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ABSTRACT 
QSAR(Quantitative Structure Activity Relationship) studies 

were carried out on a set of 72 α-sulfone hydroxamatesas 

Matrix Metalloproteinase-13 (MMP-13) inhibitors using 

multiple regression procedure. Outliers were removed based 

on Relative Error calculation and Extent of Extrapolation. The 

activity contributions of these compounds were determined 

from regression equation and the validation procedures such 

as external set cross-validation r2, (R2
cv, ext) and the regression 

of observed activities versus predicted activities and vice 

versa for validation set was described to analyze the 

predictive ability of the QSAR model. Parameters concerning 

predictive ability of QSAR model and Y-randomization tests 

were found to be within the limits. From a set of 5 models, an 

accurate and reliable QSAR model involving six descriptors 

was chosen based on the FIT Kubinyi function, which defines 

the statistical quality of the model. The generated model could 

be useful in designing more potent inhibitors of MMP-13. 

Keywords  
α-sulfone hydroxamates, QSAR, 

 Multiple regression, Cross validation, Outliers, 

FIT Kubinyi, descriptors, MMP-13. 

1. INTRODUCTION 
Matrix metalloproteinases (MMPs) belong to the metzinc in 

super family (i.e.) they bind zinc at the catalytic site and have 

a conserved 'Met-turn' motif. Matrix metalloproteinase 

(MMPs) play an important role in the tissue modeling and 

remodeling of the extra cellular matrix in both physiologic 

and pathologic states and thus plays an important role in 

tumor progression[1,2]. Matrix metalloproteinases are 

structurally similar, but differ in substrate specificity, in that 

each MMP has the ability to degrade particular subset of 

matrix proteins[3]. Abnormal activity of these enzymes has 

been related to a variety of pathologic processes, involving 

metastasis, angiogenesis, cardiovascular disease, 

osteoarthritis, and rheumatoid arthritis[4]. The development of 

potent subclass selective inhibitors of these enzymes has been 

challenging, and they rely on a small number of zinc binding 

motifs [5]. 

MMP inhibitors may bind to members of the structurally-

related ADAMs family (A Disintegrin and Metalloprotease) 

[6] , leading to undesired joint effects. Therefore, an 

alternative approach to design selective MMP inhibitors with 

reduced side effects is to optimize the inhibition of the single 

MMP isozymes that should confer the most therapeutic 

benefit, reducing the probability of off-target protease 

inhibition [7].MMP-13 is an attractive isozyme to pursue; 

MMP-13 rapidly degrades type II collagen and is associated 

with pathology. The isozyme is upregulated in osteoarthritis 

joints and in cancer[8].  

Therefore in search of potent MMP-13 inhibitors, a novel 

series of various α-sulfone hydroxamates reported in three 

papers[9] were considered to perform structure-activity 

relationship (SAR) studies as they delineate the structural 

requirements for potency of inhibitors. QSAR studies have 

been investigated on the basis of the fact that the biological 

activity of the compound is a function of its physicochemical 

properties. From literature it was observed that several 

attempts were made to build QSAR models of various 

nonzinc chelating compounds[10], piperazine analogs[11], 

carboxylic acid based compounds[12],N-hydroxy-a-

phenylsulfony-l acetamide[13] and docking based QSAR [14] 

studies were reported. Moreover, none of the QSAR studies 

reported on α-sulfone hydroxamate analogs that covered two 

or more different kinds of ligands. Hence, a QSAR study on 

ligands with observable structure diversity, if possible, will 

definitely lead to more universal and robust QSAR models for 

designing novel compounds against MMP-13. 

To address such powerful models covering different types of 

ligands, here, we report QSAR studies on 57 α-sulfone 

hydroxamate analogs, respectively, to investigate the 

influence of molecular structure on biological activity.  

2. METHODS 

2.1 Data set 
A set of 72 compounds biological data[15,16]reported in 

literature were utilized to obtain a reliable and robust QSAR 

model. The inhibitory activities of these derivatives reported 

in terms of IC50 concentration values and their structures 

along with bioactivities are given in Table 1. The structures 

were sketched using ISIS Draw 2.3 (www\\mdli.com) 

software and the descriptors were calculated using Tsar 

Software.  

