
International Journal of Computer Applications (0975 – 8887) 

Volume 130 – No.5, November2015 

24 

Identification of Novel CDK Inhibitors by Molecular 

Docking and Consensus Scoring Approach 

Satyanarayana Kotha  
Department of Information 

Technology  
Sir C R Reddy college of 
Engineering, Eluru, India  

 

 Yesubabu Adimulam, 
PhD 

Department of Computer 
Science & Engineering 

Sir C R Reddy college of 
Engineering, Eluru, India 

 Kiran Kumar Reddi, PhD 
Department of Computer 

Science 
Krishna University 

Machilipatnam, India 
 

ABSTRACT 

Cyclin Dependent Kinases go about as potential remedial 

focuses in cancer disease and several efforts are under way to 

find out more specific, potent and selective CDK inhibitors. In 

this paper, reported a computational molecular docking 

approach to screen approved drugs from DrugBank database. 

Docking and scoring of all compounds was done using 

Molegro Virtual Docker software, evaluated the binding 

affinities towards CDK-2, 4, 5 and 9 enzymes 2W9F, 2UZO, 

1UNH and 3BLR resulted in variable dock scores.  The 

resultant top 14 hits from a dataset of 1584 approved drugs 

were found to be more specific towards CDK inhibition. 

Further, re-scoring of 14 best docked poses followed by a 

consensus scoring approach retrieved top hits. In this study, 

tested three different scoring functions such as MolDock score 

of Molegro software, GOLD score and AutoDock. From the 

analysis, it was observed that Olmesartan and Telmisartan 

were reported to have high binding affinities with all CDKs 

tested.   
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1. INTRODUCTION 
Cell proliferation is a significant event that takes place due to 

the positive and negative signals which promote cell division 

and suppress the process [1]. The cell cycle is governed by a 

family of proteins, cyclin dependent kinases (CDKs). Cyclin 

dependent kinases are a gathering of serine/threonine kinases 

which assume a pivotal part in cell cycle control [2] and are 

included in diverse cellular processes, in regulation of cell 

division (CDKs1, 2, 3, 4, 6 and 7), transcription(CDKs7, 8 

and 9) or support of the structure of the cytoskeleton (CDK5) 

[3]. Cyclin dependent kinases control the cell cycle movment 

working at the transition from G2 to M, G1 to S stages, and 

progression through S stage. During the procedure, a complex 

set of mechanisms, for example, cyclins, phosphorylations, 

and endogenous CDK inhibitors at different check points are 

included [4]. Cell cycle progresses by the activation of Cyclin 

and CDK complexes [5]. Cyclins act as check points which 

regulate the transition from one phase of cell cycle to another 

where certain mitogenic signals are required for their activities 

and progression. Moreover, CDKs 1, 2, 4 and 5 are found to 

be necessary to complete a cell cycle. 

CDKs require cyclin subunits for activity. Activation of 

CDK2 results in rotation of N- and C-terminal domains 

leading to a slight widening of ATP cleft [6]. The movement 

of PSTAIRE helix and Glu51 and the subsequent 

reorganization leads to reshaping of the phosphate-binding 

site [7] in case of CDK-2. During mitosis CDKs 

phosphorylate many distinct proteins. These CDK substrates 

are phosphorylated at serine or threonine deposits that are 

perceived by the dynamic site of the CDK protein [8]. In most 

cases, the target serine (S) or threonine (T) residue is followed 

by a proline (P). The typical phosphorylation succession for 

CDKs is [S/T*]PX[K/R], where S/T* shows the 

phosphorylated serine or threonine, X represents to any amino 

acid and K/R represents the basic amino acid lysine (K) or 

arginine (R)[9].  

