
International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Some Theorems for Feed Forward Neural Networks

K. Eswaran
Department of Computer Science and Engineering,

Sreenidhi Institute of Science and Technology,
Jawaharlal Nehru University,

Yamnampet, Ghatkesar, Hyderabad
Telangana, 501301 INDIA

Vishwajeet Singh
Data Science Group,

Altech Power and Energy Systems,
Villa Springs, Kowkur Bolarum
Secunderabad,500010 INDIA

ABSTRACT
This paper introduces a new method which employs the concept
of “Orientation Vectors” to train a feed forward neural network. It
is shown that this method is suitable for problems where large di-
mensions are involved and the clusters are characteristically sparse.
For such cases, the new method is not NP hard as the problem
size increases. We ‘derive’ the present technique by starting from
Kolmogrov’s method and then relax some of the stringent condi-
tions. It is shown that for most classification problems three lay-
ers are sufficient and the number of processing elements in the
first layer depends on the number of clusters in the feature space.
This paper explicitly demonstrates that for large dimension space
as the number of clusters increase from N to N+dN the number
of processing elements in the first layer only increases by d(logN),
and as the number of classes increase, the processing elements in-
crease only proportionately, thus demonstrating that the method is
not NP hard with increase in problem size. Many examples have
been explicitly solved and it has been demonstrated through them
that the method of Orientation Vectors requires much less com-
putational effort than Radial Basis Function methods and other
techniques wherein distance computations are required, in fact the
present method increases logarithmically with problem size com-
pared to the Radial Basis Function method and the other meth-
ods which depend on distance computations e.g statistical methods
where probabilistic distances are calculated. A practical method of
applying the concept of Occum’s razor to choose between two ar-
chitectures which solve the same classification problem has been
described. The ramifications of the above findings on the field of
Deep Learning have also been briefly investigated and we have
found that it directly leads to the existence of certain types of NN
architectures which can be used as a “mapping engine”, which
has the property of “invertibility”, thus improving the prospect of
their deployment for solving problems involving Deep Learning
and hierarchical classification. The latter possibility has a lot of fu-
ture scope in the areas of machine learning and cloud computing.

General Terms
Artificial Intelligence, Machine Learning

Keywords
Neural Networks, Neural Architecture, Deep Learning, Orientation
Vector, Kolmogorov

1. INTRODUCTION
A typical classification or pattern recognition problem involves a
multi-dimensional feature space. Features are variables: they can
be, for example in a medical data, blood pressure, cholesterol, sugar
content etc. of a patient, so each data point in feature space repre-
sents a patient. Data points will be normally grouped into various
clusters in feature space, each cluster will belong to a particular
class (disease), the problem is further complicated by the fact that
more than one cluster may belong to the same class (disease). The
problem in pattern recognition is how to make a computer recog-
nize patterns and classify them. Such tasks in the real world can
be extremely complex as there may be thousands of clusters and
hundreds of classes in a space of a hundred or more dimensions,
therefore computers are used to detect patterns in such data and
recognize classes for decision making.
The trend in the last 25 years is to use an artificial neural network
(ANN) architecture to solve such problems with the aid of comput-
ers. One of the great difficulties that researchers have been working
with and enduring, is that there was no known method of obtaining
a suitable architecture for a given problem and therefore various
configurations of artificial neurons aligned in different arrays were
tried out and after a great deal of trials one particular architecture
which suited the present problem was finally chosen and used for
pattern recognition and classification.
However, it must be reiterated here that the theoretical basis
of a feed forward neural network, was first provided by Kol-
mogorov(1957) ([1]), who first showed that a continuous function
of n variables: f(x1, x2, ..xn) can be mapped to a single function
of one variable v(u). His monumental discovery was improved and
perfected by others (Lorentz, Sprecher and Hect-Nielsen) ([2]-[6])
to demonstrate that his proof proved an existence of a three layer
network for every pattern recognition problem that was classifi-
able. However, though his theorem proved the existence of a neural
architecture, there was no easy way of actually constructing the
mapping for a given practical problem ([7]-[12]). To quote Hect-
Nielsen, “The proof of the theorem is not constructive, so it does
not tell us how to determine these quantities. It is strictly an exis-

1



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

tence theorem. 1 It tells us that such a three layer mapping network
must exist, but it doesn’t tell us how to find it” ([13]-[15]).
Subsequently, Rumelhart, Hinton and Williams (1986) used the er-
ror minimization method to implement and popularize the Back
Propagation (BP) algorithm which was discovered and developed
by many researchers from Bryson; Kelley; Ho; Dreyfus; Linnain-
maa; Werbos and Speelpeening during a 22 year period 1960-82
(see the comprehensive review by J. Schmidhuber [18] for pre-
cise historical details and references cited therein). The B.P. can
be used for training artificial neural networks (ANN) consisting of
multilayered processing elements (perceptrons) for solving general
types of classification problems. Ever since then ANNs have been
used over a very wide area of AI problems and currently in Deep
Learning.Though these developments were wide and varied there
was no good method of obtaining an optimal Architecture for an
ANN for any particular problem.
For a given problem and for a given data set, various number of pro-
cessing elements and very many layers were tried out before arriv-
ing at a particular architecture which suits the problem. However,
this said, it was however well known that a three layer architecture
is sufficient for any classification problem involving many samples
which form clusters in feature space(Lippmamm, 1987, see Fig 14
in p.14 and Fig 15 p. 16 in [27]). The idea was that any group of
clusters can be separated from the others by confining each clus-
ter inside a polygon (or polytope ) by well defined lines or planes
which form the convex hull of each cluster. See figure 2 below.
A classifier can then easily be constructed to discover if any point
(sample) lies within any particular polytope (cluster), all the clas-
sifier has to do is to check if the particular point lies within the
bounding planes which circumscribe the polygon. For example, if
the polygon is a triangle, then the classifier can find out if a particu-
lar point is within the triangle by verifying that it is within the three
sides (planes) of the triangle. If there are many polygons then each
of them can be represented by its bounding planes (convex hull),
a classifier using ANNs can be built. By this means a three layer
ANN network wherein the first layer consists of as many process-
ing elements as the number of planes needed (in figure 2, 43 planes
are needed) to form the convex hulls of all the polytopes in the
sample space[27]. However, this procedure though correct was not
practically feasible, and will probably never be, because finding the
convex hull of a given region, let alone a number of regions, is a NP
hard Problem and especially so in n-dimension feature space where
the number of clusters are many and the number of planes involved
would exponentially increase. It is appropriate to mention here that
around 20 years ago there were attempts to define the convex hull
of a cluster by using sample points at the boundary of each clus-
ter, leading to the so called Support Vector Machines which was
introduced by Cortes and Vapnik [20], but even these could not get
over the NP hard problem as was soon realized. (It will be seen
later, how by adopting a new approach and the use of the concept
of ’Orientation Vectors‘, [29]-[30] the problems of separability and
outliers are tackled, see Fig. 4 ).
This paper describes a method to dodge the problem; where in it’s
shown that it is really not necessary to find the convex hull of each
cluster: all it requires is that somehow we must be able to separate
each cluster from the other by a single plane, if this is done, then
the classification problem is much reduced and it can be performed
by using a transformation from feature space (X-space) to another