2.2 Multivariate Regression Analysis 
QSAR models were constructed on complete and training 

sets, respectively Validation was done internally using leave-

one-out (LOO) technique and dependent variable (log1/IC50) 

and independent variables was established by linear multiple 

regression analysis. Significant descriptors were chosen based 

on the statistical data of analysis. The Generated QSAR 

equation on the parameters like correlation coefficient (r),  

Standard error of estimate externally by predicting the 

activities of validation set. The relationship between (s), F-

value,Cross-validation r2 (q2) and predictive residual sum of 

squares (PRESS). Cross-validation was calculated using 

leave-one-out (LOO) technique over 2 random trials with F to 

leave and F to enter being 2 in F stepping to include the most 

http://www.mdli.com/
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significant variables in generating the QSAR model. 

2.3 Cross-validation 
Cross-validation is a popular technique used to test the 

reliability of QSAR models. In this study, leave-one-out 

(LOO) technique was utilized to create a number of modified 

data sets by deleting the first row and its value predicted using 

the rest of the data. Likewise, each row is left in turn, so that 

the value of each row is predicted from all others. 

2.4 Molecular Descriptors 
Forty molecular descriptors were selected in the study: 

topological shape and connectivity indices, total dipole and 

lipole, molecular weight, h-bond donors,h-bond acceptors, 

logP and rotatable bondcounts. A semi-empirical molecular 

orbital package was used to calculate thermodynamic property 

like heat of formation and electrostatic properties like HOMO 

(Highest Occupied Molecular Orbital), LUMO (Lowest 

Unoccupied  

Molecular Orbital) components. 

 

2.5 Predictive Ability of     

     QSAR model 
Predictive ability of the generated model was estimated 

externally by predicting the activities of validation set. This 

criterion may not be sufficient for a QSAR model to be truly 

predictive[17]. An additional condition for high predictive 

ability of QSAR model is based on external set cross-

validation r2, (R2
cv,ext) and the regression of observed activities 

against predicted activities and vice versa for validation set, if 

the following conditions are satisfied[18].Calculations relating 

to R2
cv,ext, R0

2 and the slopes, k and k’ are based on regression 

of observed values against predicted values and vice versa.   

  R2
cv,ext  >   0.5            (1) 

  R2    >   0.6              (2)          

(R2 – R0
2) / R2 < 0.1 or  (R2 – R0’

2) / R2 < 0.1(3) 

0.85 ≤ k ≤ 1.15 or 0.85 ≤ k’ ≤ 1.15        (4) 

2.6 Y-randomization    
This test ensures the robustness of a QSAR model[19] and to 

assess the multiple linear regression models obtained by 

descriptor selection[20]. In y-randomization test, the dependent 

variable or y-data is randomly shuffled and a new QSAR 

model is developed keeping X-data intact. The new models 

are expected to have low R2 and Q2 values, which determine 

the statistical significance of the original model. 

 

 

Table 2. Logarithmic molar concentration values of training and validation sets and descriptor values of the proposed QSAR 

model (Eq. 8) 

ID 
Activity 

log(1/IC50) 

Trainin

g Set b 

log (1/ 

IC50) 

Validation 

Set c Log  

(1/ IC50) 

