
International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.6, November 2015

An Effective Dynamic Quantum Round Robin(EDQRR)
CPU Scheduling Algorithm

Kankana Datta
Haldia Institute of Technology

ICARE Complex
Haldia,WB,India

Manasi Jana
Haldia Institute of Technology

ICARE Complex
Haldia, WB, India

Arpita Mazumdar
Haldia Institute of Technology

ICARE Complex
Haldia,WB, India

ABSTRACT
Processor scheduling is one of the primary task of time sharing
operating system.The main goal behind CPU scheduling algorithm
is to identify the process and assign it to CPU that will give
the best possible system performance. In this report,a dynamic
approach is presented for Round Robin CPU scheduling. Here
a modified concept of dynamic quantum for each round is
designed to achieve lesser average waiting time, lesser average
turnaround time and lesser number of context switching as an
improved feature to conventional Round Robin scheme and also
a few number of existing schemes. The comparative study of
processing performance clearly shows that the proposed scheme
gives approximate [15 -20]% better result than few related recent
works.

Keywords
dynamic time quantum,average turnaround time, average waiting
time, context switching

1. INTRODUCTION
In time sharing computing system, the CPU time is a valuable
resource. In this environment, several processes wait in the
ready queue of main memory. CPU utilisation may be optimised
by allocating CPU time among the waiting processes and
keep the CPU busy always. Now, selection of the processes
for CPU attention should be done in such a manner so that
performance will be optimised. Scheduling decision try to reduce
the following: turnaround time, response time and average waiting
time for processes and the number of context switches. Numerous
scheduling algorithms have been proposed [1][2][6][9]. In this
paper, a dynamic quantum based Round Robin algorithm is
proposed where the average waiting time, average turnaround time
and number of context switching are reduced signaficantly and
increase the throughput in comparison to [1][2].

1.1 Performance Criteria
To monitor the processor performance [3] the following
performance parameters are to be measured. The various criteria
are listed below:

1. CPU Utilization : It is the percentage of time, the CPU executes
a process.

2. Throughput : The number of processes complete their execution
per time unit.
3. Turnaround time : The amount of time to execute a particular
process.
4. Waiting time: The amount of time a process has been waiting in
the ready queue.
5. Response time : It is the difference between time of submission
of process and the time the first response occurs.

1.2 CPU Scheduling Algorithm
Scheduling algorithm differ in the manner in which the CPU selects
a process in the ready queue for execeution. Few fundamental
scheduling algorithms are discussed below:-

1. FCFS(First Come First Serve):
FCFS is the simplest scheduling algorithm. In this algorithm, the
process that request CPU first is allocated the CPU first. Here the
ready queue is organized as a FIFO queue. When a process enters
into the ready queue, the PCB(Process Control Block) of a process
is linked to the tail of ready queue. The algorithm dispatches
processes from the head of the ready queue for execution. After
completion the process is deleted from the system. The next
process is then dispatched from the ready queue.

2. SJF(Shortest Job First):
In this scheduling scheme, the process with the smallest CPU burst
time is allocated to the CPU first. If multiple processes having the
same CPU burst exists in the ready queue, then CPU is allocated to
the process on FCFS basis. After completion the process is deleted
from the system. The SJF algorithm can be preemptive or non
preemptive in nature.

3. Priority Based Scheduling:
In this CPU scheduling, priority is associated with each process
and on the basis of priority the CPU is allocated to the processes.
The process with the highest priority is allocated to the CPU first.
If multiple processes having the same priority exist in the ready
queue, the control of CPU is allocated to these processes on FCFS
basis. The priority scheduling can be preemptive or non-preemptive
in nature. The processes here suffer from starvation. This problem
can be solved by aging technique.

1



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.6, November 2015

4. Round Robin Scheduling :
Round Robin Scheduling is used in time-sharing systems. In
this algorithm, the ready queue is maintained as a FIFO queue.
Here a small unit of time, called a time quantum or time slice is
defined by the system. Here the first process in the ready queue
is dispatched for execution and is preempted on expiry of one
time quantum. Then the preempted process is inserted at the tail
of the ready queue. When a process has completed its task, it is
deleted from the system. The next process is dispatched from the
ready queue. The performance of the RR algorithm is very much
dependent on the length of the time slice. If the duration of the time
slice is indefinitely large then RR algorithm is the same as FCFS
algorithm. If the time slice is too small, then the performance of
the algorithm deteriorates because of the effect of frequent context
switching.

