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ABSTRACT 

Most of the queries in twitter include multiuser operations. 

When a user login to twitter it requests the most recent tweets 

of whom he follows. These data may be present in different 

servers. The expense of these queries depends on how the data  

is partitioned. Existing solution for data partitioning involve 

hash or graph based partition. In this paper a new method for 

reducing the interaction between the servers are proposed. For 

this the data is partitioned such that most of the users that a 

user interacts are placed on the same partition. In addition to 

data partition selective replication is also implemented in the 

proposed approach. The data about the users that are 

requested most are replicated more than the other users. 

Experimental analysis indicates that the proposed technique 

provides significant improvements in the quality of the 

partitions, especially under low replication ratios. 
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1. INTRODUCTION 
The availability requirements of social networks are high due 

to its fast growing nature and it has a dynamic structure. 

These challenges are partially handled by using NoSQL (Not 

Only SQL) systems, which use data partitioning and 

replication to achieve scalability and availability. These 

systems use hash-based partitioning and random replication of 

data. It ignores the relationship between the users. So it often 

leads to redundant replication which often leads to huge 

number of writes on the replicas. This leads to performance 

degradation.  

Besides dealing with large amount of data, massive read and 

write requests have to be responded without any latency. In 

order to deal with these requirements, most of the companies 

maintain clusters with thousands of commodity hardware 

machines. Relational databases are not suitable in this domain, 

because joins and locks influence performance in distributed 

systems negatively. In addition to high performance, high 

availability is a fundamental requirement of many companies. 

Therefore, databases have to provide a failover mechanism to 

deal with failures and should be easily replicable. They also 

must be able to balance read requests on multiple slaves to 

cope with access peaks which can exceed the capacity of a 

single server. Since replication techniques in relational 

databases are limited and these databases focuses on 

consistency than availability, these requirements can only be 

achieved with additional efforts. 

Data partitioning is a data distribution technique used for 

improving the query response time performances of I/O 

intensive applications. The aim in partitioning is to optimize 

the processing time of each query requested from distributed 

servers. This is achieved by reducing the number of servers 

required for a single user while answering a single query 

In addition to partitioning, replication of data items to achieve 

higher I/O parallelism has started to gain attention. There are 

many replicated partitioning schemes proposed for optimizing 

range queries. Recently, there are a few studies that address 

this problem for arbitrary queries as well.  

Data replication is widely applied in various application areas 

for achieving fault tolerance and fault recovery. Data 

replication can also be used to achieve higher I/O parallelism 

in a partitioning system. However, while performing 

replication consistency must also be considered, which arise 

in update and delete operations. Furthermore, write operations 

tend to slow down when there is replication. Finally, 

replication means extra storage requirement and there are 

applications with very large data sizes where even two-copy 

replication is not feasible. Thus, if possible, unnecessary 

replication has to be avoided and techniques that enable 

replication under given size constraints must be studied. 

The primary focus of this paper is to introduce a workload 

aware replication and partitioning method for twitter. The 

remaining sections are organized as follows: A review of the 

related works on data partitioning and replication on social 

network is provided in Section 1. Section 2 will present the 

proposed model in details. Section 3 presents the experiments 

and the results. Finally, section 4 concludes the paper. 

2. RELATED WORKS 
Several studies have been made for showing the problems 

related to partitioning and replication in social networks. In 

[7] a graph partitioning based database replication and 

partitioning scheme called SCHISM is proposed for OLTP 

type Web applications. The problem with this scheme is that it 

requires generation of larger graph from the transaction graph. 

Another disadvantage of this method is that it is not possible 

to set the amount of replication.  

In [5], for managing large graphs a new method called sedge 

is proposed. For static primary partition it uses graph and 

complementary partitioning and then it uses workload-aware 

dynamic secondary partitions. [4] proposes graph partitioning 

based models for processing time-dependent social network 

queries. The problem with this approach is that it does not 

solves the replication problem. 

