
International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

30

An Implementation of a Fast Threaded Nondeterministic

LL(*) Parser Generator

Amr M. AbdelLatif
Faculty of Computing and

Informatics, Zagazig
University, Egypt

Amr Kamel
Faculty of Computers and

Information, Cairo University,
Egypt

Reem Bahgat
Faculty of Computers and

Information, Cairo University,
Egypt

ABSTRACT
Parsers are used in many applications such as compilers, NLP

and other applications. Parsers that are developed by hand are

a complex task and require a generator to automatically

generate the parser. The generator reads a grammar and

generates a fully working parser.

This paper proposes separating the semantic actions’

execution from the parsing phase. The parser generates a

queue of semantic actions attached with grammar rules to be

visited in case of successful parsing. By this separation, the

execution time of the parsing phase can be enhanced. More

importantly, this will avoid the incorrect execution of

semantic actions when dealing with non-deterministic

grammars. Investigating an implementation for the

parallelization of the parsing phase for non-deterministic rules

is also another contribution of the paper. A previous

theoretical work of this paper was made in [1]. The

experimental work shows that working with single threaded

backtracking with storage of intermediate results, as well as

following the Fork/Join parallel execution model without

intermediate storage perform in most cases better than

working with raw threads execution or by predicting rules as

in ANTLR V4. The generator assumes that the grammar is

left-recursive free.

General Terms

Compiler, parsers and parser generator

Keywords
Non-deterministic grammar, LL grammar and compilers

1. INTRODUCTION
Many applications use parsers as a primary phase. The

applications range from browsers to display web pages, search

engines to find web pages, checkers in word processors, to

compilers. For these parsers to work, the scanned tokens must

be well formed and described by specific grammars. These

grammars are always varying and may be non-deterministic.

If the developer’s intension is to build a parser by hand, it

would be a complex and costly task. Parser generators are

used instead. Parsers generally fall into two types: bottom-up

and top-down.

Existing parser generators such as YACC [2], Bison [3] and

CUP [4] are types of LR parser generators but require the

grammar to be LALR(1). They use a bottom-up approach and

only handle deterministic grammars. To resolve non-

determinism, the GLR [5] is an attempt to handle ɛ-grammars;

an example of GLR parser generators is Elkhound and an

example of Elkhound-based C++ parser is Elsa [6]. The

generated parser by Elkhound can launch sub-parsers to walk

on all available paths. If one failed, it should die. Surviving

parsers result in a parse forest. Elkhound proved to have an

efficient parsing time.

Non-deterministic LR grammars can also be parsed with

backtracking. [7, 8, 9, 10] are some attempts to use

backtracking. The backtracking approach suggests that when

finding a non-deterministic rule, then a trial parsing is done to

the first alternative. If the first alternative failed then

backtrack to try another one. Parsing with backtracking is not

free of errors when thinking of semantic actions’ execution.

Some actions would be executed during parsing the wrong

rule. Merrill [9] suggests predicates in the form of conditional

and unconditional actions. For example the unconditional

actions would be executed in case of failure or success of

parsing an alternative rule. This is shown in fig 1. Thurston

[10] added an undo action so he is handling three action types

namely, trial, undo and final action. The problem is that too

much time is required doing a trial action and revert it by

doing the undo action.

Fig 1: Using conditional and unconditional actions by

Merrill [9]

Regarding top-down parsers, which are used to parse type of

grammar called LL, a set of parser generators are used such as

Coco/R [11], ANTLR 3 [12], ANTLR 4 [13], and JavaCC

[14]. They require the grammar to be LL(k). JavaCC resolves

non-determinism by increasing the lookahead and requires the

programmer to do it explicitly. It also uses backtracking

techniques without storing intermediate results. ANTLR 3 can

parse LL(*) by analyzing and building a DFA from the

specified grammar to avoid backtracking. If it can’t build a

DFA, it asks the user to specify the option {backtrack=true}

explicitly.

Parsing expression grammars (PEGs) [15] introduces

ambiguity in the first place. It uses a prioritized operator “/” to

order the rules to be visited. PEGs also introduces some

predicates for false and successful parsing. Ford had

implemented parsers for PEGs like packrat and its generator

Pappy [16, 17] which is written for Haskell. Rats and Mouse

[18, 19] are other implementations and are written for java.