Total 

Lipole 

Lipole Z 

Compon

ent 

KAlph

a2 

index 

6-

membere

d 

aromatic 

rings 

Rotata

ble 

Bonds 

LU

MO 

1
 a 

-0.23  

-0.394 19.906 -4.881 9.154 2 5 

-

0.91

0 

2 a 

-0.431  

-0.472 20.285 -5.385 9.340 2 5 

-

0.90

5 

3 a 

-0.886  

-0.981 21.600 3.085 9.383 2 5 

-

0.88

5 

4 

-0.954 -0.752 

 22.490 -3.570 9.562 2 5 

-

0.88

9 

5 

-0.903 -0.922 

 16.415 3.701 9.979 2 6 

-

0.89

7 

6 

-1.301 -1.166 

 27.389 5.609 9.955 2 5 

-

1.00

0 

7 

-0.279 -0.580 

 23.407 -5.599 9.383 2 5 

-

0.90

0 

8 

-1.456 -1.187 

 24.581 3.118 9.615 2 5 

-

0.87

5 

9 

-0.778 -1.007 

 23.598 2.777 9.178 2 5 

-

0.86

1 

10 -1.243 -1.234  20.466 2.165 10.004 2 6 -

0.80
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5 

11 

-1.628 -1.220 

 26.038 2.613 9.587 2 5 

-

0.86

5 

12 

-1.515 -1.070 

 24.846 1.037 9.408 2 5 

-

0.85

5 

13 

a 

-1.459  

-1.411 28.326 3.205 9.979 2 5 

-

0.88

6 

14 

-1.544 -1.355 

 21.553 1.782 10.637 2 7 

-

0.80

3 

15 

-1.053 -1.175 

 21.035 3.062 9.383 2 5 

-

0.81

1 

16 

-1.528 -1.322 

 32.211 3.530 11.037 3 6 

-

0.86

5 

17 

-1.057 -0.854 

 30.110 1.962 9.794 3 5 

-

0.85

9 

18 

-0.845 -1.246 

 20.586 2.928 10.231 2 6 

-

0.84

7 

19 

-1.041 -1.322 

 19.134 -2.081 11.472 2 8 

-

0.79

4 

20 

-1.057 -1.351 

 18.971 -1.883 11.472 2 8 

-

0.78

5 

21 

-1.845 -1.497 

 26.511 -2.201 11.083 2 7 

-

0.79

9 

22 

-0.519 -0.638 

 18.081 -2.539 9.485 2 6 

-

0.83

9 

23 

-0.38 -0.900 

 27.671 -2.401 10.323 2 6 

-

0.96

2 

24 

-0.204 -0.323 

 16.206 -2.971 11.952 2 10 

-

1.06

3 

25 

0.18 0.045 

 38.120 -21.711 12.216 2 10 

-

1.13

1 

26 

-0.903 -0.820 

 27.448 5.135 11.304 2 9 

-

1.09

2 

27 

-0.914 -1.162 

 18.328 1.880 11.442 1 9 

-

1.04

2 

28 

-0.914 -0.891 

 23.086 2.945 11.442 1 11 

-

1.09

3 

29 

0.523 0.237 

 15.462 -9.420 11.757 2 10 

-

1.11

8 

30 

0.699 0.429 

 38.125 -27.091 12.216 2 10 

-

1.17

7 
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31 

-0.519 0.032 

 36.924 -21.541 12.424 2 10 

-

1.14

8 

32 

-0.255 0.075 

 15.425 -13.068 12.638 2 11 

-

1.07

2 

33 

a 

-0.954  

-1.063 21.740 -11.868 12.563 2 9 

-

0.85

0 

34 

a 

-1.389  

-1.081 5.881 -0.332 10.208 1 7 

-

0.84

5 

35 

-1.301 -1.143 

 12.108 -1.999 11.562 2 8 

-

0.80

3 

36 

-0.954 -1.343 

 19.879 0.714 10.720 2 5 

-

0.89

4 

37 

-0.792 -1.306 

 13.839 -3.765 12.359 2 7 

-

0.90

1 

38 

-1.699 -1.957 

 17.552 -9.589 12.844 1 8 

-

0.82

0 

39 

-1.258 -1.190 

 8.401 -5.347 10.714 1 5 

-

0.92

8 

40 

-1.699 -1.591 

 3.026 2.421 11.133 1 5 

-

0.92

4 

41 

-1.447 -1.262 

 9.714 -7.971 11.342 1 6 

-

0.90

8 

42 

-1.653 -1.548 

 3.120 -1.597 12.391 1 8 

-

0.89

2 

43 

-1.4 -0.937 

 25.927 -22.148 13.202 2 8 

-

0.91

0 

44 

-1.602 -1.504 

 3.282 2.177 11.737 1 7 

-

0.93

2 

45 

-1.954 -1.621 

 4.854 -2.314 12.603 1 8 

-

0.90

2 

46 

-0.826 -0.852 

 20.113 -17.776 12.112 2 6 

-

0.90

8 

47 

-1.255 -1.125 

 16.936 -13.444 12.758 2 7 

-

0.89

2 

48 

-0.778 -0.887 

 20.803 -16.085 12.112 2 6 

-

0.93

0 

49 

-0.826 -0.973 

 10.788 -8.581 12.801 2 7 

-

0.97

2 

50 

-1.086 -0.873 

 27.407 -24.006 12.384 2 6 

-

0.90

7 

51 -1.029 -1.259  19.834 -10.226 12.136 2 6 -

0.89
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1 

52 

-0.806 -1.207 

 10.721 -6.161 12.345 2 6 

-

0.91

8 

53 

-1.477 -0.997 

 10.673 -6.020 12.136 2 6 

-

0.96

4 

54 

-1.428 -1.186 

 10.453 -5.633 12.345 2 6 

-

0.93

2 

55 

-0.602 -1.198 

 27.193 -16.613 12.384 2 6 

-

0.91

3 

56 

-1.442 -1.368 

 23.283 -15.301 12.708 2 7 

-

0.82

9 

57 

-1.845 -1.866 

 31.953 -17.031 14.475 2 9 

-

0.85

5 

a Validation set molecules.  