1Then he goes on to say “Unfortunately,there does does not appear too
much hope that a method for finding the Kolmogorov network will be de-
veloped soon”

S-space in such a manner that each cluster finds itself, after trans-
formation, in an unique quadrant in S-space and thus each cluster
is easily classified needing much less planes. See figure 3, where
only 4 planes are necessary compared to 43 planes in figure 2.
The purpose of this paper is to show that this can always be done for
problems where the clusters are separable, that is if clusters belong-
ing to different classes do not overlap in feature space (of course if
there is an over lap there is no method which can work without
adding new features in the study - thus essentially enlarging the di-
mension of the feature space). In very high dimension problems the
clusters, in practical cases, will almost always be sparse 2 and this
transformation from X-space to S-space performed in such a man-
ner that the co-domains are always within one quadrant in S-space
is not only feasible but becomes a very powerful tool for classifi-
cation, actually all the methods and results in this paper has been
fashioned from this tool.
The concept of “Orientation” vectors [29]-[30] is being introduced
to keep track of the clusters in feature space and solve the problem.
The theorem determines, almost precisely, the number of process-
ing elements which are needed for each layer to arrive at a “min-
imalistic” architecture which completely solves the classification
problem. It’s further proven that this method of classification is
NOT NP hard by showing that if the number of clusters, N, is in-
creased then the number of processing elements in this minimalistic
architecture, at worst increases linearly with N and at best increases
by ∆(log(N)).
There are two approaches that can be followed to develop the ideas
given in the previous paragraph, but eventually it so turns out that
they arrive at the same architecture, these are as follows: (i) Kol-
mogorov’s approach is followed but by giving up on the effort of
exactly trying to map the exact geometrical domain of the func-
tions, and do not try to obtain a continuous function that maps the
exact geometrical domains of each cluster. Instead piece wise con-
tinuous functions are used. Further, its made sure that only those
planes are chosen that can separate one domain (cluster) from an-
other, but assume that on each of these domains a single piece wise
constant function is defined.
(ii) The idea of solving the complex hull problem for each cluster
(which is NP hard) or even on the idea of trying to confine each
cluster within planes (Lippmann 1987) which will form a polygon
(or polytope), so that all points that belong to the cluster are inside
the polytope is discarded. Instead, planes are chosen which sepa-
rate each cluster from another cluster by planes (half space), see
figures 1 and 2. It’s shown that if this is done then the classification
problem can be solved with much less number of planes figure 3.
For the purposes of completeness and also to underline the fact that
the ANN method is also a mapping technique and is thus related
to the Kolmogorov technique, both the methods (i) and (ii) are de-
scribed in fair detail in Section 2, though they lead to the same
architecture.
In section 3, a geometrical constructive proof is provided, that un-
der the conditions put forth in the theorem, which demonstrates
how such a three layer network can be had if we are given the de-
tails of the piece wise function as described above. This is one of
the theorems that is proven in this paper.

2If there is an image involving 30 x 30 pixels, this means we are dealing
with a 900 dimensions feature space, such a space will have 2900 ≈ 10270

quadrants; it will be hard to fill up this space even with one image per quad-
rant. Thus we see that the sample points are very sparsely distributed in
feature space.

2



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Fig. 1. Cluster Problem for Classification.

Fig. 2. Cluster Problem for Classification solved in conventional way

In section 4, example problems are constructed wherein the method
of orientation vectors is used. These examples have been delib-
erately constructed with the intent to not only best illustrate the
method but also to show how approximations to the classification
problem can be made by assuming different ANN architectures
and employ the BP algorithm to solve it. Since these examples are
so devised that the “minimalistic” architecture 3 for each of them

3The term ‘minimalistic’ that we is used should be interpreted with caution,
it generally means an architecture with the minimal number of processing
elements in the 1st layer, this too is a bit imprecise: what it means is the

is known we can compare the various approximate with the ex-
act solutions. This study therefore gives an insight into how one
may solve practical problems when the number of clusters are not
known and the number of partitioning planes (half spaces) are not
known but have to be guessed at.

number of layers when we use a sigmoid function si = tanh(βyi) with
β large, say, β > 5. With smaller values of β it is possible to arrive at an
architecture which has a few processing elements less than the this ‘mini-
malistic’ value, a point which becomes clear later on.

3



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Fig. 3. Cluster Problem for Classification solved by present method

Fig. 4. Cluster Problem for Classification with outliers

Section 5 is an application section where some suggestions as to
how one may “guess” the number of clusters and the number of
partitioning planes so that one can arrive at an approximation to the
‘minimalistic’ architecture.
Section 6 shows that the present method is not NP hard. It ends
with a brief discussion on applications on Deep Learning and a
Conclusion. Section 7 is the conclusion.