Mouse uses a very simple recursive descent parser with

backtracking but doesn’t store intermediate results; this make

the parser inefficient. (Rats!) memorizes all intermediate

results to ensure linear-time performance.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

31

1.1 Problems Of Using Backtracking
Although backtracking allows writing grammar without being

concerned about the non-determinism and without limiting the

number of lookahead symbols, it has a critical side effect. Not

only backtracking causes exponential execution time in the

worst case [15] as it has to visit all alternative paths to obtain

the correct path, but also it has bad effects concerning

executing false actions as well as ignoring pre-visited

semantic actions.

Let us take a non-deterministic grammar like the one shown in

fig 2 and the corresponding Nondeterministic Finite Automata

(NFA) in fig 3. This grammar is non-deterministic. The

actions are placed between {}. Two possible sets of tokens

can be matched by this grammar, that is a set of a’s followed

by zx or zy, such as “aaazx” or “aaazy”. If the input token is

“aaazy”, the decision which rule to select is delayed until

matching the last symbol. When this grammar is tested with

ANTLR 3, the execution tends to navigate the first alternative

and successfully eating the set of a’s and each time it eats a

symbol a, it displays a message x. Upon discovering that the

first alternative is the wrong one, it tries the second

alternative, the successful one, which displays y. Clearly false

actions are executed as well as true actions. The output is

“xxxzyyyz”

s : x z 'x' | y z 'y' ;

z: ‘z’ {System.out.println(“z”);} ;

x : 'a' {System.out.println("x");} x | ;

y : 'a' {System.out.println("y");} y | ;

A : 'a';

X : 'x';

Y : 'y';

Fig 2: Example of a non-deterministic grammar

augmented with semantic actions.

Fig 3: NFA of the grammar in Fig 1.

ANTLR 4 had solved the problem of non-determinism by

predicting which rule to be investigated. It calls a special

prediction function that returns the rule number. The function

simulates the execution of rules by building an augmented

recursive transition network (ATN), a diagram like a syntax

diagram. The simulation is done using multithreading

techniques. By this way, it avoids traversing false rules and

hence executing false actions. The drawback of this way is the

execution time as prediction and visiting the rules double the

time required to parse the input tokens.

The same grammar was tested with the Rat parser generator

after replacing | with priority operator / and after modifying

the grammar to match the syntax of Rat. The output was

“xxxzyyy” while it is supposed to display the output “yyyz”.

By analyzing the reason for that, the generated parser tries the

first alternative and executes the actions and displays “xxxz”.

Intermediate results are stored so as not to visit it for a second

time and achieve efficiency in the execution time. When the

first alternative failed, the second alternative is tested and the

rule Z:’z’ is ignored and hence its action is not executed. That

was another weakness of storing intermediate results to be

skipped at later times.

The main problem facing parsers that handle the non-

determinism either by backtracking or by parallel execution of

sub-parsers is that they fall in the weakness of executing the

semantic actions that are attached with the grammar rules. An

undesired action may be executed during parsing false

alternatives. This problem causes the parser generators to be

not practically in use.

The main contribution of the paper is to generate parsers that

separate the parsing phase from the semantic action execution.

The job of the parser is to match the order of tokens against a

predefined grammar and the job of the semantic action phase

is to execute semantic actions. So the parsing phase will be

split into two sub-phases. Another contribution of the paper is

to avoid using backtracking and parallelizing the non-

deterministic rule derivation.

The advantages of separating semantic actions execution from

the parsing phase are:

 The readability of the grammar is achieved

especially when the grammar is complex. Complex

semantic action statements are placed in external

modules.

 It the parser results in an error, then semantic

actions would not be executed.

 Allow researchers to optimize the parsers without

considering whether the optimization would

contradict with action’s execution.

 Make sure that the action attached with a rule is

executed only if it is the correct rule for the parsed

expression.

 The parser generator can name local and global

variables with any names, and not to worry about a

conflict with the generated names.

The remaining of the paper is organized as follows. Section 2

describes the grammar used by the generator and how

semantic actions are added. Section 3 explains the process of

generating the parser and semantic actions by the generator.

Parallelizing the parser with multi-threaded and fork/join

models is explored in section 4. In section 5, we discuss the

way of storing intermediate results to avoid re-parsing the

same part twice. The experimental work and our conclusions

are presented in sections 6 and 7 respectively.

2. THE GENERATOR
The generator is used to read a grammar and generate a parser

that can recognize tokens as well as execute semantic actions.