b Calculated values from Equation 8 

c Predicted values from Equation 8 

3. RESULTS AND DISCUSSION 

3.1 Complete Data set 
Multivariate regression analysis with F stepping (F to enter 

and F to leave being 2) and cross-validation by leaving-out-

one row, to test the predictive power, resulted in inertia 

moments, lipole components, shape flexibility and 6-

membered rings as the most significant descriptors. Equation 

5 represents the linear QSAR model from a complete set of 72 

inhibitors. 

log (1/IC50)= 0.78127909*Inertia Moment 1 Size 

+ 1.0273268*Inertia Moment 1 Length 

- 0.19030687*Total Lipole 

- 0.12560831*Lipole X component 

- 0.22934534*Lipole Z component 

- 0.81264067*Shape Flexibility 

- 0.67134702*Randic Topological ndex 

- 0.1585972*6-membered aliphaticrings 

- 0.83904165 

r =0.839, r2 = 0.705, q2 =0.60, F = 18.798, n = 72, s = 0.398

   (5) 

3.2 Outlier Detection 
The criterion for removing outliers is based on Relative Error 

calculation and Extent of Extrapolation. 

3.3 Relative  Error calculation 
This method was employed to calculate the relative error (Eq. 

6) of all compounds in the data set. From Table 3, it cannot be 

stated that the model predicted wrongly for the highlighted 

compounds, instead it can be emphasized that the model 

prediction led to a high relative error for compounds 8, 12, 15, 

29-30, 36-38, 42, 44-45 and 52 (Table 3) and hence these 

compounds should be excluded from the study as they 

influence the outcome in a significant manner.  

Relative Error= Residual Value / Actual Value(6)  

 

 

Table 3. Relative error calculation on complete data set. Compounds 5 and 40 are regarded as outliers based on extent of 

extrapolation graph. Remaining compounds 8, 12, 15, 29-30, 36-38, 42, 44-45 and 52 are disregarded from analysis. 

S. No. Compound No. Actual 

Value 

Predicted 

Value 

Residual 

Value 

Relative 

Error 

1 2_2a.mol -0.230 -0.391 0.161 -0.701 

2 2_2b.mol -0.431 -0.662 0.231 -0.536 

3 2_2c.mol -0.886 -0.916 0.030 -0.033 

4 2_2d.mol -0.954 -0.796 -0.158 0.166 

5 2_2e.mol -2.114 -1.202 -0.912 0.431 

6 2_2f.mol -0.903 -0.913 0.010 -0.011 

7 2_2g.mol -1.301 -1.051 -0.250 0.192 

8 2_2h.mol 0.201 -0.478 0.679 3.376 
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9 2_2i.mol -0.279 -0.475 0.196 -0.702 