In [5] and [20], data partitioning and replication strategy for 

social networks has been proposed. In [20] the WEPAR 

partitioning and replication system is proposed. The main idea 



International Journal of Computer Applications (0975 – 8887) 

Volume 130 – No.4, November 2015 

22 

in WEPAR is that the master copies of related records are 

placed in the same node and then slave copies are generated 

for records that receive more read queries. [5] is extended to 

support selective replication and the algorithm generates 

placements with respect to the replication constraints. When a 

read miss occurs new replicas are added and removing 

replicas when a read is not performed for a while and a write 

occurs. It also uses temporal prediction of future request to 

avoid undesired operations. 

Based on graph-partitioning, modular-optimization and 

random partitioning Pujol et al. [2] proposes social network 

partitioning schemes. The performance is measured via 

metrics such as the number of internal messages. For small 

partitions, graph-based approaches are shown to perform 

superior, whereas for large partition, modular optimization 

algorithms perform slightly better. Pujol et al. [3] extended 

the work in [2] to include replication. This scheme replicates 

all data items that are in partition boundaries. That is, data 

items that might be required in many servers are replicated to 

all of those servers. But this replication scheme creates too 

much replication which often lead to high I/O.  

[19] focuses on the creation of  feed pages, pages containing 

recent activities of followed/following. The activities of  

news-sources are broadcasted  to many users and feed pages 

contain data collected from many news-sources. The proposed 

scheme overcome the disadvantages mentioned above by 

partitioning the users by considering the interactions and 

selectively replicating the users by considering the logs. 

3. PROPOSED APPROACH 
The input to the partitioning system is a database, 

representative workload, and the number of partitions that are 

desired. The output is a partitioning and replication strategy 

that balances the size of the partitions while minimizing the 

interaction with external partition.  

The basic approach consists of following steps: 

Data pre-processing: The system computes read and write sets 

for each request. 

Creating the hypergraph:  A node is created for each user. 

Edges represent the usage of user within a request. When a 

user login it requests the tweets from the users whom he 

follows. This request is modeled by connecting the users by a 

net. It also allows us to account for replicated users.  For 

simplicity the cost of a net is assumed to be 1. Each user in 

the graph contains a state. The state of a user is A if it belongs 

to partition A or B if it is partition B or AB if it is replicated in 

both the partition. )( jnA denotes the number of users  in 

partition A for the net jn . )( jnB  denotes the number of 

users  in partition B  for net jn and )( jnAB  denotes the 

number of users which are replicated in both the partitions A 

and B for the net jn . A net is said to be internal if all the 

connections are in the same server. If a request requires data 

from multiple servers the net is said to be external. An 

example of a hypergraph is shown in fig 1. ui, uj, uk, up, uq 

,un, um represents users. nj is the net.S1, S2, S3 are servers. 

When user ui requests its home page it interacts with the other 

users and gets the data from them. These request is connected 

by the net jn . 

 

Fig 1: Hypergraph model 

A graph partitioning algorithm is used to produce a balanced 

minimum-cut partitioning of the graph into k partitions. Each 

partition is assigned to one physical node. The replicated 

graph partitioning algorithm is described in section 2.3  

3.1 Twitter on Cassandra 
The proposed method is implemented by developing  a twitter 

clone called Twissandra which works on Cassandra Nosql 

database. This twitter clone contains the basic functionalities 

of twitter. Twissandra data model consists of six column 

families: USER: Stores user information; key for each row is 

username and columns contain user details such as passwords, 

profile image url, banner image url. FOLLOWINGS: Stores 

the users that are followed by a user. FOLLOWERS: Stores 

the followers of a user; TWEET: Stores the tweets; 

HOMETIMELINE: Stores the tweets of a the user which a 

user follows; USERLINE: Stores all the tweets of a user;  

Even if it is a twitter clone, it is possible to implement most of 

the existing functionalities in Twitter. The focus is on the 

operations performed when a user posts a tweet (which is 

propagated to his followers), and when a user checks his 

homepage (the latest tweets of his followings should be 

loaded). These operations involve multiple users which may 

be present on the same server or in another server. The former 

involves multi-write operations where as the latter requires 

multi-read operations. 

Twissandra is designed such that, both multi-reads and multi-

writes require multi-way interactions. This is because the 

actual tweet data is stored only in the servers where the 

tweeting user is stored, and it is not stored in follower 

HOMETIMELINEs. Replicating actual tweet data on all 

followers can be expensive as it contains large pieces of data 

such as videos or pictures. 