The following is an example of a grammar. The grammar

supports all EBNF features, and it is much like the one used

by ANTLR. Non-terminals start with small letters. Terminals

start with capital letters. Quoted terminals must have an

explicit definition. Terminals are defined with regular

expressions. Each production is terminated with a semicolon

‘;’.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

32

options{ maxThreads='2';}

stmts : (stmt ‘;’)+;

stmt : ID ‘=’ expr {stmt};

expr : Term ‘+’ expr {add}

 | Term ‘-‘ expr {sub}

 | Term {term};

term : factor ‘*’ term {mult}

 | factor ‘/’ term {div}

 | factor {factor};

factor: ID | NUM | ‘(‘ expr ‘)’;

ID : [a-zA-Z][a-zA-Z0-9]*

NUM : [1-9][0-9]*;

EQ : ‘=’;

ADD : ‘+’;

SUB : ‘-’;

MULT : ‘*’;

DIV : ‘/’;

skip WS : [\r\t\n]+;

Fig 4: Sample grammar for arithmetic expressions.

The generator has three keywords. The keyword ‘skip’ means

that this token is recognized by the lexer but not stored in the

token stream. The keywords ‘explicit’ and ‘implicit’ are used

with terminal rules. If implicit is used, this means that this

part can only be used by other parts. For example the ID

regular expression can be broken into smaller parts as shown

in fig 5.

implicit LETTER: [a-zA-Z];

implicit DIGIT : [0-9];

implicit LETTERORDIGIT: LETTER | DIGIT;

ID : LETTER LETTERORDIGIT*;

Fig 5: Breaking ID into sub-terminal rules.

Semantic actions are inserted between {}, similar to the

Mouse parser generator [19]. A single word is placed between

{} which is converted to a method call. But unlike the Mouse,

the context information is passed to the methods. Semantic

actions can be written at any part of the non-terminal

production. The generated methods will be called later after

the parsing phase has completely finished.

The grammar doesn’t support direct nor indirect left-

recursion. The grammar written is assumed to be LL(*). The

first rule is assumed to be the start rule. The grammar is easy

to write and understand by the programmer as it avoids the

complexity of augmenting complex semantic actions. Non-

determinism is allowed within the rule terms. For example the

rule r: a (b c)? (b d)*;

is non-deterministic. The generated parser may try the first

alternative (b c) and if it fails it backtracks to try the second

alternative.

The options keyword allows the user to specify the threshold

as the maximum number of threads (or sub-tasks) to be

created. The user can specify the value ‘auto’ to equate the

number of sub-tasks with the number of cores on the host

machine.

Terminal rules are converted to a form recognized by JLex

[20]; a lexical scanner for Java that is based on the famous

Lex [22]. It can recognize the longest match and can give

priority for tokens by their appearance in the specifications.

Implicit tokens are converted to JLex macros. Non-terminal

rules are converted to methods. Semantic actions are

numbered with unique numbers. For instance, the above

grammar has 7 semantic actions. Semantic actions are

attached with information, the current, previous and next

token. After the parsing phase has finished, all correct

semantic actions that are to be executed in order are added to

a general queue. The next phase is to iterate over all semantic

actions stored in the queue and call them in the sequence that

they appeared. For example if the input string is “x=1*2*3;”

then the queue will contain [term, factor, mult, mult]

3. THE GENERATED CODE
Three files are generated, namely Parser.java, Lexer.java and

SemanticAction.java. For the grammar written in Fig 4, seven

semantic action methods are generated. These methods are

[stmt, add, sub, mult, div, term and factor]. Fig 6 shows the

SemanticAction class. The Context contains some information

related to the rule such as current token associated with the

action and can be used to store results of any computations to

be passed to another called methods.

public class SemanticAction{

 //(1) stmt : ID ‘=’ expr

 public void stmt(Context context)

 {

 //add code for stmt here

 }

 //(2) expr : Term ‘+’ expr

 public void add(Context context)

 {

 // add code for

 }

 .

 .

 .

}

Fig 6: The generated SemanticAction class.

The generated parser is direct recursive descent and very easy

to understand. Each deterministic rule generates a separate

method. For a non-deterministic rule, each alternative is

encapsulated in a separate method. Each method returns a

Boolean value to represent the state of parsing either fail or

success. The parsing method starts by first checking whether

that part of input was parsed earlier (it may be parsed earlier

and the result is stored in the intermediate storage, see section

4). If it was parsed earlier, then the method skips parsing this

part and returns immediately. Otherwise it must start parsing.