2. APPROACHES TO THE PROBLEM
This section will detail the two approaches.

2.1 The Kolmogorov approach
As aforesaid, this paper solves a more restricted mapping problem
which is suitable for most classification tasks. It does not require

the general continuous functions of n variables f(x1, x2, ..xn), but
only require that the functions be “piece wise constant”, meaning
that the functionf(x1, x2, ..xn) take on some constant value in a
closed set (region) (ie inside and on the boundary of a particular
cluster), therefore the function is continuous for every point of a
closed set. For example in figure 5: f(x1, x2, ..xn) can take on
some constant value c11 in the region 11 and some other constant
value c43 in the region 43, etc. in fact there is no loss of generality if
we assume that c11 equals the class number 1 of the particular clus-
ter 11 ie we may define c11 = 1, similarly we may define c43 = 3,
3 being the class number of cluster 43. Its further assumed that the
domain of each function is separable from other domains by planes
(ie they are separable). This assumption allows us to immediately
exploit the idea of finding the minimal number of planes that can
separate the domains, thus if we know how a point (belonging to

4



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

a domain) is “oriented” with respect to all the planes then we can
quickly find out as to which domain the point belongs to.
To draw a parallel with the work of Kolmogrov, this paper uses
a technique to map a “piece wise constant” function defined in
n-dimension space to a function defined in discrete 1-dimension
space. A “piece wise constant”’ function in n-dimension space
f(x1, x2, ..xn) (which takes input as points in the n-dimensional
feature space and outputs the class number of that point) is mapped
to an equivalent 1-dimensional function (v(u)) which takes input
as the cluster number to which the point in n-dimensional feature
space belongs and outputs the corresponding class number. The
function (v(u)) takes as input one among a discrete set of val-
ues (cluster number) and its set of all output values also forms a
discrete set (class number). Our construction also shows a unique
way to map points in the n-dimensional feature space to their cor-
responding cluster number. This method uses planes S1,S2, S3 to
separate the domains and perform the mapping. It will be shown
that these planes are the same planes that are used in the second ap-
proach (next subsection), to separate the clusters in such a manner
that no two clusters are in the same side of all the planes.

2.2 Orientation Vector approach
This approach uses the concept of an ‘orientation vector’ to provide
a geometrical constructive proof, under the conditions put forth in
the theorem, which demonstrates how such a three layer network
can be had if we are given the details of the piece wise function as
described above.
The proof also provides a method which would overcome some
of the difficulties in arriving at a suitable architecture for a given
data in a classification problem. It is shown that given a data set
of clusters in feature space there exists an artificial neural network
architecture which can classify the data with near 100 percent accu-
racy (provided the data is consistent and the train samples describe
a convex hull of each cluster). Further, it is shown how by using
the concept of an “orientation vector” for each cluster, an optimal
architecture is arrived at. It is also shown that the weights of the
second hidden layers are related to the orientation vector thus mak-
ing the classification easily possible.
Three examples are provided on the method, each of increasing
complexity. The purpose of these examples is to show how once
the architecture of the network is fixed, the weights of the network
can be easily obtained by using the Back Propagation algorithm to
a feed forward network.

3. STATEMENT OF THEOREM AND PROOF
Suppose there are m clusters of points in n dimensional feature
space, figure 5 is a typical depiction, such that each cluster of points
belongs to one of k distinct classes, and further if there exist q dis-
tinct n−dimensional planes which separate each cluster from its
neighbors in such a manner that no two clusters are “on the same
side” of all the planes, then it is possible to classify all the clusters
by means of a feed forward neural network consisting of three hid-
den layers which has an architecture indicated as: q −m− k. That
is the the neural network will have q processing elements in the
first hidden layer, m processing elements in the second layer, and
k processing elements in the last layer. The input to this neural net
work will be n−dimensional, that is it will be the coordinates of a
data point in n−dimensional space whose membership to a partic-
ular class will be ascertained uniquely by this neural network. The
out put of this network will be k binary numbers, out of which only
one of them will be 1 and the rest will be zero. In the k-dimensional

output vector if the the first component is 1 then it means the input
vector belongs to the first class, or if the second component is 1 it
means that the input vector belongs to the second class ....and so on
to the last (kth class ). In some notations which include the number
of inputs, then the architecture would be denoted as: n−q−m−k.
In the figure 5, q=5, m=8 and k=3, there are 8 clusters number 1
to 8, the suffix indicates the class assignment, for example cluster
number 4 is denoted with a suffix 3 ie as 43 this just indicates that
the points in this cluster belong to class 3, it may be noticed that
there are other points in cluster number 8 which also belong to
class 3.
NOTE A: It is assumed that the q planes do not intersect any cluster
dividing it into two parts, if there happens to be a particular cluster
which is so divided i.e. if there is a plane which cuts a particular
cluster into two contiguous parts, then the part which is on one side
of this plane will be counted as a different cluster from the one
which is on the other side : that is the number of clusters will be
nominally increased by one : m to m+ 1.
NOTE B: It may be noticed that it is assumed that all points in
a cluster belong to a single class (though the same class may be
spread to many clusters, this assumption is necessary else it means
that the n-features are not enough to separate the classes and one
would require more features. Example suppose there is a sam-
ple point R which actually belongs to class 2 inside the cluster
43, this means class 2 and class 3 are indistinguishable in our n-
dimensional feature space and there should be more features added,
thus increasing n. The proof of the theorem of course assumes that
the dimension, n, of the selected feature space is sufficient to dis-
tinguish all the k classes.
NOTE C: Perhaps it is superfluous to caution that figure 5 is a pic-
torial representation of n-dimensional space and a plane which is
merely indicated as a single line is actually of n-1 dimensions and
the arrow representing the normal (out of the plane) is perpendicu-
lar to all these n-1 dimensions.
The theorem is proven by explicit construction. To fix the notation
a diagram is provided which shows the architecture of a typical
neural network shown in the figure 6, whose architecture is chosen
for classifying the clusters given in figure 5.
However before proceeding to the proof a few definitions are
needed:
The first definition explains what is meant by the terms “positive
side” and “negative side” of a plane. The normal direction of each
plane S1, S2, ...Sq (in the figure we have taken q = 5) is indicated
by an arrow. It may be noticed from figure 5 that all the points in
the particular cluster indicated by 11 is on the side of the arrow
direction of plane S1, hence we say that 11 lies on the “positive
side” of plane S1,or as “+ve side” of plane S1, points on the other
side of this plane is defined to lie on the “negative side” of plane S1

or as “-ve side”. So we see each cluster will be either on the positive
side or on the negative side of each plane, because by assumption
no plane cuts through a cluster, (See Note A). Now we define a
“orientation vector” of a cluster as follows: Let us take the cluster
indicated by 11 we see that this cluster is on the +ve side of S1, +ve
side of S2, -ve side of S3, +ve side of S4 and +ve side of S5, this
situation is indicated by the array (1, 1,−1, 1, 1). Thus the concept
of a orientation vector of the cluster 11 is introduced as a vector
which has q components and is defined as d(11) = (1, 1,−1, 1, 1).
To take another example, let us take the cluster 43 its orientation
vector is d(43) = (−1,−1,−1, 1, 1) as can be ascertained from the
figure. So in general the orientation vector of any cluster b can be
denoted as db = (db1, d

b
2, ...d

b
r, ..d

b
q); where dbr = +1 or -1 according

as cluster b is on the +ve or -ve side resp. of plane r. It should be

5



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Fig. 5. Cluster of sample points in n-dimensional space