3.2 Two Way Replicated Partitioning 
In this the users are randomly partitioned into two partitions. 

Some of the users may be replicated. These uses are selected 

randomly or the users with higher number of followers can 

also be chosen. Even though the initial bipartition is random it 

is giving a good initial distribution to the partitioning 

problem.  These partitions are further improved by performing 

three different operations such as move, replicate and 

unreplicate. 
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move gain (gm( iu )): the reduction to be observed in the 

overall query processing cost, if  user iu  is moved to the 

other partition, 

 replication gain (gr( iu )): the reduction to be observed in the 

overall query processing cost, if user iu is replicated to the 

other partition, 

 unreplication-from A gain (gu,A( iu )): the reduction to be 

observed in the overall query processing cost, if a replica of 

user iu is deleted from  partition A , P
A
, 

unreplication-from B gain (gu,B( iu )): the reduction to be 

observed in the overall query processing cost, if a replica of 

user iu is deleted from  partition B,P
B

 

Unreplication gains are only meaningful for users that are 

replicated. Similarly, in a two-way partition, move, and 

replication gains are only meaningful for users that are not 

replicated. Thus, for any user, only two gain values need to be 

maintained. 

The overall two-way replicated partitioning works as a 

sequence of two-way refinement passes performed over all 

users. In each pass, the initial operation gains of all users are 

computed. Then iteratively perform the following 

computations: find the user and the operation that produces 

the highest reduction in the cost; perform that operation; 

update gain values of neighboring user; lock the selected user 

to further processing to prevent thrashing. These computations 

are performed until there are no remaining users to process. 

This process is repeated until the state where the best 

reduction is obtained during the pass or if the obtained 

improvement in the current pass is above a threshold or if the 

number of passes performed is below some predetermined 

number. After obtaining a two-way partition, the two-way 

partitioning algorithm is recursively applied on each of these 

partitions to obtain any number of partitions.  

After initializing the gains, retrieve the highest gains and the 

associated user for each operation type and by comparing 

these gains select the best operation to perform. If there are 

any possible unreplication operations which do not increase 

the total cost of the system (i.e., with zero unreplication gain), 

those unreplication operations are performed first. After 

finishing possible unreplications, compare the gains to be 

obtained by move and replication operations. If the gains are 

the same, perform move operations.  

After performing an operation (move, replication, or 

unreplication) on a user, update the gains of operations related 

with the users that are neighbors of the given user.  

3.3 Algorithms 
In this section,detailed explanations of the algorithms used in 

replicated data partitioning is presented. For that a temporal 

activety hypergraph is constructed. This hypergraph contains 

nets which represents the interaction between users when a 

user requests tweets.The input to the algorithms is this 

temporal activity hypergraph.  

 

 

2.3.1 Initial gain computation.  

The initial gain computation consists of two main loops. The 

first loop computes the initial gain values by traversing users 

and the second loop updates the initialization of gain values 

by traversing all nets. The move and replication gains are 

computed according to the nets that connect these users which 

are critical and external, whereas the unreplication gains are 

modified according to the internal and critical nets that 

connect these users. The move and replication gains of the 

non-replicated users are initially set to their minimum possible 

values (lines 3–4). If a net jn  is external and move critical or 

replication critical, the move and replication gains of the users 

connected by jn  must be incremented by c( jn ) (lines 12–

13), since it can be saved from the cut with either one of these 

operations. In contrast to move and replication gains, 

unreplication gains are initially set to their maximum possible 

values (lines 6–7). If a net jn  is internal and thus 

unreplication critical, the unreplication gains of the replicas of 

the replicated users connected by jn  may need to be 

updated. If jn  connects at least one non-replicated users that 

is in the same part with this net  then the unreplication gains 

of the replicas that are in the same partition with the internal 

net should be decremente by c( jn )  (lines 14–18). 

Algorithm 1: Initial move, replication, and unreplication gain 

computation. 

H is the hypergraph and Π
R

 is the replicated partitioning of 

the hypergraph. P
A
,P

B
 are the partitions. U is the set of users 

N is the set of nets. 