2. RELATED WORKS
The traditional RR scheduling has a disadvantage that it uses static
time quantum. To eliminate this disadvantage various modifications
on RR scheduling have been done by several authors introducing
dynamic time quantum. Several related works are discussed as
follows:-
Raja Ram Jaiswal et al. [1] proposed a new approach on dynamic
time quantum which is repeatedly changed to the immediate
greater value of the previous time quantum.The result of this paper
shows a significant improvement in terms of reduction in waiting
time,turnaround time and context switches as compared to RR
scheduling.
A new approach IRRVQ [2] algorithm uses dynamic time quantum
which is repeatedly adjusted to the minimum value of retaining
burst time. This approach gives a significance performance
improvement compared to RR. Nayana Kundargi [5] has proposed
NK algorithm which calculate the average of all remaining burst
time to assign to dynamic time quantum. EDRR [6] algorithm
uses dynamic time quantum which is calculated by the formula
ceil (sqrt((mean*highest burst time)+(median* lowest burst time)))
giving better result than RR. In [7] the author has proposed an
algorithm by introducing a concept of assigning different time
quantum by calculating some metrics like RRB, WR, PF etc.
In [8] ARR has been proposed by calculating smart time slice
depending on number of processes. Abbas Noon [9] developed
an algorithm which calculates mean average to improve the
scheduling algorithm performance. Saroj Hiranwal [10] proposed
the same concept as ARR calculating smart time slice using
shortest burst time approach. In [11] AMRR has been developed
by setting dynamic time quantum to (AVG+MAX BT)/2 to improve
RR scheduling.

3. PROPOSED WORK
The Effective Dynamic Quantum Round Robin(EDQRR) CPU
scheduling algorithm is based on RR and SJF scheduling. This
algorithm eliminates the drawback of round robin algorithm in
which processes are scheduled in FCFS manner. The new proposed
algorithm uses the dynamic time quantum to minimize the average
turnaround time,the average waiting time and context switches.
First, processes in the ready queue are arranged in ascending order
based on CPU burst time. Then quantum time is initialized to the
minimum burst time of all processes in the ready queue and allocate
the CPU to the first process for 1 time quantum. After completion,
if remaining CPU burst time of the currently running process is

less than or equal to the time quantum, the CPU is again allocated
to the currently running process for remaining CPU burst time.
Otherwise, it is inserted at the tail of the ready queue. The schedular
then allocate CPU to the next process in the ready queue.

3.1 Flow Chart

Initialize Ready Queue, bt[],rbt[]

Executes p i with present qt

Is Ready Queue
Empty?

qt>=bt[i]

 Execute the same process
again

Executes the process

rbt[i]<=qt

Start

Stop

Execute and Terminate

YES

NO

YES

YES

NO

NOInsert the process into
the Ready Queue

Fig. 1. Flow Chart of the proposed Algorithm(EDQRR)

3.2 Algorithm
Assuming all the processes arrive at same time.

Step 1: Start
Step 2: Initialization

np // Number of processes in the ready queue
bt[np] // Burst time of the processes
rbt[np] // Remaining Burst Time of the Processes
qt // Quantum Time
cs // Context Switch
awt // Average Waiting Time
att //Average Turn Around Time

Step 3: According to the bt , arrange the process in ascending
order in the Ready Queue

Step 4: if(one or more processes has equal or same bt )
Allocate the CPU to the process according to FCFS
scheme

End if
Step 5: while(Ready Queue!=NULL)

[5.1:] Assign qt=minimum(rt[np])
[5.2:] Execute all the processes with present qt

if(qt>=bt[i])
Execute the processes with present qt
and delete it from Ready Queue as it is
terminated

else
Execute the processes with present qt

if(rbt[i]¡=qt)
Execute the same process again

2



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.6, November 2015

else
Insert the process at the tail of the
Ready Queue
and Go to Step 5

end if
end if

end while
Step 6: Calculate CS, AWT, ATT

Step 7: Stop.