Fig. 6. Neural network architecture proposed in this paper

noted that the orientation vector of each cluster is unique and will
not be exactly equal to the orientation vector of another cluster;
this will always happen if the orientation vectors for each cluster
are properly defined. Thus the dot product db.dc of the orientation
vectors vectors of two different clusters b and c will always be less
than q:
db.dc = q , if b = c
and
db.dc < q , if b 6= c
actually it is because of the above property and the uniqueness of
each orientation vector, that we its possible to build the architecture
for any given problem.
The out put of the first processing element in the first layer denoted
by S1 in the figure is: s1 = tanh(y1)

s1 = tanh(βy1)

where we arbitrarily choose β = 5

y1 = w10 + w11x1 + w12x2 + ....+ w1nxn

it may be noted that the formula w10 + w11x1 + w12x2 + .... +
w1nxn = 0 corresponds to the equation of the plane S1 of figure
6.
we have similar formulae for all the processing elements, Sj , j =
1, 2, ...q in the first layer, the last qth being:

sq = tanh(βyq)

where

yq = wq0 + wq1x1 + wq2x2 + ....+ wqnxn

where wq0 +wq1x1 +wq2x2 + ....+wqnxn = 0 is the equation to
the plane Sq of figure 6. Since the planes S1, S2, ..Sq are assumed

6



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

to be given, the coefficients (weights) wij of all the processing ele-
ments in the first layer are all known.
NOTE D: It may be noticed that the immediate out put of the
first layer viz (y1, y2, .., yq) passes through the sigmoid functions
tanh(βyi) (with β large, say, β = 5)and then produces a vec-
tor (s1, s2, .., sq). But since the sigmoid function si = tanh(βyi)
maps almost all the points yi (which are bit far away from yi = 0)
to a point close to either si = −1 or si = +1, we see that
as a consequence that every input sample (x1, y2, .., xn) maps to
(s1, s2, .., sq) where (s1 ≈ ±1, s2 ≈ ±1, .., si ≈ ±1, .., sq ≈
±1) that is the image point in S-space is always close to some q-
dimensional Hamming vector which is (±1,±1, ..,±1) .
Definition of the “Center” of a Quadrant in S-space: Suppose a
point Q has a coordinates which can be expressed as a Hamming
Vector say (1,−1, 1, .., 1), then we consider Q as the “Center” of
that quadrant of the space whose points are having coordinates:
(s1 > 0, s2 < 0, s3 > 0, .., sq > 0). Eg (i) The point Q’ whose
coordinates are (1, 1, .., 1) is the “Center” of the “first” quadrant
whose points are having coordinates: (s1 > 0, s2 > 0, s3 >
0, .., sq > 0), similarly Eg. (ii)the point Q” whose coordinates are:
(−1,−1,−1, ..,−1) is the “Center” of the last” quadrant whose
points are having coordinates: (s1 < 0, s2 < 0, s3 < 0, .., sq <
0). Since, we are in q-dimensional space there are 2q quadrants,
this provides an upper limit to the number of clusters that can be
separated by q planes viz. 2q .
So a worthwhile observation to make is that the images of all the
points which are not near any dividing plane Si will be points close
the Center of some quadrant in S -space. Further, all points belong-
ing to a particular cluster get mapped to a region very close to the
center of a particular quadrant, in other words all the images of one
particular cluster will be found near the center of its own quadrant
in S-space. (We will see later that this last property makes it easy
to employ a further mapping if we wish).
Since all points belonging to a single cluster gets mapped to its
unique quadrant in S-space, (uniqueness certainly follows because
of the uniqueness of each orientation vector, that is when the planes
are well chosen) and the we can easily classify them by “collect-
ing” the points in each quadrant. This is done by writing down the
appropriate weights of the processing elements in the second layer,
which we call the “Collection Layer”, because of its function. Let
us start with the first one which is shown as 11 in the figure 6.
The output

u1 = tanh(βz1)

where

z1 = w′10 + w′11s1 + w′12s2 + ....+ w′1qsq

Now since we wish the the first processing element to output u1 =
+1 if the input n-dimensional vector x1, x2, ..., xn belongs to the
cluster 11 and to out put u1 = −1 if it belongs to any other cluster,
we see that this condition will be adequately satisfied if we choose:

(w′11, w
′
12, w

′
13, ..., w

′
1q) = (d111 , d

11
2 , d

11
3 , .., d

11
q )

which we write in short hand as: w′1 = d11

and the constant term:w′10 = 1
2
−q . It can be easily seen that if the

sample point x1, x2, ..., xn belongs to the cluster 11 then z1 = 1/2
and hence the out put u1 = tanh(βz1) becomes very close to +1,
else the out put becomes very close to -1.
Similarly the second processing element indicated as 22 will output

u2 = tanh(βz2)

where

z2 = w′20 + w′21s1 + w′22s2 + ....+ w′2qsq

and if we choose

(w′21, w
′
22, w

′
23, ..., w

′
2q) = (d221 , d

22
2 , d

22
3 , .., d

22
q )

ie. w′2 = d22

and the constant term: w′20 = 1
2
− q

We can now write down the general term viz the output of the ith
processing element belonging to the jth class:

ui = tanh(βzi)

where

zi = w′i0 + w′i1s1 + w′i2s2 + ....+ w′iqsq

and if we choose

(w′i1, w
′
i2, w

′
i3, ..., w

′
iq) = (d

ij
1 , d

ij
2 , d

ij
3 , .., d

ij
q )

ie. w′i = dij

and the constant term: w′i0 = 1
2
− q

It can be easily seen that if the sample point x1, x2, ..., xn belongs
to the cluster ij then zi = 1/2.