After finishing parsing, it may need to store the result

obtained into the intermediate storage. Fig 7 shows a method

generated.

//stmt : ID ‘=’ expr

public boolean parseStmt(){

 if(isNodeInStore(forwardPointer,2))

 return true;

 int size = visitedRules.size();

 int startFrom =forwardPointer;

 visitedRules.addFirst(2);

 switch(tok.type){

 case ID:

 if(! Eat(TokenType.ID)) return false;

 if(! Eat(TokenType.EQUAL)) return false;

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

33

 if(! parseExpr()) return false;

 break;

 default:

 return false;

 }

 if(this.isAmbiguousThread)

 ids.addNode(startFrom,

 2,getRulesUpToSize(size),

 forwardPointer);

 return true;

}

Fig 7: Method generated for rule “stmt: ID ‘=’ expr”

The third file is generated using JLex and all tokens are

loaded into memory before the parsing process is done.

4. PARALLEL PARSING
One way to avoid using backtracking is to allow parallelism

on deriving non-deterministic rules. Parallel execution can

reduce the parsing time as each thread executes on a core on a

multiprocessor system. This section shows how parallelism is

done using raw threads and using the Join/Fork framework.

4.1 Parallel Parsing with Threads
When the parser reaches a set of alternatives to be

investigated and the selection decision is not known from the

current lookahead, then other instances (threads) from the

same parser are launched. Each sub-parser starts parsing from

the point of non-determinism. The main one waits for the

successful one to return back with its result. If one thread fails

then the result from that thread is ignored and the other

threads continue. If all sub-parsers or threads fail to parse the

remaining tokens then the main thread returns with failure.

Each thread must maintain a set of information necessary for

parsing, such as a marker to store the starting token to be

parsed. The value of this marker is set by the main thread that

created it. Also each thread has a queue to store all visited

rules. Each thread stores its result in a queue as its output and if it
parses successfully, its contents are copied to the parent thread

queue. Since threads representing alternative rules are

accessing the same set of tokens in the memory

simultaneously, multiple instruction single data (MISD) is

used and tokens are shared between all threads.

A single thread may branch more sub-parsers as it may

encounter more alternative choices or it may select to work

with backtracking. The selection is based on the coordinator

and the branching threshold. If the number of currently active

threads exceeds the threshold value, then no more sub-parsers

are created. Creating more threads can be efficient especially

on a device with multi-processors. Fig 8 shows three threads

started as there are three alternatives for parsing the rule

[expr:Term‘+’expr|Term‘-‘expr|Term;].

Threads can coordinate their work with each other by means

of storing intermediate results obtained in a shared data

structure. A thread may not need to parse a set of tokens and

skip them if it finds their parsing information memorized by

other threads. Concurrent read on shared tokens creates no

problem. But concurrent write on a shared memory raises a

problem. One solution to this problem is to synchronize

access to the shared memory and treating the shared memory

as an atomic structure. By putting synchronized keyword on

the shared memory methods, all threads competing for storing

their information need to access the shared memory. The

faster thread takes the lock first and all remaining threads wait

for the lock to be released. The tricky part is to prevent storing

the same information parsed by two threads more than once so

a check must be done for the existence of information in the

shared storage. Fig 9 shows an algorithm for thread creation.

Fig 8: Three threads started from the main one for three

alternatives.

Parsing Alternatives Algorithm

 1 – IF there are non-deterministic

alternatives THEN

 2 – FOR each alternative

 3 - Create sub-parser

 4 - Start sub-parser

 5 - ENDFOR

 6 - Wait for all sub-parsers to finish

 7 - Collect results

 8 - FOR each sub-parser

 9 - IF result equals parsing successfully

THEN

10 - Add sub-parser result to main QUEUE

11 - RETURN TRUE %parse true

12 - ENDIF

13 - ENDFOR

14 - RETURN FALSE %parse error

15 – ELSE

16 - Continue parse remaining tokens

17 – ENDIF

18 - END

Fig 9: Parsing alternatives algorithm with threads

4.2 Parallel Parsing with Fork/Join Model
Another way to employ multiprocessing efficiently is by using

the Fork/Join framework. Java 7 has recently added a

Fork/Join framework in its library [21]. The Fork/Join is a

multi-threaded programming style that works with divide-and-

conquer approach. It allows the problem to be divided into

smaller sub-problems; each sub-problem can be solved by the

same or different way from the main problem. The process of

division continues until reaching the atom. The atom is the

smallest problem that cannot be divided and must be solved

directly.