10 2_2j.mol -1.456 -1.060 -0.396 0.272 

11 2_2l.mol 0.222 -0.471 0.693 3.120 

12 2_2m.mol 0.000 -0.325 0.325 - 

13 2_3a.mol -0.778 -0.818 0.040 -0.052 

14 2_3b.mol -1.243 -1.275 0.032 -0.025 

15 2_3c.mol 0.155 -0.615 0.770 4.966 

16 2_3d.mol -1.628 -1.037 -0.591 0.363 

17 2_3e.mol -1.515 -0.964 -0.551 0.364 

18 2_3f.mol -1.459 -1.532 0.073 -0.050 

19 2_3g.mol -1.544 -1.224 -0.320 0.207 

20 2_3h.mol -1.053 -0.913 -0.140 0.133 

21 2_3i.mol -1.528 -1.414 -0.114 0.074 

22 2_3j.mol -1.057 -0.765 -0.292 0.276 

23 2_3k.mol -0.845 -0.900 0.055 -0.065 

24 2_3l.mol -1.041 -1.442 0.401 -0.385 

25 2_3m.mol -1.057 -1.319 0.262 -0.248 

26 2_3n.mol -1.845 -1.390 -0.455 0.247 

27 2_8a.mol -0.519 -0.275 -0.244 0.470 

28 2_8b.mol -0.380 -0.117 -0.263 0.691 

29 2_8c.mol 0.377 -0.162 0.539 1.429 

30 3_12a.mol -0.204 -0.417 0.213 -1.045 

31 3_12b.mol -0.204 -0.210 0.006 -0.031 

32 3_12c.mol 0.180 0.360 -0.180 -0.999 

33 3_12d.mol -0.903 -0.869 -0.034 0.038 

34 3_12e.mol -0.914 -0.912 -0.002 0.003 

35 3_12f.mol -0.914 -1.089 0.175 -0.191 

36 3_13.mol 0.046 -0.281 0.327 7.107 

37 3_14.mol 0.699 -0.132 0.831 1.188 

38 3_15a.mol -0.230 0.462 -0.692 3.009 

39 3_15b.mol 0.523 0.506 0.017 0.033 

40 3_15c.mol 0.699 1.156 -0.457 -0.654 

41 3_15d.mol -0.519 -0.367 -0.152 0.292 

42 3_15e.mol -0.079 -0.569 0.490 -6.197 

43 3_16.mol -0.255 -0.208 -0.047 0.185 

44 3_17.mol 0.046 0.409 -0.363 -7.895 

45 3_3a.mol 0.398 -0.172 0.570 1.432 

46 4a_1.mol -1.544 -1.133 -0.411 0.266 

47 4aa_1.mol -0.954 -1.128 0.174 -0.183 

48 4b_1.mol -1.389 -0.974 -0.415 0.299 
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49 4c_1.mol -1.301 -1.227 -0.074 0.057 

50 4d_1.mol -0.954 -1.072 0.118 -0.124 

51 4e_1.mol -0.792 -0.921 0.129 -0.162 

52 4f_1.mol -0.643 -1.443 0.800 -1.245 

53 4g_1.mol -1.699 -1.869 0.170 -0.100 

54 4h_1.mol -1.258 -1.333 0.075 -0.060 

55 4i_1.mol -1.699 -1.319 -0.380 0.224 

56 4j_1.mol -1.447 -1.063 -0.384 0.265 

57 4k_1.mol -1.653 -1.495 -0.158 0.096 

58 4l_1.mol -1.400 -1.136 -0.264 0.189 

59 4m_1.mol -1.602 -1.527 -0.075 0.047 

60 4n_1.mol -1.954 -1.260 -0.694 0.355 

61 4o_1.mol -0.826 -1.042 0.216 -0.262 

62 4p_1.mol -1.255 -1.482 0.227 -0.181 

63 4q_1.mol -0.778 -0.849 0.071 -0.091 

64 4r_1.mol -0.826 -1.000 0.174 -0.211 

65 4s_1.mol -1.086 -0.971 -0.115 0.106 

66 4t_1.mol -1.029 -1.051 0.022 -0.021 

67 4u_1.mol -0.806 -1.286 0.480 -0.595 

68 4v_1.mol -1.477 -0.918 -0.559 0.379 

69 4w_1.mol -1.428 -1.345 -0.083 0.058 

70 4x_1.mol -0.602 -1.151 0.549 -0.912 

71 4y_1.mol -1.442 -1.114 -0.328 0.228 

72 4z_1.mol -1.845 -2.068 0.223 -0.121 

 

3.4 Extent of  Extrapolation 
Outliers should be removed in order to obtain the best 

statistical result[21]. After employing relative error calculation, 

the data set was selected to plot extent of extrapolation graph 

plotted using MedCalc software 

Fig 1: Extent of extrapolation graph displaying 

compounds (5 )and (40) as outliers 

Middle Dark line: regression line 

Dotted lines: 95% confidence level 

Solid lines: 95% prediction level 

From the above graph, it is evidenced that all values lie within 

95% prediction levels, whereas compounds (5) and (40) fall 

outside the region. After extrapolation of regression line 

further, it was observed that the predicted activities for some 

of the target compounds would fall within 95% prediction 

level.  

3.5 QSAR Model 
A new QSAR model was attempted by dividing the set as a 57 

molecule training set and a 6 molecule validation set (Table 2) 

based on hierarchical clustering after rejecting outliers from 

the data set. More specifically, the selection of molecules in 

the training set was made according to the biological action 

and molecular structure; so that representatives of a wide 

range of structures with different substituents and activity 

were included. The distribution of  

activity values for the validation set follows the similar 

distribution of the activity values for the training set. The 

results obtained from the multiple linear regression procedure 

with varied number of descriptors are shown in Table 4 with 

their statistics. Table 5 represents the predictive ability of all 

newly generated models. Given below are a set of 5 different 

models obtained and are statistically significant (Table 4).
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-3 -2 -1 0 1 2 3
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Table 4. Descriptor data and statistical values of model equations. 