3.1 Use of Unit Step Function
Now to simplify the proof the Unit Step Function is used instead
of the activation tanh function in the second layer, ie. instead of
defining ui = tanh(βzi) as above, the unit step function Usf(z),
which is define as:Usf(z) = 1 if z > 0 else Usf(z) = 0, is used.
The output ui = Usf(βzi) becomes 1 or 0 (binary).
This is done only to demonstrate the proof, but in actuality in prac-
tical cases the original tanh function would suffice with some ap-
propriate changes in the equations below.
Now we come to the last layer:
This is easy to do, we choose the connection weight between the
processing element in the second layer say ij and processing el-
ement l of the last layer as equal to the Kronecker delta δjl ;(by
definition δjl = 1,if j = l else δjl = 0 ).
Thus explicitly writing

vl = pl0 + pl1u1 + pl2u2 + ..+ pliui + ..+ plmum

where

pl0 = 0

is defined and we choose pli = 1 if the cluster ij belongs to class
l, that is j = l, else we define pli = 0
With the above choices all the weights in the network are now
known, thus completely defining the Neural Network which can
classify all the data.
To demonstrate why it works let us consider, in figure 6,the connec-
tion weight between the processing element 11 and the processing
element 1 (in the last layer)p11 = 1, but the connection weight to
2 p21 = 0. Similarly, the connection weight between the process-
ing element indicated as 62 and 1 p16 = 0, the connection weight
between 62 and 2, p26 = 1 and the connection weight between 62

and 3, p36 = 0; thus ensuring that if the input point (x1, x2, .., xn)
belongs to the cluster 62 then it will be classified as class 2. We
thus see that the neural network will out put a point belonging to
a cluster ij to the class j as required, since the jth processing ele-
ment outputs vj a number which is equal to 1 as the final output;
the other vk, k 6= j will out put 0. QED.

7



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

3.2 Four layer problem
The output of the first layer maps all points onto S-space; and since
each cluster is mapped to its “own quadrant” in this space the prob-
lem has already become separable. It was only necessary to identify
the particular quadrant that a sample had got mapped to, in order
that it can be classified; a task undertaken by the collection layer.
Though the above section shows that the number of layers (three)
is sufficient, it is sometime better to make one more transforma-
tion from the S space to h space by using orientation vectors in this
space (see figures 7 and 8) this could lead to a network with with
less processing elements in the layer.
(That is if there are clusters belonging to the same class in one half
space then it is not necessary to separate these clusters individually
since anyway they belong to the same class, we can save on the
number of planes if we group such clusters as belonging to a single
region.) The figures, show how such regions, containing “clusters
of clusters” belonging to the same class can be separated by planes.
In this section we show how all this can be done by introducing
another layer before the “Collection Layer”. Also the Collection
Layer in this case collects samples belonging to one region which
has samples belonging to possibly more than one cluster but all
belonging to the same class. This becomes apparent in the figures
which depict the orientation vectors H, in the s-space.
The above diagram shows that there are several places where clus-
ters belonging to the same class can be grouped as one region con-
taining a“cluster of clusters”, these regions can then be separated
by fewer planes (the figure 8 shows 4 planes and to prevent clut-
ter the cone containing Region 222 in the negative side of H1 and
separated by the positive side of H2 has not been drawn).
The Architecture for such a situation can be easily arrived at by
introducing the orientation vectors H as another layer . We than
have the architecture shown in figure 9.

In the example problems below, we did not use the Unit Step func-
tion but rather used the Tanh function to enable the use of Back
propagation algorithm ([16]). So the outputs will be in the range
[−1,+1], and all positive points are treated as +1 and all the nega-
tive points are treated as 0.

4. EXAMPLES
For the purpose of illustration, a few problems are solved and its
shown that for a given classification problem if a neural network
architecture is chosen as per the above theorem then the classifica-
tion is guaranteed to be 100% correct, provided the data satisfies all
the conditions of the theorem.
A NOTE On Choice of Examples: These examples , were pur-
posely constructed because we need to know exactly the geometri-
cal configuration of each cluster and the number of points involved
and how the clusters are nested one within an another. So even
though the example may seem artificial and the first one seems to
be a ”toy” example, they were purposely constructed so that we
can theoretically calculate the minimum number of planes require
to separate the clusters. This latter information is very important to
us otherwise there is no way of comparing our results with the ”ex-
act” result. However, the examples become increasingly complex
in Sec IV E we have r-levels of nested clusters one within another
in n-dimensions, and yet they are so constructed that we know (the
minimalistic architecture), the number of planes that will separate
them!
First the 3 layer architecture is chosen as per the configuration dic-
tated by the theorem, then the Back Propagation algorithm is used

to show that in each of the 3 example problems the classification is
100%.
Secondly, we introduce a fourth layer; since we cannot know the
number of processing elements in the second and third layers, dif-
ferent configurations were tried. This is just to show that even if
we do not know the exact number of clusters we can by a judicious
guesses choose processing elements in the second and third layer
in such a manner that the classification is done 100% or near 100%.
The 3 Examples (below) are constructed in such a way that we
know the number of clusters, the number of classes and also which
cluster belongs to which class. For convenience we assume the
shape of all the clusters, in the examples, to be spherical. In all the
examples we generate the coordinates of sample points within clus-
ters and coordinates of test points by using random number gener-
ators. We then use the back-propagation method after choosing the
appropriate architecture as dictated by the above theorem for the 3
layer case and a variety of architectures for the 4 layer case. (Later,
in sections V(B) and V(D), we give techniques of choosing a suit-
able architecture). The 3 examples are: (A) The 3D cube, (B) The
4D cube and (C) The 4D nested cubes. We then generalize in para
(D) the nested cubes to n dimensions and in para (E) consider r
levels of nestings in n-dimensions and give a minimalistic architec-
ture for these and draw interesting comparisons with Radial Basis
Function classifiers.
TEST RESULTS ON EXAMPLES:

4.1 Three Dimensional Cube
This is a 3-d problem involving a cube which is centered at ori-
gin and whose neighboring vertices at a distance of 2 apart from
each other. There are 8 clusters, centered at each of the vertices,
we assume that each cluster has a radius of 0.3. The symmetrically
opposite vertices of the cube belong to the same class, and hence
there are a total of 4 classes. For example, the symmetrically oppo-
site vertex of (1, -1, 1) is (-1, 1, -1). We use the same definition of
symmetrically opposite vertices in the remaining examples in this
paper. For instance, in example 4.2, the symmetrically opposite ver-
tex of (-1, 1, -1, 1) is (1, -1, 1, -1). Therefore the points belonging
to the clusters around these vertices belong to the same class.
We have drawn samples from these clusters to formulate the train
data set, these are 100 sample points randomly generated within
each spherical cluster (100 samples per cluster) and test data set
(50 samples per cluster). A feed-forward neural network was then
trained to classify the training data set. The architecture of the net-
work is as follows: dimension of the input layer is 3, dimension of
the first hidden layer is 8 (equals the assumed number of planes
required to split the clusters, though for this simple case the 3 co-
ordinate planes are sufficient to split the clusters we do not use
this information),dimension of the second hidden layer is 8 (equals
the number of clusters) and the dimension of the output layer is
4 (equals the number of classes). Therefore by using the network
architecture: 3-8-8-4 The feed forward neural network was trained
using Back propagation algorithm and it gave 100% classification
accuracy on both the training and test data sets.