The benefits of using the java Fork/Join framework is that it

can manage tasks in the same way the operating system

manages threads. The difference is that it manages tasks in a

light weight manner but the operating system manages threads

in a heavy weight manner. Threads are created only one time

and saved in a thread-pool area, thus avoiding thread

allocation and re-allocation. Each main task and its sub-tasks

that are held in a queue are scheduled to a thread. Threads can

be created equal to the number of cores (by using java

function Runtime.getRuntime().availableProcessors()) or as

the programmer specifies. Another benefit is that if a main

task and all its sub-tasks are idle (e.g. waiting for some event

to occur), the system can steal tasks from other threads. Since

the cost of constructing a new thread is greater than the

parsing time, the Fork/Join model has greatly enhanced the

parsing time.

The parser model can follow the Fork/Join model. When

encountering a set of alternatives to be parsed and the

lookahead cannot be used to decide which alternative to

derive, and if the remaining tokens are large enough, then fork

sub-tasks to start parsing. Each sub-task has the set of

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

34

information as stated in the multi-threaded model. The

algorithm for Fork/Join is shown in fig 10.

Parsing Alternatives Algorithm Fork/Join

 1 – IF there are non-deterministic

alternatives THEN

 2 – IF remaining tokens are small or reach

threshold THEN

 3 - Continue parse remaining tokens

 4 - ENDIF

 5 - Fork sub-task for each alternative

 6 - Wait for all sub-tasks to finish

 7 - Collect results

 8 - FOR each sub-parser

 9 - IF result equals parsing

successfully THEN

10 - Add sub-tasks result to main QUEUE

11 - RETURN TRUE %parse true

12 - ENDIF

13 - ENDFOR

14 - RETURN FALSE %parse error

15 – ELSE

16 - Continue parse remaining tokens

17 – ENDIF

18 - END

Fig 10: Algorithm for parsing alternatives with multi-

threaded Fork/Join Model.

5. STORING INTERMEDIATE

RESULTS
By storing intermediate results, the parsing time with

backtracking can be reduced from exponential time to linear

time [16, 17]. Clearly storing information avoids re-parsing

the same part more than once. The same concept can be used

with the multi-thread model. Storing intermediate results can

reduce the parsing time. Due to the fact that the final result is

a sequence of semantic actions in the bridge queue, each node

in the storage is attached with an internal queue of the

semantic actions. The table has two entries. The first entry is

the parsed token number and the second entry is the rule

number. The table uses hashing to map entries which takes

time efficiency O(1) for the first entry and also for the second

entry. Each node stored in the table stores a number to

indicate the end token position of parsing. For example fig 11

shows an example of a table data structure constructed by

parsing the input string “x=1*2*3;”. The first entry 2 means

that the thread started parsing a token in position number 2.

From token position 2 to token position 2, it can be reduced

by rule 10 or rule 8. When it is reduced by rule 10, then it

should execute semantic action Ω10, and when it is reduced by

rule 8 then it should execute actions { Ω10 Ω6}. From token

position 2 to token position 6, it can be reduced by rule 6 with

semantic actions { Ω10 Ω8 Ω10 Ω8 Ω10 Ω8 Ω6 Ω6}.

Fig 11: Construction of shared storage

To optimize the storage used by the parser, two enhancements

are done to the data structure. The first is that it is not

necessary to store each entry of the token number. In contrast

with [16] which creates a storage of M(N+1) where M is the

number of methods (rules) and N is the number of tokens in

the input string in addition to the empty string. For example,

tokens [=, * and;] are complementary parts to the rules and

they are not used alone in reduction, so it is not necessary to

store them. The second enhancement it that it is not necessary

to store nodes in the table except in case there is non-

determinism. This is because with deterministic rules there is

only one path to follow and it is not possible to seek

alternative paths as in the case of non-deterministic rules.

5.1 Storing Intermediate Results
When using a single thread, it will be the only thread that

accesses the table and stores its results. When using multiple

threads, they will all compete to access and store their results.

The shared memory will be a bottleneck and must be

protected against concurrent access by multiple threads.

Concurrency control causes only one thread to be active and

the others waiting to access the shared memory. Only one

thread can write at a time. This will increase the execution

time. We didn’t use intermediate storage with Fork/Join

model in order to avoid concurrent write operations. We used

intermediate storage with single threaded model.