All CDK inhibitors concentrated so far act by rivaling ATP 

for binding in the CDK ATP binding pocket [10]. CDK 

inhibitors raduce the kinase activites of the cyclin/CDK 

complexs, blocking the transition from G1 to S stages [11].It 

has been reported that CDK4/6 inhibitors displayed promising 

results in the treatment of breast cancer. Selective, ATP-

competitive CDK4 inhibitors have been reported in literature 

[12-15] which are known to prevent phosphorylation and 

inactivation of Rb thereby inducing G1 stage leading to cell 

cycle arrest [16]. Success of few CDK4 inhibitors in early 

clinical phase trials has focused research to evaluate late-

phase trials against breast cancer [17]. Based on the studies 

that explored various CDK bound inhibitors and their role in 

cell cycle progression and proliferation, CDK group of 

enzymes are thought to act as potential therapeutic targets in 

several proliferative diseases [8].  

From literature it was identified that several drugs are known 

to act as anti-cancer agents, such as chemically synthesized 

and evaluated drugs or those which were obtained from plant 

sources such as natural products. However, there is a pressing 

need to discover novel, more potent and efficacious 

compounds as anti-cancer agents. Hence, in this paper 

presented a novel screening approach to identify potential 

anti-cancer agents against cell cycle enzymes, by screening 

approved drugs against enzymes participating in cell cycle 

process using computer-aided drug design procedures. 

2. MATERIALS AND METHODS 

2.1 Receptor X-ray Structure 
The X-ray crystal structures of cell cycle regulator proteins 

(CDK-2, 4, 5 and 9; 2W9F, 2UZO, 1UNH and 3BLR) were 

recouped from Protein Data Bank ( http://www.rcsb.org/pdb) 

and chosen as receptor models in virtual screening program. 

DrugBank database used as chemical compound library and 

employed three docking programs viz., Molegro Virtual 

Docker [18], GOLD [19] (Genetic Optimization for Ligand 

Docking) and AutoDock [20] for virtual ligand docking and a 

consensus scoring and ranking was employed to generate 

classes and the one with best rank was chosen. 

 



International Journal of Computer Applications (0975 – 8887) 

Volume 130 – No.5, November2015 

25 

2.2 Selection of Drugs from Drug Bank 

Database 
The Drug Bank database is an one of a kind asset of drugs 

with detailed data on drug and complete drug target. The 

database contains nearly 7740 drug entries including 1584 

FDA-approved small molecule drugs, 157 FDA-approved 

biotech (protein/peptide) drugs, and >6000 experimental drugs 

[21]. In the present study, 1584 approved drugs were selected 

for analysis. 

2.3 Molegro Virtual Docker          
Molegro Virtual Docker (MVD) is an integrated platform for 

predicting protein - ligand interactions. All default options 

including preparation of the molecules to determination of the 

potential binding sites of the target protein, and prediction of 

the binding modes of the ligands were employed. The MVD 

has been shown to yield higher docking accuracy than other 

state-of-the-art docking products [18]. 

2.4 Gold  
The GOLD program uses a genetic algorithm (GA) and the 

binding site was defined as a spherical region which 

encompasses all protein atoms within 5.0 Å of each 

crystallographic ligand atom. Default settings were used for 

all calculations. For each of the 10 independent GA runs, a 

maximum number of 10000 GA operations were performed 

on a single population of 50 individuals. Operator weights for 

crossover, mutation, and migration were set to 100, 100 and 0.  

To further speed up the calculation, the GA docking was 

stopped when the top three solutions were within 1.5 A° 

RMSD (Root Mean Square Deviation) of each other. 

2.5 AutoDock 
AutoDock requires receptor and ligand coordinates in MOL2 

or PDB format. Nonpolar hydrogen atoms were removed from 

the receptor file and their partial charges were added to the 

corresponding carbon atoms. All docking runs were 

performed using the Lamarckian genetic algorithm and the 

best value was reported in kcal/mol. The standard docking 

protocol consisted of 10 independent runs per ligand, using an 

initial population of 50 randomly placed individuals, a 

maximum number of 2.5 x 105 energy evaluations, a mutation 

rate of 0.02, a crossover rate of 0.80, and an elitism value of 1. 

The probability of performing a local search on an individual 

in the population was 0.06, using a maximum of 300 iterations 

per local search. Results differing by less than 2 Å RMSD 

from each other were clustered together and represented as 

best docking energy [20]. 