Descriptor Coefficient 

Model-1 Model-2 Model-3 Model-4 Model-5 

Total Lipole -0.014 -0.027 -0.028 +0.065  

Lipole Z 

Component 

-0.041 -0.047 -0.046  -0.042 

Kier ChiV2 

(path) index 

-0.701 - -   

Kier ChiV3 

(cluster) index 

+1.845 - -   

Balaban 

Topological 

index 

-3.984 - -   

Number of Cl 

Atoms 

-0.341 - -   

6-membered 

aliphatic rings 

-0.390 - -   

H-bond 

Donors 

+0.376 - -  +0.223 

KAlpha2 

index 

- -0.408 -0.404   

6-membered 

aromatic rings 

- +0.548 +0.594 +0.208 +0.234 

Rotatable 

Bonds 

- + 0.153 +0.147 +0.249 +0.221 

LUMO - -2.84 -3.017 -3.735 -3.560 

Dipole 

Moment Z 

Component 

   -0.042 +0.061 

Shape 

Flexibility 

   -0.763 -0.730 

H-bond 

Acceptors 

   +0.212 +0.193 

HOMO    +0.262 +0.264 

Constant +7.916 -0.795 -1.012 +0.216 -0.188 

Statistics   

r 0.858 0.868 0.864 0.895 0.899 

r2 0.737 0.755 0.747 0.802 0.809 

q2 0.602 0.798 0.934 0.936 0.879 

F 14.75 22.61 21.76 21.36 19.31 

n 51 51 51 51 51 

PRESS 4.307 4.035 3.915 3.338 3.188 

s 0.663 0.302 0.298 0.281 0.278 

No. of 

Descriptors 

8 6 6 8 9 

Equation No. 7 8 9 10 11 
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Table 5. Predictive ability of validation sets for all 5 equations obtained as models. 

Var
a
 R

2
cv,ext (q

2
) R

2
 k k’ Eq

b
 Eq

c
 

8 0.602 0.737 1.040 0.960 0.003 0.0003 

6 0.798 0.755 0.989 1.010 0.092 0.027 

6 0.934 0.747 1.014 0.985 0.007 0.003 

8 0.936 0.802 1.074 0.988 0.064 0.019 

9 0.879 0.809 0.906 1.103 0.038 0.008 

  a
 number of significant variables 

 b (R2 – R0
2) / R2 

 c (R2 – R0’
2) / R2 

     

3.6 FIT Kubinyi function 
To define the statistical quality of activity prediction, the 

number of variables that enter in a QSAR model are compared 

by FIT Kubinyi function (Eq. 9), a criteria closely related to F 

value was proven to be useful[22].
 

The main feature of the F value is its sensitivity to changes in 

k, if k is small and its lower sensitivity if k is large. The FIT 

criterion has a low sensitivity towards changes in k values, as 

long as they are small numbers, and a substantially increasing 

sensitivity for large k values [23]. 

FIT = R
2 
(n – k – 1) / (n + k

2
) (1 – R

2
)    (9) 

Where n is the number of compounds in training set and k is 

the number of variables in the QSAR equation. The best 

model will be the one that posses a high value of this function. 

 

Table 6. Statistical parameters of the regression models obtained for all QSAR models. 

Eq No. r
2
 k n FIT 

7 0.737 8 51 1.026 

8 0.751 6 51 1.558 

9 0.747 6 51 1.500 

10 0.802 8 51 1.485 

11 0.809 9 51 1.316 

 
According to the statistical values of the models reported in 

Table 6, we choose the model with six variables since this 

showed high FIT than others. The observed, calculated and 

predicted values of the statistically significant six parameter 

QSAR model (Eq.8)is presented inTable 4. 

Equation 8 accounts for the significant correlation of 

descriptors with biological activity and displayed good 

internal predictivity as shown by q2 value of 0.798 and was 

able to explain 75.5 % variance of inhibitory activities of 

derivatives. Observed verses predicted values of molecules in 

training and validation set are shown graphically in Figure 2a. 

 The proposed QSAR model Eq. 8 illustrated the predictive 

ability of Eqs. 1-4 and depicted graphically in Figures 2b and 

2c. 