Input: H = (U,N), Π
R

  = {P
A

,P
B

} 

1 for each iu ∈ U do 

2 if State( iu )   AB then 

3 gm( iu ) ← −c(InternalNets( iu )) 

4 gr ( iu ) ← 0 

5 else 

6 gu,A( iu ) ← 0 

7 gu,B( iu ) ← 0 

8 for each jn  ∈ N do 

9 for each iu ∈ Users( jn ) do 

10 if State( iu )   AB and jn  is external then 

11 if ( )( jnA ) = 1 and State( iu ) = A) or ( )( jnB ) = 1 

and State( iu ) = B) then  jn  is critical to P
A

 or P
B
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12 gm( iu ) ← gm( iu ) + c( jn ) 

13 gr ( iu ) ← gr ( iu ) + c( jn ) 

14 else if State( iu ) = AB and jn  is internal then 

15 if )( jnA > 0 and )( jnB   = 0 then jn  is critical to 

P
A

 

16 gu,A( iu ) ← gu,A( iu ) − c( jn ) 

17 else if )( jnB  > 0 and )( jnA = 0 then jn  is critical 

to P
B

 

18 gu,B( iu ) ← gu,B( iu ) − c( jn ) 

2.3.2 Gain updates after a move operation 

Algorithm 2: Gain updates after moving u∗ from P
A

 to P
B

. 

Input: H = (U,N), Π
R

   = { P
A

, P
B

}, u∗ ∈ P
B

 

1 State(u∗) ← B 

2 Lock u∗ 

3 for each jn  ∈ Nets(u∗ ) do 

4 )( jnA ← )( jnA − 1 

5 if )( jnA = 0 then  jn  becomes critical to P
B

 

6 for each unlocked iu  ∈ Users( jn ) do 

7 if State( iu ) = B then 

8 gm( iu ) ← gm( iu ) − c( jn ) 

9 else if State( iu ) = AB then 

10 gu,B( iu ) ← gu,B( iu ) − c( jn ) 

11 else if )( jnA = 1 then  jn  becomes critical to P
A

 

12 for each unlocked iu ∈ Users( jn ) do 

13 if State( iu ) = A then 

14 gm( iu ) ← gm( iu ) + c( jn ) 

15 gr ( iu ) ← gr ( iu ) + c( jn ) 

16 )( jnB  ← )( jnB  + 1 

17 if )( jnB = 1 then jn was critical to P
A

 

18 for each unlocked iu ∈ Users( jn ) do 

19 if State( iu ) = A then 

20 gm( iu ) ← gm( iu ) + c( jn ) 

21 else if State( iu ) = AB then 

22 gu,A( iu ) ← gu,A( iu ) + c( jn ) 

23 else if )( jnB  = 2 then  jn  was critical to P
B

 

24 for each unlocked iu ∈ Users( jn ) do 

25 if State( iu ) = B then 

26 gm( iu ) ← gm( iu ) − c( jn ) 

27 gr ( iu ) ← gr ( iu ) − c( jn ) 

Algorithm 2 shows the procedure for performing gain updates 

after moving a given user u∗ from P
A

 to P
B

. The algorithm 

includes updating fields of u∗ (lines 1–2), the users of Nets 

(u∗) (lines 4 and 16), and the gain values of neighbors of u∗ 

(lines 5–15 and 17–27). The necessary field updates on u∗ are 

performed by updating the state and locked fields of u∗ to 

reflect the move operation. The users of each net jn ∈ Nets 

(u∗) needs to be updated by decrementing )( jnA by 1 and 

incrementing )( jnB  by 1. When the users of jn  

changes, its criticality may change. The change in the 

criticality of jn  may require various gain updates on the 

unlocked users connected by jn . 

After decrementing the number of users of jn  in P
A

 (line 

4), check the value of )( jnA to see if the criticality of jn  

has changed (lines 5 and 11). If )( jnA = 0, jn becomes 

internal to P
B

 by becoming move critical and unreplication 

critical to this part, and if )( jnA = 1, jn  becomes move 

critical and replication critical to P
A

. 

Similarly, after incrementing the number of users connected 

by jn  in P
B

 (line 16), check the value of )( jnB to see if 

the criticality of jn  has changed (lines 17 and 23). If 

)( jnB  = 1, it means that jn  was internal and hence was 

move critical and unreplication critical to P
A

, and if 

)( jnB  = 2, it means that jn  was move critical and 

replication critical to P
B

. Under these conditions for jn , the 
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gains of the users connected by jn  should be checked for 

any update with respect to the corresponding part. 

