu) − c(jn)

Algorithm 2 shows the procedure for performing gain updates

after moving a given user u∗ from P
A

 to P
B

. The algorithm

includes updating fields of u∗ (lines 1–2), the users of Nets

(u∗) (lines 4 and 16), and the gain values of neighbors of u∗

(lines 5–15 and 17–27). The necessary field updates on u∗ are

performed by updating the state and locked fields of u∗ to

reflect the move operation. The users of each net jn ∈ Nets

(u∗) needs to be updated by decrementing)(jnA by 1 and

incrementing)(jnB by 1. When the users of jn

changes, its criticality may change. The change in the

criticality of jn may require various gain updates on the

unlocked users connected by jn .

After decrementing the number of users of jn in P
A

 (line

4), check the value of)(jnA to see if the criticality of jn

has changed (lines 5 and 11). If)(jnA = 0, jn becomes

internal to P
B

 by becoming move critical and unreplication

critical to this part, and if)(jnA = 1, jn becomes move

critical and replication critical to P
A

.

Similarly, after incrementing the number of users connected

by jn in P
B

 (line 16), check the value of)(jnB to see if

the criticality of jn has changed (lines 17 and 23). If

)(jnB = 1, it means that jn was internal and hence was

move critical and unreplication critical to P
A

, and if

)(jnB = 2, it means that jn was move critical and

replication critical to P
B

. Under these conditions for jn , the

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

25

gains of the users connected by jn should be checked for

any update with respect to the corresponding part.

2.3.3 Gain updates after a replication operation

Algorithm 3: Gain updates after replicating u∗ from P
A

 to P
B

.

Input: H = (U,N), Π
R

 = { P
A

, P
B

}, u∗ ∈ P
B

1 State(u∗) ← AB

2 Lock u∗

3 for each jn ∈ Nets(u∗) do

4)(jnA) ←)(jnA − 1

5)(jnB ←)(jnB + 1

6 if)(jnA = 0 then jn becomes critical to P
B

7 for each unlocked iu ∈ Users(jn) do

8 if State(iu) = B then

9 gm(iu) ← gm(iu) − c(jn)

10 if)(jnB = 1 then

11 gr (iu) ← gr (iu) − c(jn)

12 else if State(iu) = AB then

13 if)(jnB = 0 then

14 gu,A(iu) ← gu,A(iu) + c(jn)

15 else if)(jnB > 0 then

16 gu,B(iu) ← gu,B(iu) − c(jn)

17 else if)(jnA = 1 then jn becomes critical to P
A

18 for each unlocked iu ∈ Users(jn) do

19 if State(iu) = A then

20 gm(iu) ← gm(iu) + c(jn)

21 if)(jnB > 0 then

22 gr (iu) ← gr (iu) + c(jn)

Algorithm 3 shows the procedure for performing gain updates

after replicating a given user u∗ from P
A

 to P
B

. The

procedure starts with changing the state of u∗ to AB and

locking both replicas of u∗ (lines 1–2). Then, for each net jn

that connects u∗, the users of jn are updated and checked for

criticality condition changes (lines 6 and 17). Since u∗ was in

P
A

 before replication,)(jnA) is decremented by 1 and

)(jnAB is incremented by 1 to reflect that u∗ is now a

replicated user (lines 4–5). The replication of u∗ from P
A

does not change the)(jnB value of any jn ∈ Nets (u∗);

thus the criticality conditions that include)(jnB need not

be checked.

After the value of)(jnA is decremented (line 4), jn must

be checked for criticality condition changes to see if there are

any necessary gain updates for the neighbors of u∗ (lines 6

and 17). If)(jnA = 0, jn becomes move critical and

unreplication critical to P
B

. In this condition, the move gains

of the unlocked users and the unreplication gains of the

unlocked replicas that are connected by jn need to be

decremented by c(jn) since jn is internal now, and the

move of any user or the unreplication of any replica connected

by jn would bring it to cut. If)(jnA = 1, jn becomes

move critical and replication critical to P
A

. The move or the

replication of the only non-replicated user iu connected by

jn in P
A

 can now save jn from the cut, and thus the move

and replication gains of this user must be incremented by c(

jn).

2.3.4 Gain updates after an unreplication

operation

Algorithm 4: Gain updates after unreplicating u* from P
A

.