 

Fig  2a : Observed and predicted values of molecules in 

training and validation set 

 

Fig 2b: Regression plot between observed vs.         

predicted values of compounds from validation set 

justifying the predictive ability of QSAR model Eq.8 

The model was further validated by applying the y-

randomization test. As the    low R2 and Q2 values indicate 

that the results obtained in our original model (Eq. 8) are not 

due to chance correlation. 
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Fig 2c: Regression plot between predicted vs.observed 

values of compounds from validation set  justifying the 

predictive ability of QSAR model Eq.8 

The model was further validated by applying the y-

randomization test. As a model selection included F-stepping 

,random shuffles of the dependent as well as independent 

variables were performed and the result are shown in Table 

7.The low R2 and Q2 values indicate that the results obtained 

in our original model(Eq.8) are not due to chance correlation 

  

 

 

 

 

 

 

 

Table 7. R
2
 and Q

2
 values after several y-randomization tests 

Iteration R2 Q2  Iteration R2 Q2 

1 0.28 0.12  11 0.15 0.41 

2 0.25 0.22  12 0.24 0.22 

3 0.15 0.33  13 0.26 0.10 

4 0.38 0.25  14 0.12 0.38 

5 0.11 0.12  15 0.35 0.24 

6 0.14 0.11  16 0.28 0.41 

7 0.29 0.33  17 0.18 0.34 

8 0.21 0.38  18 0.44 0.14 

9 0.28 0.31  19 0.17 0.11 

10 0.10 0.45  20 0.09 0.15 

 

Table 8. Inter-correlation between descriptors utilized in generating QSAR model eq. 8 

 
Total 

Lipole 

Lipole Z 

Component 

KAlpha2 

index 

6-membered 

aromatic 

rings 

Rotatable 

Bonds 
LUMO 

Total Lipole 1 -0.297 -0.095 0.605 0.104 -0.218 

Lipole Z 

Component 
-0.297 1 -0.660 -0.087 -0.389 0.337 

KAlpha2 index -0.095 -0.660 1 -0.158 0.629 -0.267 

6-membered 

aromatic 

rings 

0.605 -0.087 -0.158 1 -0.188 0.097 

Rotatable Bonds 0.104 -0.389 0.629 -0.188 1 -0.572 

LUMO -0.218 0.337 -0.267 0.097 -0.572 1 

Inter-correlation between descriptors utilized in developing 

QSAR model (Eq. 8) is given in Table 8. From the table it is 

well known that the descriptors appeared in the final model 

are not highly inter-correlated. 

The generated QSAR model (Eq. 8) indicates that a high 

value of LUMO energy contributes negatively to the 

activity.Electron-withdrawing substituent, such as halogens, 

lower the energy of LUMO. Molecules with low-lying 

LUMOs have greater tendencies to accept electrons than those 

with high-energy LUMOs. As LUMO increases (relative to 

other molecules) the molecule becomes less reactive[20]. Thus, 

designing analogs with electron-withdrawing substituents 

should improve activity.  From equation 8 it can be observed 

that an increase in 6-membered aromatic rings would enhance 

MMP-13 inhibition. Most of the studied inhibitors contain 

Validation Set
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linear aliphatic groups and have the tendency to rotate the 

compound within the active site region. Positive correlation of 

rotatable bonds term with activity indicates more the number 

of such groups in the molecule, more active it would be. On 

the other hand, reduction of lipophilic character on the 

compounds would increase bioactivity. 

4. CONCLUSION 
Out of five QSAR models generated on the data set with 

reasonable chemical diversity demonstrated eq.8 to be a 

promising method and the six descriptors [Total Lipole, 

Lipole Z Component, KAlpha2 index,6-membered aromatic 

rings, Rotatable Bonds and LUMO] were found to be 

important in enhancing MMP-13 inhibition. The predictive 

ability of the model and the internal and external validation 

procedures illustrated the accuracy on one hand and offered a 

useful alternative to the time consuming experiments for 

MMP-13 inhibition, on the other. Considering the advantages 

of QSAR techniques, this work indicates that accurate 

predictions can be achieved with computational analysis in a 

reliable manner and we plan to extend the procedure 

presented here to perform docking of MMP-13 inhibitors, and 

moreover, experimental evaluation of their biological 

activities would help in designing more potent compounds. 
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6. APPENDIX 
Table 1. Structures and biological activities of α-sulfone hydroxamate derivatives as MMP-13 inhibitors. 