3.3 Illustrative Example
It is considered that the ready queue with 4 processes P1,P2,P3
and P4 arrive at the same time with burst time 10,12,22,30 ms
respectively as given in Table 1.

Table 1. Input table
Process name CPU burst time(ms)

P1 10
P2 12
P3 22
P4 30

3.4 Result analysis
For the above mentioned data set let the time quantum of simple
RR is 10 ms. The Gantt chart of simple RR is given in Fig 2.

p1 p2 p3 p4 p2 p3 p4 p3 p4

0 10 20 30 40 42 52 62 64 74

qt=10

Fig. 2. Gantt Chart of the RR Algorithm

Waiting time of each process is calculated as following:-
P1= 0 ms
P2= 30 ms
P3= 42 ms
P4= 44 ms
Average Waiting Time(AWT)= (0+30+42+44)/4= 29 ms.

Turn Around time of each process is as following:-
P1= 10 ms
P2= 42 ms
P3= 64 ms
P4= 74 ms
Average Turn Around Time(ATT)= (10+42+64+74)/4= 47.5 ms.

Context Switch(CS)=8

The Gantt chart of IRRVQ is given in Fig 3.

p1 p2 p3 p4 p2 p3 p4 p3 p4 p4

0 10 20 30 40 42 44 46 56 66 74

qt=10 qt=2 qt=10 qt=8

Fig. 3. Gantt Chart of the IRRVQ Algorithm

Waiting time of each process is calculated as following:-
P1= 0 ms
P2= 30 ms
P3= 34 ms
P4= 44 ms
Average Waiting Time(AWT)= (0+30+34+44)/4= 27 ms.

Turn Around time of each process is as following:-
P1= 10 ms
P2= 42 ms
P3= 56 ms
P4= 74 ms
Average Turn Around Time(ATT)= (10+42+56+74)/4= 45.5 ms.

Context Switch(CS)=8

The Gantt chart of IARR is given in Fig 4.

p1 p2 p3 p4 p2 p3 p4 p4

0 10 20 30 40 42 54 66 74

qt=10 qt=12 qt=8

Fig. 4. Gantt Chart of the IARR Algorithm

Waiting time of each process is calculated as following:-
P1= 0 ms
P2= 30 ms
P3= 32 ms
P4= 44 ms
Average Waiting Time(AWT)= (0+30+32+44)/4= 26.5 ms.

Turn Around time of each process is as following:-
P1= 10 ms
P2= 42 ms
P3= 54 ms
P4= 74 ms
Average Turn Around Time(ATT)= (10+42+54+74)/4= 45 ms.

Context Switch(CS)=6

The Gantt chart of Proposed Algorithm(EDQRR) is given in Fig 5.

Waiting time of each process is calculated as following:-
P1= 0 ms
P2= 10 ms

3



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.6, November 2015

p1 p2 p2 p3 p4 p3 p4 p4

0 10 20 22 32 42 54 66 74

qt=10 qt=12 qt=8

Fig. 5. Gantt Chart of the proposed Algorithm(EDQRR)

P3= 32 ms
P4= 44 ms
Average Waiting Time(AWT)= (0+10+32+44)/4= 21.5 ms.

Turn Around time of each process is as following:-
P1= 10 ms
P2= 22 ms
P3= 54 ms
P4= 74 ms
Average Turn Around Time(ATT)= (10+22+54+74)/4= 40 ms.

Context Switch(CS)=5

3.5 Comparison
The proposed EDQRR algorithm has been simulated along
with the existing RR,IRRVQ ,IARR for performance comparison
using Dev-C++. The following metrics viz. average waiting
time(AWT),average turnaround time(ATT),number of context
switches(CS) are measured for different time quantum (TQ).The
comparison result of RR,IRRVQ, IARR and our proposed EDQRR
algorithm are shown in Table 2 and Fig. 6.