2.3.3 Gain updates after a replication operation 

Algorithm 3: Gain updates after replicating u∗ from P
A

 to P
B

. 

Input: H = (U,N), Π
R

   = { P
A

, P
B

}, u∗ ∈ P
B

 

1 State(u∗ ) ← AB 

2 Lock u∗  

3 for each jn  ∈ Nets(u∗ ) do 

4 )( jnA ) ← )( jnA − 1 

5 )( jnB  ← )( jnB  + 1 

6 if )( jnA = 0 then jn becomes critical to P
B

 

7 for each unlocked iu  ∈ Users( jn ) do 

8 if State( iu ) = B then 

9 gm( iu ) ← gm( iu ) − c( jn ) 

10 if )( jnB  = 1 then 

11 gr ( iu ) ← gr ( iu ) − c( jn ) 

12 else if State( iu ) = AB then 

13 if )( jnB  = 0 then 

14 gu,A( iu ) ← gu,A( iu ) + c( jn ) 

15 else if )( jnB  > 0 then 

16 gu,B( iu ) ← gu,B( iu ) − c( jn ) 

17 else if )( jnA = 1 then  jn  becomes critical to P
A

 

18 for each unlocked iu ∈ Users( jn ) do 

19 if State( iu ) = A then 

20 gm( iu ) ← gm( iu ) + c( jn ) 

21 if )( jnB  > 0 then 

22 gr ( iu ) ← gr ( iu ) + c( jn ) 

Algorithm 3 shows the procedure for performing gain updates 

after replicating a given user u∗ from P
A

 to P
B

. The 

procedure starts with changing the state of u∗ to AB and 

locking both replicas of u∗ (lines 1–2). Then, for each net jn  

that connects u∗, the users of jn  are updated and checked for 

criticality condition changes (lines 6 and 17). Since u∗ was in 

P
A

 before replication, )( jnA ) is decremented by 1 and 

)( jnAB is incremented by 1 to reflect that u∗ is now a 

replicated user (lines 4–5). The replication of u∗ from P
A

does not change the )( jnB  value of any jn  ∈ Nets (u∗); 

thus the criticality conditions that include )( jnB  need not 

be checked. 

After the value of )( jnA is decremented (line 4), jn  must 

be checked for criticality condition changes to see if there are 

any necessary gain updates for the neighbors of u∗ (lines 6 

and 17). If )( jnA = 0, jn  becomes move critical and 

unreplication critical to P
B

. In this condition, the move gains 

of the unlocked users and the unreplication gains of the 

unlocked replicas that are connected by jn  need to be 

decremented by c( jn ) since jn  is internal now, and the 

move of any user or the unreplication of any replica connected 

by jn  would bring it to cut. If )( jnA = 1, jn  becomes 

move critical and replication critical to P
A

. The move or the 

replication of the only non-replicated user iu  connected by 

jn in P
A

 can now save jn  from the cut, and thus the move 

and replication gains of this user must be incremented by c(

jn ). 

2.3.4 Gain updates after an unreplication 

operation 

Algorithm 4: Gain updates after unreplicating u* from P
A

. 

Input: H = (U,N), Π
R

  = { P
A

, P
B

}, u*   P
B

 

1 State(u* ) ← B 

2 Lock u* 

3 For each jn    Nets(u* ) do 

4 )( jnB  ← )( jnB  + 1 

5 jnAB( ← jnAB( − 1 

6 if )( jnB  = 1 then  jn  was critical to P
A

 

7 for each unlocked iu   Users( jn ) do 

8 if State( iu ) = A then 

9 gm( iu ) ← gm( iu ) + c( jn ) 
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10 if )( jnA = 1 then 

11 gr ( iu ) ← gr ( iu ) + c( jn ) 

12 else if State( iu ) = AB then 

13 if )( jnA = 0 then 

14 gu,B( iu ) ← gu,B( iu ) − c( jn ) 

15 else if )( jnA > 0 then 

16 gu,A( iu ) ← gu,A( iu ) + c( jn ) 

17 else if )( jnB  = 2 then  jn was critical to P
B

 