4.2 Four Dimensional Cube
This is a 4-d problem involving a hypercube which is centered at
the origin and whose neighboring vertices at a distance of 2 apart
from each other. For convenience we assume the shape of the clus-
ters in this and the next problem to be that of a 4d sphere. There
are thus 16 spherical clusters, centered at each of the vertices, and
having a radius of 0.3. The symmetrically opposite clusters of the
4-d cube belong to the same class, (i.e. if the cluster centered at the

8



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Fig. 7. Cluster within a cone

Fig. 8. Clusters in conical pencils

coordinate (1,1,1,1) belongs to class 1, then the cluster whose cen-
ter is situated at (-1,-1,-1,-1) also belongs to class 1. Hence, there
are a total of 8 classes.
As in the above experiment, we have drawn samples from these
clusters to formulate the train data set (100 samples per cluster)
and test data set (50 samples per cluster). A feed-forward neural
network was then trained to classify the training data set.
(i) Using the 3 layers of processing elements in the architecture:
The architecture of the network is as follows: dimension of the in-
put layer is 4, dimension of the first hidden layer is 16 (equals the
assumed number of planes required to split the clusters), dimension
of the second hidden layer is 16 (equals the number of clusters)
and the dimension of the output layer is 8 (equals the number of
classes).

(a) Using: 4-16-16-8 architecture, the Back propagation algorithm
produced 100% classification accuracy on both the training and test
data sets.
(b) Actually for this problem we can show that just 4 planes are
sufficient to separate the cluster, these are the 4 coordinate planes:
x= 0; y=0; z=0; t=0;
ii) Using the 4 layers of processing elements in the architecture:
(a) 4-16-2-8
(b) 4-15-5-8 (c) 4-9-9-8 The feed forward neural network was
trained using Back propagation algorithm and it gave 100% clas-
sification accuracy on both the training and test data sets.

9



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Fig. 9. Neural network architecture of a four layer network

4.3 Nested Four Dimensional Cubes
This is a 4-d problem of a big hypercube which has smaller hy-
percubes centered at each of its 16 vertices. That is each smaller
hypercube has its center at one of the vertices of the larger hyper-
cube. Thus a total of 256 spherical clusters belonging to 8 classes.
The neighboring vertices of the bigger hypercube are at a distance
of 4 apart from each other. The vertices of this bigger 4-d cube
form the center of the smaller 4-d cube. The neighboring vertices
of the smaller hypercube are at a distance of 2 apart from each
other. Hence there are 256 (16x16) clusters having a radius of 0.7
(there are no clusters at the vertices of the bigger hypercube) Now
we classify each cluster as follows. As in the example 4.2, each
small hypercube will have 16 clusters and clusters symmetrically
opposite will belong to the same class, thus there are 8 classes for
each small hypercube. As there are 16 small hypercubes there will
be 256 clusters belonging to 8 classes. Note we have imposed a
symmetry to our problem by placing all the cubes in such a manner
that the edges of each of the cubes are parallel to one of the co-
ordinate axis. This symmetry has been imposed on this and all the
subsequent examples considered in this paper.
(i) Three layer of Processing elements: As in the above experiment,
we have drawn samples from these clusters to formulate the train
data set (100 samples per cluster) and test data set (50 samples per
cluster). A feed-forward neural network was then trained to classify
the training data set. The architecture of the network is as follows:
dimension of the input layer is 4, dimension of the first hidden layer
is 256 (equals the number of planes, which was purposely chosen
very high and equal to the number of clusters), dimension of the
second hidden layer is 256 (equals the number of clusters) and the
dimension of the output layer is 8 (equals the number of classes).
Thus the architectures tried out is: (a) 4-256-256-8, The feed for-
ward neural network was trained using BP algorithm, which con-
verged in less than 500 epochs, and it gave 100% classification ac-
curacy on both the training and test data sets.We have chosen the
number of planes as 256 (equal to the number of clusters), which is
sufficient to distinguish all the clusters from one another by a 256
dimension orientation vector. Actually, it would not have mattered
even if we had chosen more planes than 256.
However, it may be noticed that because of the symmetry of the
configuration, only 12 planes are actually required to separate all
256 clusters, these planes are: x= 0; y=0; z=0; t=0; x= 1; y=1; z=1;
t=1; x= -1; y= -1; z= -1; t= -1; so an architecture of the type 4-12-

256-8 is theoretically sufficient for this problem, therefore by using
various architectures we got results as per this table:
(a) 4-12-256-8 : 99.852% train & 99.672% test
(b) 4-13-256-8: 99.191% train & 99.117% test
(c) 4-14-256-8: 99.891% train & 99.641% test
(d) 4-18-256-8 :100% train & 99.969% test
(ii) Architectures with Four layers of Processing elements which
also worked are:
(e) 4-12-40-300-8 (f) 4-12-100-150-8 (g) 4-12-120-80-8 (h) 4-12-
50-50-8

4.4 Generalization of Nested Cube Problem to n
dimensions

The problem 3 which has clusters of smaller cubes placed at corners
of larger cubes can be generalized to n− dimensions. There will
be a large n-dimension cube with smaller n-dimensional cubes at
the corners: so we have 22nclusters and if each pair of “diagonally
opposite” clusters in the smaller cube belong to the same class then
there will be 2n−1 classes. We require only 3n planes to separate
the clusters so the minimal neural network architecture will be :
n− 3n− 22n − 2n−1.
This problem is interesting because a Radial Basis Function method
would involve 22n distance measurements to classify a single sam-
ple, where as by this method there are only 3n linear equations to
be evaluated to obtain the unique Hamming vector which identifies
the same sample.