Table 2. Comparison between RR,IARR,IRRVQ and
proposed EDQRR

Algorithm TQ AWT ATT No. of CS
RR 10 29 47.5 8

IRRVQ 10,2,10,8 27 45.5 8
IARR 10,12,8 26.5 45 6

Proposed(EDQRR) 10,12,8 21.5 40 5

0

10

20

30

40

50

AWT ATT CS

RR

IRRVQ

IARR

EDQRR

Fig. 6. Performance Comparison Chart of RR, IRRVQ, IARR and
proposed EDQRR algorithm

3.6 Conclusion
From the comparison table it can be inferred that the proposed
EDQRR algorithm produces better performance than conventional
fixed quantum Round Robin algorithm,IRRVQ and IARR
algorithm with dynamic time quantum in terms of average
waiting time,average turnaround time and number of context
switching.This approach can be further enhanced considering
different arrival time of processes. In future, this method would
be modified using the other methods of artificial intelligence such
as Fuzzy Logic,Neural Network by the authors.It may improve the
performance of the operating system by using more advanced CPU
scheduling algorithm.

4. REFERENCES
[1] Raja Ram Jaiswal, K.Geetha1, R. Mohan ,“An intelligent

adaptive round robin (IARR) scheduling algorithm for
performance improvment in real time systems”, Proc. of Int.
Conf on Advances in Mechanical Engineering ,AETAME
(ELSEVIER,2013)

[2] Manish Kumar Mishra and Dr. Faizur Rashid,“An improved
round robin cpu scheduling algorithm with varying time
quantum”,International Journal of Computer Science,
Engineering and Applications (IJCSEA) Vol.4, No.4, August
2014

[3] Abraham Silberschatz,Peter Baer Galvin,Greg
Gagne,“Operating Systems Concepts”,Sixth Edition.

[4] William Stallings, “Operating Systems Internals and Design
Principles”,5th Edition,Prentice Hall,(2004)

[5] Nayana Kundargi,Sheetal Bandekar,“Cpu scheduling
algorithm using dynamic time quantum for batch
system”,International Journal of Latest Trends in Engineering
and Technology (IJLTET),ISSN: 2278-621X, Special Issue -
IDEAS-2013

[6] Raman,Dr.Pardeep Kumar Mittal,“An Efficient Dynamic
Round Robin CPU Scheduling Algorithm”,International
Journal of Advanced Research in Computer Science and
Software Engineering,ISSN: 2277 128X,Volume 4, Issue 5,
May 2014

[7] Lipika Datta,“Efficient Round Robin Scheduling Algorithm
with Dynamic Time Slice”,I.J. Education and Management
Engineering, 2015, 2, 10-19

[8] Vishnu Kumar Dhakad, Lokesh Sharma,“Performance analysis
of round robin scheduling using adaptive approach based on
smart time slice and comparison with SRR”, International
Journal of Advances in Engineering & Technology,ISSN:
2231-1963,Vol. 3, Issue 2, pp. 333-339, May 2012.

[9] Abbas Noon, Ali Kalakech, Seifedine Kadry,“A New
Round Robin Based Scheduling Algorithm for Operating
ystems: Dynamic Quantum Using the Mean Average”,IJCSI
International Journal of Computer Science Issues, Vol. 8, Issue
3, No. 1, May 2011 ISSN (Online): 1694-0814

[10] Saroj Hiranwal, Dr. K.C. Roy,“Adaptive Round Robin
Scheduling using Shortest Burst Approach Based on Smart
Time Slice”,International Journal of Computer Science and
Communication Vol. 2, No. 2, July-December 2011, pp.
319-323

4



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.6, November 2015

[11] Pallab Banerjee, Probal Banerjee, Shweta Sonali
Dhal,“Comparative Performance Analysis of Average
Max Round Robin Scheduling Algorithm (AMRR) using
Dynamic Time Quantum with Round Robin Scheduling
Algorithm using static Time Quantum”,International Journal
of Innovative Technology and Exploring Engineering (IJITEE)
ISSN: 2278-3075, Volume-1, Issue-3, August 2012

5


	Introduction
	Performance Criteria
	CPU Scheduling Algorithm

	Related Works
	Proposed work
	Flow Chart
	Algorithm
	Illustrative Example
	Result analysis
	Comparison
	Conclusion

	References