18 foreach unlocked iu   Users ( jn ) do 

19 if State( iu ) = B then 

20 gm( iu ) ← gm( iu ) − c( jn ) 

21 if )( jnA > 0 then 

22 gr ( iu ) ← gr ( iu ) − c( jn ) 

 Algorithm 4 shows the procedure for performing updates 

after unreplication of a given replica u∗ from P
A

. The 

procedure starts with changing the state of u∗ to B and locking 

it (lines 1–2). Then, for each net jn  that connects u∗, the pin 

distributions of jn  are updated and checked for criticality 

condition changes (lines 6 and 17). Since u∗ was a replicated 

user before unreplication from P
A

, )( jnB is incremented 

by 1 and )( jnAB is decremented by 1 to reflect that u∗ is 

now a non replicated users in P
B

(lines 4–5). The 

unreplication of u∗ from P
A

 does not change the )( jnA

value of any jn  ∈ Nets (u∗); thus the criticality conditions 

that include )( jnA need not be checked. After the value of 

)( jnB is incremented (line 4), jn  must be checked for 

criticality condition changes to see if there are any necessary 

gain updates for the neighbors of u∗ (lines 6 and 17). If 

)( jnB  = 1, it means that jn  was move critical and 

unreplication critical to P
A

. In this case, the move and 

replication gains of the unlocked users and replicas that are in 

P
A

 and connected by jn  are incremented by c( jn ), since 

jn  is not an internal net anymore. 

If )( jnB = 2, it means that jn  was move critical and 

replication critical to P
B

. The net jn  connects two users in 

P
B

 and one of them, u*, is already locked, and thus the move 

and replication gains of the other user, iu , need to be 

decremented by c( jn ), since this users can no longer save 

jn  from the cut. 

4. EXPERIMENTS AND RESULTS 
Experiments were conducted by obtaining the real world data 

from twitter. Temporal activity hypergraph of the obtained 

data is constructed. .The hypergraph is partitioned by 

selectively replicating the users. The number of partition is set 

to 4. The maximum replication ration is set to 0.5.  

The selectively replicated partition of a few users whose data 

has been collected is shown in fig 2 . Each partition contains 

the followers and the followings of a user. Only a few users 

will be present in another server. As the number of servers 

required to process a request is small a considerable reduction 

in the processing time of a request is obtained.  

 

Fig 2: User partition 

The proposed method is compared with hash based partition 

and random replication. Experimental analysis shows that a 

considerable reduction in the processing time is observed by 

using selective replication. 
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Fig 3: Comparison with hash based replicated partitioning 

The following table shows the number of read and write 

requests issued in different partitioning schemes. 

Table 1. Read Write Comparison 

Partition Technique Average 

number 

of reads 

Average 

number 

of writes 

Random Partition and random 

replication 

75 23 

Hash based partition and two 

hop replication 

60 25 

 

While comparing the balancing performance of these schemes 

it is observed that random replication and random partitioning 

have the worst balancing performance for both read and write 

requests. Hash based replication and two hop replication has 

comparatively better performance than random replication and 

random partitioning but poor performance than selective 

replicated partitioning. This is because the other replication 

schemes does not take the balancing constraint into account 

during replication On the other hand, RHP can simultaneously 

perform objective optimization and balancing under 

replication in a single replicated partitioning phase and thus 

has superior read and write balancing performance. 

Selectively replicated partitioning strikes a balance on the 

performance metrics by trading locality with load balancing 

and I/O load minimization, which leads to its superior query 

processing performance. 

5. CONCLUSION 
In this work, a selectively replicated partitioning using 

temporal activity hypergraph is proposed for data partitioning 

and replication in twitter. The proposed model uses multi-way 

interactions incurred by the read and write operations in 

twitter.The users are randomly partitioned into two partitions 

and the partitions are further improved by performing move, 

replication and unreplication operations. The process is 

performed recursively until the desired number of partition is 

obtained.  

Hash-based approaches distribute workload and enhance 

parallelism but suffer from communication overhead. Graph-

partitioning-based approaches enhance read locality at the 

expense of increasing I/O loads and load balance. This 

approach performs partitioning and replication simultaneously 

and reduce the number of servers required to process a request 

with a limit amount of replication. 
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