6. EXPERIMENTAL WORK
In this section we show the time and memory measurements

for our experiments. We show the impact of different

implementations of the parser, the effect of applying

multithreading and the multi-threaded Fork/Join model. The

experiments are taken from our previous research work done

in [1]. The time is compared with ANTLR V4 and JavaCC

[14]. We used syntactic lookahead with JavaCC to allow the

resolution of non-determinism. The time measurements do not

include semantic action execution, only the parse time is

measured. Time is measured after the two executions so as to

make sure that the Java Virtual Machine has its stable state.

Moreover, the average of three consecutive measurements is

recorded.

All the experiments are done on a machine with processor

model of Intel® Core™ i5-2450M CPU @ 2.5GHz 2.5GHz.

Memory is 4 GB. The operating system used 64-bit Windows

7. Java Development Kit version jdk1.8.0_05 is used as a

compilation environment. Memory is measured according to

the equation:

Runtime runtime = Runtime.getRuntime();

long memory = runtime.totalMemory() -

runtime.freeMemory();

We didn’t compare the results with Rats as it executes some

false semantic actions while preventing some semantic actions

from execution.

6.1 Experiments with Planned Test
Working on the grammar listed in fig 4 and varying the input

size, we notice that only two rules have non-determinism,

namely:

expr:Term‘+’expr|Term‘-‘expr|Term;

term:factor‘*’term|factor‘/’term|factor;

6.1.1 Planned Test 1
Two types of input strings are planned to be tested. The first

type examines the depth in the first rule. For example

“x=1*2*3*-------*n;” is a set of multiplication operators,

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

35

which is the worst case analysis as the first and the second

alternatives of the first rule would fail and the third alternative

would succeed. By testing this type of input, three threads will

be created, one for each alternative of the first rule, and all of

the three alternatives remain alive until reaching the token by

which a thread can either succeed or fail. For the second rule,

the decision would be quick by eating a factor and scanning

the next input token ‘*’; the first thread keeps alive and the

remaining alternatives die.

Fig 12 presents a graph of this planned test. The graph

illustrates that working with raw threads (4 threads allocated

as the test runs on 4 core processors) has the worst time

analysis as it grows tremendously with small increase in the

file size. The graph compares also the run time for multi-

thread execution without storing intermediate results, which

performs better than the case when storing intermediate

results. Working with only one thread and working with the

Fork/Join model is more efficient than ANTLR. JavaCC has

the shortest time from all tested models. The tests were made

on input file sizes up to 7000 bytes, as ANTLR V4 gave an

exception message for the higher sizes. JavaCC, Fork/Join and

single-thread models seem to be coinciding due to their small

time measurements.

“Exception in thread "main" java.lang.StackOverflowError at

org.antlr.v4.runtime.atn.ATNState.getNumberOfTransitions(ATNStat

e.java:178)”

Another zoomed version of the graph without the multi-

threaded model is shown in Fig 13. The fig shows that

working with only one thread and working with Fork/Join

model is more efficient than working with ANTLR V4.

JavaCC and one-threaded are very close, but JavaCC is more

efficient.

Fig 12:.Time Measurements comparison between Antlr v4,

one-thread, multi-thread (4 threads), Fork/Join, JavaCC

and multi-thread without storage (plan 1).

Fig 13: Time Measurements comparison between Antlr v4,

one-thread, Fork/Join model and JavaCC (plan 1).

6.1.2 Memory Measurement of Planned Test 1
The memory comparison is shown in fig 14. The comparison

shows that one-thread, Fork/Join and Javacc have the least

memory consumption. Antlr V4 requires extra storage to store

the NFA of the ATN simulator. The 4-thread model with

share intermediate storage consumes high storage as each

thread accesses the intermediate storage to store its

information. The multi-thread model without sharing

intermediate storage also consumes high memory as each

thread constructed must have its own context that consumes

an amount of memory.

Fig 14: Memory measurements comparison between Antlr

v4, one-threaded, multi-threaded (4 threads), Fork/Join

and JavaCC modes (plan 1).

6.1.3 Analysis of Planned Test 1
In our opinion, there are two reasons behind the inefficient

performance of the multi-thread model. The first reason is the

frequent allocation and de-allocation of threads which can be

solved by using a thread pool. The thread pool allows the

creation of threads and allocation of resources only once and

re-using threads many times as needed. The thread allocation

time can be more costly than parsing the part allocated to that

thread. The second reason is in the shared data structure in

case of shared memory for storing intermediate results.