4.5 Generalization to sequence of nested cubes one
inside the other

In fact the n dimensional example given in the previous section can
be further generalized. Suppose we define the previous example as
level-2 nesting: that is we take a large n-dimensional cube and place
smaller n-dimensional cubes at the vertices, each of these small
cubes have a cluster at its vertex. Now we can consider such level-
2 structures placed at the vertices of a still larger n-dimensional
cube we get a level-3 structure (ie level-2 nested cubes at the ver-
tices of another large cube). So we can go on to get a level-r nested
structure. This level-r nested structure will have 2rn clusters be-
longing to 2n−1 classes. It can be shown that such a cluster can be
distinguished by using (2r − 1)n planes and thus we will have a
NN architecture: n− (2r − 1)n− 2rn − 2n−1.

10



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

There are only (2r − 1)n linear equations to be evaluated to ob-
tain the unique Hamming vector which identifies a sample which
may belong to any one of the 2rn clusters and finds which of the
2n−1 classes it belongs to. These (2r − 1)n linear evaluations may
be once again compared with 2rn distance measurements which
would be necessary, to classify a single sample, if one uses the Ra-
dial Basis Function method.

5. APPLICATION TO CLASSIFICATION
PROBLEMS

Now it is probably appropriate to answer the query: What type
of patterns and what type of cluster configurations can be easily
classified by our method? It would be quite apparent by now that
if the patterns are in clear clusters like those given in Example 1
and 2 (Level 1)then the problem is completely classifiable by using
the above mentioned neural architecture, the EXAMPLES section
clearly illustrate this (in particular problem 1 and 2, viz the 3-d and
4-d cubes). However in some other cases wherein we have clusters
within clusters, Level 2, (eg. problem 3; the nested 4-d cube); that is
when each large cluster contains sub-clusters, much like a cluster of
galaxies each of which is a cluster of stars, some more investigation
needs to be done. For these and other cases (cluster configurations
of Level-r), it is possible to estimate the number of planes required.
However, the precise number of planes would depend on the num-
ber of clusters and their geometrical positions in feature space. So
we can only make an estimate. This estimate helps determine a
possible architecture for the Neural network classifier.Before pro-
ceeding to our estimates, we would first need a definition.
Malleable cluster: We will define (consider) a cluster as ’mal-
leable’ if (i) a sample point is classifiable to a cluster by just taking
its Euclidean distance to the centroid of a cluster, OR (ii) a sam-
ple point can be associated to its cluster by a k nearest neighbor
algorithm. All clusters will be assumed to be malleable. We further
assume that different clusters are separable from one another by
planes, if necessary a cluster may be divided into two or more parts
to facilitate such a separation (see figure 4).
We wish to say without being ad nausea that in cases where clus-
ters belonging to different classes overlap with each other then it
is not possible to classify the problem without using probabilistic
techniques and we do not consider such situations in the paper. It
could also mean that we have not taken enough number of relevant
features to solve the problem.
ESTIMATION OF NUMBER OF PLANES
In the next three subsections, we give methods with heuristic proofs
on how to estimate the number planes which can separate Level 1
and Level 2 clusters and also for the case when the clusters are not
too sparse.
Though our proofs are heuristic, it may be mentioned that our es-
timates are in concordance with the bounds proved by Ralph P.
Boland and Jorge Urrutia [28],1995, who in their work had el-
egantly exploited the crucial fact: In n-dimension space a sin-
gle plane, in general, can simultaneously separate n pairs of
points(randomly placed, but not all in the same plane), thus if we
choose the first pair of 2n points (among N), the first plane thus cuts
these 2n points and places them into two sets one on either side of
the plane,4 this plane of course divides the other points among N

4Another way of looking at this is to think that each pair of points as a line
segment which has a midpoint, since there are n pairs, one can always find
the n coefficients αi, (i = 1, 2, .., n) of a plane (say) 1+α1x1 +α2x2 +
..+ αnxn = 0 which passes through these n midpoints.

to to either side; after this n new pairs of 2n points are chosen
such that each pair is unseparated, a second plane is then chosen
which divides the new n pairs and also the space to 4 ’quadrants’
, the next plane gives 8 ‘quadrants‘, the process continues and new
planes are added, but must quickly end because all the N points
will be soon exhausted.5 The proofs by Boland and Urrutia[28]are
involved though rigorous.

5.1 Estimate of number of planes: Clusters of Level 1
This section shows that for problems, involving large n-
dimensional feature space, which has N clusters,N < 2n, sparsely
and randomly distributed and configured as Level 1, the number of
planes q are O(log2(N)).
As is known a 2d space has 4 quadrants,3d space has 4 quadrants
and n dimensional space has 2n quadrants. Suppose the dimension
of the feature space is large (say 40), then it is most likely, in prac-
tical situations such as face recognition, disease classification etc.,
that the number of clusters (say 10000), will be far less than the
number of quadrants, (as 240 ≈ 1012) that is, the number of clus-
ters will be sparsely and randomly distributed. Therefore an inter-
esting question arises: Is it possible to transform the feature space
X of n-dimension to another n-dimensional Z space such that each
cluster in X space finds itself to be in one quadrant in Z space,
such that each cluster is in a different coordinate in this Z space?
If this is so then the problem can be tackled in Z space instead of
the original feature space, thus making the classification problem
trivial. The answer to the question is yes, if the cluster configura-
tion is of type Level-1 In fact, the present problem is closely re-
lated to the problem first dealt with by Johnson and Lindenstrauss
[21](1984), who showed that if one is given N points in a large n
dimensional space then it is possible to map these N points to a
lower dimension space k of order k = log2(N), in such a manner,
that the pairwise distances between these points are approximately
preserved, (in fact our requirement is much less stringent we only
require that the ‘centroid’ of N clusters, be mapped to a different
‘quadrant’). The transformation is easy: Every point P, in n dimen-
sion space, whose coordinate is xP and which belongs to cluster
i can be transformed to x′P another point in n dimension space.
This transformation from X space to X ′ space is given by : x′P =
Ci +(xP - xi) Where xi is the centroid of cluster i in the X space;
Ci is the coordinate of the point to which the centroid of i has been
shifted in X ′ space. We can choose Ci to be sufficiently far away
from the origin such that its distance, from the origin of X ′ space
is larger than the radius of the largest cluster (for convenience, we
can choose the origin of the X ′ space to be the global centroid of
the sample space). Typically, if n = 5 we could choose some point
say, Ci = D(1, 1,−1, 1,−1) where D is sufficiently large. Thus
we see that the problem is classifiable in X ′ space, and a classifier
with (say) q planes, q = log2(N), exists and since the transforma-
tion from X space to X ′ space is essentially linear and the clusters
are sparse in X ′ space and can be separated by these q planes, then
a similar classifier exists in x space. In X ′ space the centroid of
each cluster can be given ‘coordinates’ by measuring the perpen-
dicular distance from each of the q planes to get the ‘coordinates’
(z1, z2, ...zq), ie related to the orientation vector, therefore each

5 Another crucial point to note regarding n-dimensional geometry: Every
time you add a plane in n-dimensional space you are dividing the space and
doubling the number of existing number of ‘quadrants’, but this doubling
happens only for the first n planes the (n+ 1)th plane will not double the
‘quadrants’ but create a ‘region’ confined by other n planes. Remember we
have chosen n large and N < 2n.