2.6 Molecule Preparations 
Although DrugBank database provides ligands in 3-D 

formats, an energy minimization routine was performed to 

generate three dimensional structures of all the molecules 

using corina make 3D option, derived charges and the 

geometries were optimized using cosmic module of Tsar 

Software.  Water molecules were discarded from the PDB file, 

and missing side chains were reconstructed using WHAT-IF 

web interface 

(http://swift.cmbi.ru.nl/servers/html/index.html). Hydrogens 

were added and then the structure was converted to mol2 

format using Mercury 

(http://www.ccdc.cam.ac.uk/products/mercury) (v. 1.4.2; 

Cambridge Crystallographic Data Centre (CCDC)). 

2.7 Consensus Scoring and Ranking 
Docking programs predict binding modes and energies of 

protein-ligand complex structures with reasonable accuracy 

and speed. Most of the docking programs are able to predict 

the nearer binding mode of a ligand, however, scoring 

functions play major role to differentiate correct poses from 

incorrect ones. As docking and scoring play important roles in 

drug design, it has been pointed out that the major weakness 

of docking programs lies in scoring functions. However, 

combinations of various scoring functions would reduce the 

errors in single scoring schemes and improve the probability 

of identifying true hits [22]. Thus, it has been demonstrated 

that consensus scoring was generally more effective than 

single scoring for molecular docking [23] and represented an 

effective way in getting improved hit rates in various virtual 

database screening studies [24].  

In this study, tested three different scoring functions such as 

MolDock score of Molegro software, GOLD score 

implemented in GOLD 3.1, and Free energy score of 

AutoDock. Docking program Molegro Virtual Docker was 

used to dock DrugBank compounds and the generated 

ensemble of docked conformations were scored and applied to 

generate classes followed by ranking the best conformations. 

The best conformations of each ligand that were clustered 

using complete linkage analysis are saved in mol2 formats. 

These files are used to apply the remaining scoring functions. 

During ranking, signs of some scoring functions are changed 

to make certain that a lower score always indicates a higher 

affinity. 

3. RESULTS AND DISCUSSION  
The docking protocol was validated before screening 

DrugBank database. 2UZO protein bound ligand was docked 

into the binding pockets of all CDKs to obtain the docked 

pose and the RMSD (Root Mean Square Deviation) of all 

atoms between these two conformations is <2.0 ˚A indicating 

that the parameters for docking simulation are reasonable in 

reproducing the X-ray crystal structure. Therefore, DrugBank 

database was screened for all approved drugs, which were 

docked into each of the protein structures using default 

parameters of Molegro virtual docker.  Table 1 shows the 

binding affinities and RMSD values of cell cycle proteins 

studied.The rationale behind selecting CDKs as potential 

cancer targets is based on published literature on these 

enzymes. Of all the cancer causing or participating 

proteins/enzymes such as CDKs, apoptotic proteins and 

others, it has been reported that the crucial phases of cell cycle 

can be arrested if any one of the CDKs are blocked in a way to 

reduce cell proliferation. Hence, it has been postulated by 

many authors that targeting CDKs would provide a higher 

chance or rate of inhibiting cell cycle process.  
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Table1: Mol dock scores of cell cycle regulator proteins 

S.NO PDB ID 

Mol Dock Score(kcal/mol) Average  

mol dock 

score 

(kcal/mol) 

Average 

RMSD Value 

(°A) Run-1 Run-2 Run-3 

1 2W9F 145.5 147.78 146.3 146.51 0.67758 

2 2UZO 126.54 123.25 125.63 125.15 1.06333 

3 1UNH 113.91 111.66 114 133.19 0.11708 

4 3BLR 114.24 112.32 114.63 114.06 0.17279 

Docking of all 1584 approved drugs from DrugBank was 

carried out to evaluate best conformer based on the lowest 

docked energy (kcal/mol), in other words, it should possess 

highest affinity towards the binding site. Moreover, the virtual 

screening technique employed in this work recognized 

entirely diverse, yet specific drugs  

that bind in a comparable manner as seen with ATP binding in 

CDKs. Therefore, in the first step, virtual screening based on 

docking and scoring of DrugBank compounds resulted in few 

hits with dock scores reaching more than 200 kcal/mol. The 

result is given in Table-2. 