 

ID X NR
1
R

2
 IC50 (nM) Log 1/IC50 

1 O Allyl(methyl)amino  35.0 -1.544 

2 O Methyl(prop-2-ynyl)amino  24.5 -1.389 

3 N-cyclopropyl Benzyl(methyl)amino 20.0 -1.301 

4 O 3,4-Dihydroisoquinolin-2(1H)-yl 9.0 -0.954 

5 

O 6,7-Dimethoxy-3,4-

dihydroisoquinolin-2(1H)-yl  6.2 -0.792 

6 O 3,5-Dimethylpiperidin-1-yl 4.4 -0.643 

7 N-CH2CH2OMe 3,5-dimethylpiperidin-1-yl 50.0 -1.699 

8 O cis-2,6-Dimethylmorpholin-4-yl  18.1 -1.258 

9 O 4-Acetylpiperazin-1-yl 50.0 -1.699 

10 O 4-Isopropylpiperazin-1-yl 28.0 -1.447 

11 

O 4-(2-Methoxyethyl)piperazin-1-

yl  45.0 -1.653 

12 O 4-Phenethylpiperazin-1-yl 25.4 -1.405 

13 

O 4-(2-Hydroxyethyl)piperazin-1-

yl 40.0 -1.602 

14 

O 4-(2-

(Dimethylamino)ethyl)piperazin-

1-yl  90.0 -1.954 

15 

O 4-(2-Fluorophenyl)piperazin-1-

yl 6.7 -0.826 

16 

O 4-(2-Methoxyphenyl)piperazin-

1-yl  18.0 -1.255 

17 

O 4-(4-Fluorophenyl)piperazin-1-

yl 6.0 -0.778 

18 

O 4-(4-Acetylphenyl)piperazin-1-

yl 6.7 -0.826 

19 

O 4-(2,4-

Dimethylphenyl)piperazin-1-yl  12.2 -1.086 

20 O 4-(Pyridin-2-yl)piperazin-1-yl 10.7 -1.029 

21 

O 4-(Pyrimidin-2-yl)piperazin-1-

yl)  6.4 -0.806 

22 O 4-(Pyridin-4-yl)piperazin-1-yl 30.0 -1.477 

23 O 4-(Pyrazin-2-yl)piperazin-1-yl 26.8 -1.428 

 

24 O - 4.0 -0.602 
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25 N-Cyclopropyl - 27.7 -1.442 

26 NCH2CH2OMe - 70 -1.845 

 

27 NCH2CH2OMe - 9.0 -0.954 

 

 X R IC50 (nM) Log 1/IC50 

28 O H 1.7 -0.230 

29 O 2-F 2.7 -0.431 

30 O 2-Me 7.7 -0.886 

31 O 2-Cl 9.0 -0.954 

32 O 2-MeO 130 -2.114 

33 O 3-MeO 8.0 -0.903 

34 O 3-CF3 20 -1.301 

35 O 4-MeO 0.63 0.201 

36 O 4-Me 1.9 -0.279 

37 O 2,4-diMe 28.6 -1.456 

38 N-cPr H 3.3 -0.519 

39 N-cPr 4-CF3 2.4 -0.380 

 

 R
1
 R

2
 IC50 (nM) Log 1/IC50 

40 H H 6.0 -0.778 

41 MeO H 17.5 -1.243 

42 H 4-Cl 0.7 0.155 

43 Cl H 42.5 -1.628 

44 Me H 32.7 -1.515 

45 CF3 H 28.8 -1.459 

46 EtO H 35.0 -1.544 

47 OH H 11.3 -1.053 

48 4-F-C6H4 H 33.7 -1.528 

49 2,3-(CH=CH) naphthyl  11.4 -1.057 

50 Me 4-MeO 7.0 -0.845 

51 MeO 4-diMeO 11.0 -1.041 

52 MeO 5-diMeO 11.4 -1.057 

53 MeO 5-iPr 70 -1.845 
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 X R
1
 IC50 (nM) Log 1/IC50 

54 O CF3 0.6 0.222 

55 O CL 1.0 0.000 

56 cPr-N OCH3 0.42 0.377 

 

 n Y IC50 (nM) Log 1/IC50 

57 

4 

 

0.4 
0.398 

58 
3 

 

1.6 
-0.204 

59 
3 

 
1.6 -0.204 

60 

3 

 

0.66 
0.180 

61 

3 

 

8.0 
-0.903 

62 

3 

 

8.2 
-0.914 

63 

3 

 

8.2 
-0.914 

64 
2 

 
0.9 0.046 

65 
3 

 
0.2 0.699 

66 
3 

 
1.7 -0.230 

67 
3 

 

0.3 
0.523 

68 

3 

 

0.2 
0.699 

69 
3 

 

3.3 
-0.519 

70 

3 

 

1.2 
-0.079 

71 
4 

 

1.8 
-0.255 

72 4 
 

0.9 0.046 
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