Storing intermediate results is supposed to reduce the parsing

time. Since the shared data structure allows many threads to

access it at the same time, so synchronization must be done to

prevent concurrent write problems. Synchronizing the shared

data structure causes one thread to acquire the lock while

other threads to be blocked waiting for the lock.

Both the multi-threaded Fork/Join model and working with

only single thread seem to have linear graphs with very small

slope. The multi-threaded Fork/Join model costs some extra

time to allocate threads which is a constant time. The

Fork/Join model graph is less than ANTLR V4 as it allocates

threads only once and also avoids the problem of locking

threads on the shared data structure. We didn’t use

intermediate storage to store intermediate results obtained

from each thread in the Fork/Join model in order to avoid

falling in the concurrency problem and also to reduce the

memory usage. The worker stealer feature implemented in the

Fork/Join model allows the idle thread to steal some tasks

from other busy threads. This feature maximized the CPU

utilization and the task throughput.

6.1.4 Planned Test 2
The other type of input string that is tested is the variation of

depth in both rules, like “x=1*2*-----*n / 1*2*-----*n + 1*2*--

---*n / 1*2*-----*n - 1*2*-----*n / 1*2*-----*n;”. Fig 15 shows

the comparison between ANTLR V4, one-thread model,

multi-threaded model, multi-threaded Fork/Join and JavaCC.

At first, it seems that using multi-threads is faster than

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

36

ANTLR V4. But for the same reasons stated in the analysis of

plan 1, the graph tends to grow very fast by small increase in

the input file size. Multi-threaded Fork/Join model is more

efficient than ANTLR V4. A more detailed graph without

multi-threaded model is shown in fig 16. The Fork/Join

model and the one-threaded model are more efficient than

ANTLR for the same reasons stated in the analysis of plan 1.

JavaCC is the most efficient one.

Fig 15: Time Measurements comparison with multi-

threaded (plan 2)

Fig 16: Time Measurements comparison without multi-

threaded (plan 2)

Memory measurement of plan 2 is shown in Fig 17. JavaCC,

Fork/Join and one-threaded models seem to be coinciding due

to small values. The one-threaded model has greater memory

as it needs to store intermediate values but the Fork/Join

model has less memory as it doesn’t need to store

intermediate values.

Fig 17: Memory Measurements comparison between Antlr

v4, one-threaded, multi-threaded (4 threads), Fork/Join

and JavaCC modes (plan 2).

6.2 Experiments with java Grammars
In this section, we test the parser generated from the Fork/Join

model with threshold 4 on java source files. 7705 source files

with size 81.6 MB from the JDK 1.8 are used in the

experiment. The grammar was taken from Antlr V4 site

(https://github.com/antlr/grammars-v4). Antrl provides two

version of java grammar and we had selected the fastest one

to test with it. The experiments show that Antlr has the fastest

execution time, but the worst use of memory. JavaCC is the

best in memory measurements as it doesn’t load all tokens in

memory. The Fork/Join without storage has time less than

JavaCC by about 5.01% but more than Antlr V4 by about

20.39%. The Fork/Join without storage has memory

consumption less than Antlr V4 by about 27.39% and more

memory than JavaCC by about 32.35%.

Fig 17: Time and memory measurements for Java source

files.

7. CONCLUSION AND FUTURE WORK
The paper proposed separating semantic actions’ execution

from the parsing phase. This allowed us to avoid the incorrect

execution of semantic actions and reduced the parsing phase

execution time. It has also allowed for the smooth

parallelization of the parsing phase. The non-determinism can

be solved by launching multiple threads to parse the different

alternative rules. A practical parser generator is done for it.

The generator can generate a recursive descent parser with

multi-threaded or Fork/Join model. The analysis shows that

working with the multi-threaded Fork/Join model can be

practically used within a time and memory accepted by users

even for small PCs. Creating a parser that executes with single

thread and backtracking has approximately the same parsing

time as the Fork/Join model but due to the thread allocation

constant time, the Fork/Join model takes a small extra

constant time than the one-threaded model. The Fork/Join

model consumes less memory than the single-threaded model.

By separating the semantic actions execution from the parsing

phase, researchers are encouraged to find more methods to

enhance the parsing time. We are seeking for more parsing

improvements that can benefit from the parallelism and multi-

core technologies which became available to all users.