Table 2: Docking results of MVD 

Drug Name 

2W9F dock 

score 

(kcal/mol) 

2UZO dock score 

(kcal/mol) 

1UNH dock score 

(kcal/mol) 

3BLR dock score 

(kcal/mol) 

Pentagastrin 158.351 149.198 145.323 156.789 

Olmesartan 208.296 198.472 197.894 187.035 

Teniposide 174.5 164.784 178.286 166.59 

Verteporfin 200.02 223.223 185.378 213.67 

Montelukast 175.412 167.435 155.934 163.284 

candoxatril 165.536 154.91 155.38 169.491 

Pemetrexed 162.825 138.96 159.865 148.055 

Losartan 168.644 163.567 161.244 168.133 

Candesartan 170.916 166.307 160.613 167.591 

Eprosartan 181.317 167.877 161.587 177.815 

Tiagabine 171.856 138.006 130.721 136.154 

Repoglinide 167.581 150.842 142.284 138.795 

Telmisartan 175.608 187.981 166.982 189.228 

Atorvastatin 183.618 189.203 183.401 191.542 

In the next step, re-scoring docking poses with independent 

functions was another valuable approach which gained 

prominence in recent studies [25].Therefore, re-scoring of best 

docked poses from MVD was done using GOLD and 

AutoDock. Results are presented in Table3.Further, a 

consensus scoring approach was implemented to evaluate best 

compounds from a set of 14 finalized drugs, which showed 

probable best docked poses against CDKs. Consensus scoring 

approaches combining multiple scoring functions were shown 

to work better in many [26]. Hence, the  

GOLD score, Molegro Score and AutoDock was applied to re-

evaluate the 14 docked poses.  Ranking was done individually 

by equally splitting the dock scores into three classes using 

Tsar Software (www.accelrys.com). The compounds in Class3 

represent the highest class or top rank. Summation of all ranks 

(rank-sum) was considered as best technique rather taking 

average values [27]. The advantage of a sum over an average 

was that the contribution from the rank for each individual 

score can more easily be split out for illustrative purposes in 

the former instance [27]. The details are given in table-4. 
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Table 3: Dock scores comparison of top best compounds that exhibited high affinities with MVD. 

Drug Name 
GOLD (kcal/mol) AutoDock (kcal/mol) 

2W9F 2UZO 1UNH 3BLR 2W9F 2UZO 1UNH 3BLR 

Pentagastrin 44.53 56.63 51.11 66.81 5.9 7.8 8 3.9 

Olmesartan 60.26 63.88 54.01 60.03 8.5 8.7 7.8 5.7 

Teniposide 33.31 42.63 38.35 9.72 7.3 8.7 8.6 5.2 

Verteporfin 13.14 63.98 46.00 51.72 6.4 9.9 8.1 5.1 

Montelukast 54.34 59.51 47.28 59.07 7.9 8.7 9.3 4.7 

candoxatril 25.19 51.46 36.56 47.53 7.8 9.2 8.7 5 

Pemetrexed 74.72 70.19 53.9 71 9 9.3 8.8 5.9 

Losartan 59.11 64.09 48.68 72.82 7.4 9.1 8.2 8.6 

Candesartan 53.51 64.83 49.45 67.02 7.6 8.8 8.8 8.5 

Eprosartan 66.54 57.87 52.69 67.1 7.3 8.1 7.8 8.8 

Tiagabine 57.11 49.58 39.72 59.06 7.2 7.3 7.7 7.4 

Table 4: Ranks of scores obtained in Molegro, GOLD, AutoDock for CDKs(Top three best scores are underlined). 