Input: H = (U,N), Π
R

 = { P
A

, P
B

}, u*  P
B

1 State(u*) ← B

2 Lock u*

3 For each jn  Nets(u*) do

4)(jnB ←)(jnB + 1

5 jnAB( ← jnAB( − 1

6 if)(jnB = 1 then jn was critical to P
A

7 for each unlocked iu  Users(jn) do

8 if State(iu) = A then

9 gm(iu) ← gm(iu) + c(jn)

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

26

10 if)(jnA = 1 then

11 gr (iu) ← gr (iu) + c(jn)

12 else if State(iu) = AB then

13 if)(jnA = 0 then

14 gu,B(iu) ← gu,B(iu) − c(jn)

15 else if)(jnA > 0 then

16 gu,A(iu) ← gu,A(iu) + c(jn)

17 else if)(jnB = 2 then  jn was critical to P
B

18 foreach unlocked iu  Users (jn) do

19 if State(iu) = B then

20 gm(iu) ← gm(iu) − c(jn)

21 if)(jnA > 0 then

22 gr (iu) ← gr (iu) − c(jn)

 Algorithm 4 shows the procedure for performing updates

after unreplication of a given replica u∗ from P
A

. The

procedure starts with changing the state of u∗ to B and locking

it (lines 1–2). Then, for each net jn that connects u∗, the pin

distributions of jn are updated and checked for criticality

condition changes (lines 6 and 17). Since u∗ was a replicated

user before unreplication from P
A

,)(jnB is incremented

by 1 and)(jnAB is decremented by 1 to reflect that u∗ is

now a non replicated users in P
B

(lines 4–5). The

unreplication of u∗ from P
A

 does not change the)(jnA

value of any jn ∈ Nets (u∗); thus the criticality conditions

that include)(jnA need not be checked. After the value of

)(jnB is incremented (line 4), jn must be checked for

criticality condition changes to see if there are any necessary

gain updates for the neighbors of u∗ (lines 6 and 17). If

)(jnB = 1, it means that jn was move critical and

unreplication critical to P
A

. In this case, the move and

replication gains of the unlocked users and replicas that are in

P
A

 and connected by jn are incremented by c(jn), since

jn is not an internal net anymore.

If)(jnB = 2, it means that jn was move critical and

replication critical to P
B

. The net jn connects two users in

P
B

 and one of them, u*, is already locked, and thus the move

and replication gains of the other user, iu , need to be

decremented by c(jn), since this users can no longer save

jn from the cut.

4. EXPERIMENTS AND RESULTS
Experiments were conducted by obtaining the real world data

from twitter. Temporal activity hypergraph of the obtained

data is constructed. .The hypergraph is partitioned by

selectively replicating the users. The number of partition is set

to 4. The maximum replication ration is set to 0.5.

The selectively replicated partition of a few users whose data

has been collected is shown in fig 2 . Each partition contains

the followers and the followings of a user. Only a few users

will be present in another server. As the number of servers

required to process a request is small a considerable reduction

in the processing time of a request is obtained.

Fig 2: User partition

The proposed method is compared with hash based partition

and random replication. Experimental analysis shows that a

considerable reduction in the processing time is observed by

using selective replication.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

27

Fig 3: Comparison with hash based replicated partitioning

The following table shows the number of read and write

requests issued in different partitioning schemes.

Table 1. Read Write Comparison

Partition Technique Average

number

of reads

Average

number

of writes

Random Partition and random

replication

75 23

Hash based partition and two

hop replication

60 25

While comparing the balancing performance of these schemes

it is observed that random replication and random partitioning

have the worst balancing performance for both read and write

requests. Hash based replication and two hop replication has

comparatively better performance than random replication and

random partitioning but poor performance than selective

replicated partitioning. This is because the other replication

schemes does not take the balancing constraint into account

during replication On the other hand, RHP can simultaneously

perform objective optimization and balancing under

replication in a single replicated partitioning phase and thus

has superior read and write balancing performance.

Selectively replicated partitioning strikes a balance on the

performance metrics by trading locality with load balancing

and I/O load minimization, which leads to its superior query

processing performance.

5. CONCLUSION
In this work, a selectively replicated partitioning using

temporal activity hypergraph is proposed for data partitioning

and replication in twitter. The proposed model uses multi-way

interactions incurred by the read and write operations in

twitter.The users are randomly partitioned into two partitions

and the partitions are further improved by performing move,

replication and unreplication operations. The process is

performed recursively until the desired number of partition is

obtained.

Hash-based approaches distribute workload and enhance

parallelism but suffer from communication overhead. Graph-

partitioning-based approaches enhance read locality at the

expense of increasing I/O loads and load balance. This

approach performs partitioning and replication simultaneously

and reduce the number of servers required to process a request

with a limit amount of replication.

6. REFERENCES
[1] Ata Turk, R. Oguz Selvitopi, Hakan Ferhatosmanoglu,

and Cevdet Aykanat, “Temporal Workload-Aware

Replicated Partitioning for Social Networks,” IEEE

transactions on knowledge and data engineering, vol. 26,

no. 11, november 2014

[2] R. Hecht and S. Jablonski, “NoSQL Evaluation: A Use

Case Oriented Survey,” Proc. Int’l Conf. Cloud and

Service Computing (CSC),pp. 336-341, Dec. 2011.