8. REFERENCES
[1] Amr M., Amr K., Reem B.,”TGLL: A Fast Threaded

Nondeterministic LL(*) Parsing”. ARPN journal of

systems and software, VOL. 5, NO. 2, August 2015

[2] Johnson, S.C., “YACC: Yet another compiler compiler”.

In UNIX Programmer’s Manual (7th ed.), Volume 2B,

1979.

[3] Donnelly, C., Stallman, R.M., “Bison: the YACC-

compatible Parser Generator”. Bison Version 1.28. Free

Software Foundation, 675 Mass Ave, Cambridge, MA

02139, 1999.

[4] Appel, A. W., Flannery, F., and Hudson, S. E., “CUP

parser generator for Java”.

International Journal of Computer Applications (0975 – 8887)

Volume 130 – No 5, November2015

37

http://www2.cs.tum.edu/projects/cup/,1999, Last visited

on March 4th 2015.

[5] Nozohoor-Farshi, R., “GLR parsing for ɛ-grammars”. In

Tomita, M., ed.: Generalized LR Parsing. Kluwer, pp.

61-75, 1991.

[6] McPeak, S., and Necula, G. C., “Elkhound: A fast,

practical GLR parser generator”. In Proc. Of 13th

International Conference on Compiler Construction, vol.

2985 of LNCS, Springer, pp. 73-88, 2004.

[7] Dodd, C., and Maslov, V., “Backtracking Yacc”.

http://www.siber.com/btyacc/, last visited on April 3rd 2015.

[8] Spencer, M., “Basil: A backtracking LR parser

generator”. http://www.lazycplusplus.com/basil/, last visited

on April 1st 2015.

[9] Merrill, G. H., “Parsing non-LR(k) grammars with

Yacc”. Software, Practice and Experience, 23(8), pp.

829–850, 1993.

[10] Thurston, A. D., and Cordy, J. R, “A backtracking LR
algorithm for parsing ambiguous context-dependent

languages”. In Proceedings of the 2006 conference of the

Center for Advanced Studies on Collaborative research,

October 16-19, 2006, Toronto, Ontario, Canada.

[11] M ssenb ck, H., L berbauer, M., and W , A., “The

Compiler Generator Coco/R”. http://www.ssw.uni-

linz.ac.at/Coco/, last visited April 2nd, 2015.

[12] Parr, T., Fisher, K., “LL(*): the foundation of the

ANTLR parser generator”. In Proceedings of PLDI

2011, pp. 425-436, 2011.

[13] Parr, T., Harwell, S., and Fisher, K., “Adaptive LL(*)

parsing: the power of dynamic analysis”. In Proceedings

of OOPSLA 2014, pp. 579-598, 2014.

[14] Viswanadha, S., Sankar, S., and Dunkan, R., "Java

compiler compiler (JavaCC)-The java parser generator."

Java.net, https://javacc.java.net/, last visited Aug 2 2015.

[15] Ford, B., “Parsing Expression Grammars: a Recognition-

Based Syntactic Foundation”. In POPL ’04: Proceedings

of the 31st ACM SIGPLAN-SIGACT symposium on

Principles of Programming Languages, pp. 111–122,

New York, NY, USA, 2004. ACM Press.

[16] Ford, B., “Packrat Parsing: a practical linear-time

algorithm with backtracking”. Master’s thesis,

Massachusetts Institute of Technology, September 2002.

[17] Ford, B., “Packrat parsing: Simple, powerful, lazy, linear

time”. In Proceedings of the 2002 ACM International

Conference on Functional Programming, pp. 36–47,

Pittsburgh, Pennsylvania, Oct. 2002.

[18] Grimm, R., "Practical packrat parsing." New York

University Technical Report, Dept. of Computer Science,

TR2004-854, 2004.

[19] Redziejowski, R. R., "Parsing expression grammar as a

primitive recursive-descent parser with backtracking."

Fundamenta Informaticae 79, no. 3, pp. 513-524, 2007.

[20] Berk, E. J., and Ananian, C. S., "JLex: A lexical analyzer

generator for Java (TM)". Department of Computer

Science, Princeton University. Version 1, 2005.

[21] Lea, D. "A Java fork/join framework". In Proceedings of

the ACM 2000 conference on Java Grande, pp. 36-43.

ACM, 2000.

[21] Lesk, M. E., “LEX — A Lexical Analyzer Generator”.

Computing Science Technical Report 39, Bell Telephone

Laboratories, Murray Hill, NJ, 1975.

IJCATM : www.ijcaonline.org