Drug Name 
M G A 

Rank 

Sum 

 

M G A 
Rank 

Sum 

 

M G A 
Rank  

sum 
M G A 

Rank  

sum 

2W9F 2UZO 1UNH  3BLR  

Pentagastrin 1 2 1 4 1 2 1 4 1 3 1 5 1 3 1 5 

Olmesartan 3 3 3 9 3 3 2 8 3 3 1 7 2 3 1 6 

Teniposide 1 2 2 5 1 1 2 4 3 1 2 6 2 1 1 4 

Verteporfin 3 1 1 5 3 3 3 9 3 2 1 6 3 2 1 6 

Montelukast 2 3 2 7 2 2 2 6 2 2 2 6 2 3 1 6 

candoxatril 1 1 2 4 1 2 2 5 2 1 2 5 2 2 1 5 

Pemetrexed 1 3 3 7 1 3 2 6 2 3 2 7 1 3 1 5 

Losartan 1 3 2 6 1 3 2 6 2 3 1 6 2 3 3 8 

Candesartan 1 2 2 5 1 3 2 6 2 3 2 7 2 3 3 8 

Eprosartan 2 3 2 7 2 2 1 5 2 3 1 6 2 3 3 8 

Tiagabine 1 3 2 6 1 1 1 3 1 1 1 3 1 3 2 6 

Repoglinide 1 1 1 3 1 1 1 3 1 1 2 4 1 2 3 6 

Telmisartan 2 3 3 8 2 3 3 8 2 3 3 8 3 3 3 9 

Atorvastatin 2 2 1 5 2 1 2 5 3 1 1 5 3 2 3 8 

M: Molegro Virtual Docker; G: GOLD; A: AutoDock 

The best three drugs which reported to exhibit high binding 

affinity against all targets are considered and they are 

identified as:  

 2W9F:Olmesartan,Telmisartan,Eprosartan 

 2UZO:  Olmesartan, Telmisartan, Verteporfin 

 1UNH: Olmesartan, Telmisartan, Candesartan 

 3BLR:   Eprosartan, Telmisartan, Candesartan. 

From the above data, it can be emphasized that Olmesartan 

and Telmisartan (Figure 1) would act as inhibitors against cell 

cycle proteins. Olmesartan, an angiotensin II receptor 

antagonist, chemically is (5-methyl-2-oxo-2H-1,3-dioxol-4-

yl)methyl4-(2-hydroxypropan-2-yl)-2-propyl-1-({4-[2-(2H-

1,2,3,4-tetrazol-5-yl)phenyl]phenyl}methyl) -1H-imidazole-5-

carboxylate, used for the treatment of high blood pressure. 

Considering the imidazole ring moiety at the centre, with 

tetrazole and dioxolyl groups as side chains on either arm of 

the structure, this scaffold should be studied in much detail 

owing to the interactions it makes with active site amino acid 

residues of tyrosine kinase enzymes participating in cancer 

pathways. 
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Figure 1. 2-dimensional structures of Olmesartan and Telmisartan 

On the other hand, Telmisartan, an approved angiotensin II 

receptor antagonist has chemical structure, 2-(4-{[4-Methyl-6-

(1-methyl-1H-1,3-benzodiazol-2-yl)-2-propyl-1H-1,3-

benzodiazol-1-yl]methyl}phenyl)benzoic acid. This chemical 

has two benzodiazoles and benzoic acid moieties making it 

more hydrophobic groups amenable to bind with hydrophobic 

amino acid residues of active site region of proteins. Hence, it 

would like to explore the characteristic features of these two 

compounds and screen proteins that are reported to be active 

in various cancer diseases. Moreover, experimental analysis 

involving cytotoxicity studies would shed some light in 

studying the capability of these drugs to act as possible anti-

cancer agents. 

4. CONCLUSION  
The analysis reported in this paper identified a unique method 

of choice to screen DrugBank compounds which resulted in 

diverse, novel approved drugs as possible anti-cancer agents. 

The computer-aided drug design protocol implemented would 

be advantageous in exploring novel drugs that are identified 

using consensus scoring and ranking techniques, on one hand 

and they might also provide a new scaffold for further design 

and development of novel CDK inhibitors. Further, work is in 

progress to explore computational analysis on analogs of 

olmesartan and telmisartan to study the possible enhanced 

pharmacophoric features of these compounds. 
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