[3] J.M. Pujol, G. Siganos, V. Erramilli, and P. Rodriguez,

“Scaling Online Social Networks Without Pains,” Proc.

Fifth Int’l Workshop Networking Meets Databases

(NeTDB), 2009.

[4] M. Yuan, D. Stein, B. Carrasco, J.M. F. da Trindade, and

Y. Lu,“Partitioning Social Networks for Fast Retrieval of

Time-Dependent Queries,” Proc. IEEE 28th Int’l Conf.

Data Eng. Workshop. t10.1145/2213836.2213895, 2012.

[5] J.M. Pujol, V. Erramilli, G. Siganos, X. Yang, N.

Laoutaris, P. Chhabra, and P. Rodriguez, “The Little

Engine (s) that Could: Scaling Online Social Networks,”

ACM SIGCOMM Computer Comm. Rev., vol. 40, no. 4,

pp. 375-386, 2010.

[6] C.Curino, E. Jones, Y. Zhang, and S. Madden, “Schism:

A Workload-Driven Approach to Database Replication

and Partitioning,” Proc. VLDB Endowment, vol. 3, no.

1-2, pp. 48-57.

[7] A. Lakshman and P. Malik, “Cassandra: A Decentralized

Structure Storage System,” SIGOPS Operating System

Rev., vol. 44, no. 2, pp. 35-40,Apr. 2010.

[8] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati,

A. Lakshman, A. Pilchin, S. Sivasubramanian, P.

Vosshall, and W. Vogels, “Dynamo: Amazons Highly

Available Key-Value Store.,” Proc. 21st ACM SIGOPS

Symp. Operating Systems Principles, pp. 205-220, 2007.

[9] O.R.M. Thomae, “Database Partitioning Strategies for

Social Network Data,” master’s thesis, Massachusetts

Inst. of Technology, 2012.

[10] G. Karypis and V. Kumar, “Multilevel k-Way

Hypergraph Partitioning,” Proc. ACM/IEEE 36th Ann.

Design Automation Conf. pp. 343-348, 1999.

[11] U.V. Atalyurek and C. Aykanat, “PaToH: A Multilevel

Hypergraph Partitioning Tool, Version 3.0,” technical

report, Dept. of Computer Eng., Bilkent Univ., 1999.

[12] U. Catalyurek and C. Aykanat, “Hypergraph-

Partitioning-Based Decomposition for Parallel Sparse-

Matrix Vector Multiplication,” IEEE Trans. Parallel and

Distributed System, vol. 10, no. 7, pp. 673- 693,2010.

[13] R.O. Selvitopi, A. Turk, and C. Aykanat, “Replicated

Partitioning for Undirected Hypergraphs,” J. Parallel and

Distributed Computing, vol. 72, no. 4, pp. 547-563.

j.jpdc.2012.01.004, Apr. 2012.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No.4, November 2015

28

[14] D.S. Johnson, “Approximation Algorithms for

Combinatorial Problems,” Proc. ACM Fifth Ann.Symp.

Theory of Computing (STOC ’73), pp. 38-49.

[15] Y. Qiu-yan, “A Novel Time Streams Prediction

Approach Based on Exponential Smoothing,” Proc.

Second Int’l Conf. MultiMedia and Information

Technology (MMIT ’10), pp. 20-23, 2010.

[16] M. De Choudhury, Y.-R. Lin, H. Sundaram, K.S.

Candan, L. Xie, and A. Kelliher, “How Does the Data

Sampling Strategy Impact the Discovery of Information

Diffusion in Social Media?” Proc. Fourth Int’l AAAI

Conf. Weblogs and Social Media, 2010.

[17] G. Karypis and V. Kumar, “Metis—Unstructured Graph

Partitioning and Sparse Matrix Ordering System, Version

2.0,” technical report, Dept. of Computer Science and

Eng., Univ. of Minnesota, 1995.

[18] A. Tatarowicz, C. Curino, E. Jones, and S. Madden,

“Lookup Tables: Fine-Grained Partitioning for

Distributed Databases,” Proc. IEEE 28th Int’l Conf. Data

Eng. (ICDE), pp. 102-113, Apr. 2012.

[19] A. Silberstein, J. Terrace, B.F. Cooper, and R.

Ramakrishnan, “Feeding Frenzy: Selectively

Materializing Users’ Event Feeds,” Proc. ACM

SIGMOD Int’l Conf. Management of Data, pp. 831-842,

2010.

[20] Y. Huang, Q. Deng, and Y. Zhu, “Differentiating Your

Friends for Scaling Online Social Networks,” Proc. IEEE

Int’l Conf. ClusterComputing (CLUSTER), pp. 411-419,

Sept. 2012.

[21]

IJCATM : www.ijcaonline.org