11



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

cluster will be in a ‘quadrant’ of the q dimensional z space. A sit-
uation somewhat similar to Johnson and Lindenstrauss [21]-[22]
because q = O(log2(N)). QED.6
From the above we see that problems involving labeled data in
class 1 are always classifiable by transformation into Z space. Thus
we see when the number of clusters N are such that N < 2n,
n being the dimension of space, then we require only q planes
q = log2(N). In the example we see that Problem 1 and Prob-
lem 2 are problems of class 1 type. further, problem 1 is a cluster
in three dimension space involving 8 clusters in this case 8 is equal
to 23, hence we see that the clusters are sparse and hence it can be
solved by using only 3 planes the equations of these 3 planes are
x=0, y=0, and z=0. Similarly in Problem 2 we have a 4 dimension
cube involving 16 clusters which is equal to 24, here again we need
only 4 planes whose equations are x=0,y=0,z=0 and t=0. In prob-
lem 3 we have too many clusters (256) which is much more than
24. Therefore, we will deal with this case later.

5.2 Estimate of number of planes: Clusters of Level 2
Here again its assumed that the number of clusters N, N < 2n. In
this case, there is a large cluster involving ’regions‘ each of which
consists of clusters (analogous to galaxies and stars). We can solve
this as follows: we divide the problem into K regions such that
each region does not have more than 2n clusters. We can separate
these K regions by log2(K) planes and each of these have a max of
N’ ≈ N/K clusters in a region by log2(N ′) planes, thus the total
number of planes q, would be O(Klog2(N/K)) +O(log2(K)).
The number of planes can be estimated by repeatedly using the
logic of the previous paragraph for clusters of Level-r. In prob-
lem 3 we have too many clusters (256) which is much more than
24. These are 16 large clusters each containing 16 smaller clusters
therefore one would have thought that they would require 16 X 4 +
4 =68 planes, however from the symmetry of the problem we see
that we require only 12 planes. Therefore we see that 3, 4, and 12
planes are sufficient to solve problems 1, 2 and 3 respectively; these
are the minimal. Now it is interesting to see if the Back-Propagation
algorithm can discover the weights of the planes if the number of
planes are specified, we report that if the cluster sizes are small
and if the separation between clusters is large than the algorithm
succeeds, else more number of planes are required. Details are pro-
vided in the Example section. What happens if we have labeled
clusters and if we do not know the number of clusters? We have
seen (in the Example section) that we need to approximately guess
the number of clusters as m and if the problem is of Level-1 than
choose the number of planes to be a little higher than log2(m). In
fact if we choose the number of planes is equal to the number of
clusters, the upper limit, the problem is automatically resolved but
this is inefficient. In the Example problems, we did start with this
rather inefficient guess (by assuming the number of planes as equal
to the number of clusters) and apply the BP algorithm. We then
solved the examples by using a variety of more efficient architec-
tures which were then trained by the Back Propagation algorithm.

6 An alternative argument can be had by transforming all the points in X-
space of n dimension to points on the surface of a sphere (radius R) of n+1
dimensional X’-space. After, choosing the origin as the global centroid of
all the clusters, we use the transformation x′i = Rxi/A (i = 1, 2, .., n);

and x′n+1 = R/A with the choice A = (1 + x21 + x22 + ..x2n)
1/2. The

clusters on the sphere can be separated from one another (because they are
sparse) by (say) q ‘great circles’, each contained in a plane through the
origin. We thus arrive at the same result.

5.3 Problems when the number of clusters are not
sparse

So far this paper assumes that the number of clusters are sparse.
What happens if the number of clusters are not smaller than 2n?
In this case we use the method previously try to divide the total
number of clusters as belonging to different regions. Choose K re-
gions, such that each of the K regions does not have more than 2n

clusters. Of course the final answer will depend on the geometrical
distribution of the clusters. See ref [28] for further details on this
subject.

5.4 Some points for implementation in practical
classification problems

For the sake of completeness, we briefly suggest a means of imple-
mentation of the method of classification described in this paper for
practical cases.
(i) Choosing an Architecture The procedure for software imple-
mentation could be as follows: When data is first given, a suitable
nearest neighbor clustering algorithm may be applied (may be done
after suitable dimension reduction). This will give the number of
clusters as shown in figure 5. The number of separating planes will
be ascertained or estimated. Normally for sparsely distributed, N,
clusters in high n-dimensional space, the number of planes will be
O(log2(N), in practical cases the number of planes can be taken
to be 30% or 40% more than log2(N), the exact number of planes
are not necessary because an over specification does not matter, the
number of layers of processing elements will be three, thus the ar-
chitecture of the ANN is known as the number of classes is known
for a supervised problem. Then the well-known back propagation
(BP) algorithm could be employed using this chosen architecture
to solve the classification problem just as what was demonstrated
in section IV.
(ii) Evaluating a chosen Architecture
Suppose we have two Architectures, which give equally good pre-
dictions,how do we say which is better? One way is to use the con-
cept of Occum’s Razor, in order to do this we could use the fol-
lowing two ratios: (i) the ratio of the ‘number of equations’7 fitted
(while training) to the total number of weights used in the neu-
ral architecture, we may call this the knowledge content ratio per
weight (KCR),(ii) the second ratio is nothing but the first multiplied
by the fraction of correct predictions (fcp)on unseen test samples,
this would give the prediction efficiency per unit weight (PEW),
PEW = KCR.fcp It is best to use that architecture which has
the highest possible KCR or PEW.

Architecture Train Accuracy Test Accuracy KCR PEW
4-12-256-8 99.852% 99.672% 18.81 18.74
4-13-256-8 99.191% 99.117% 17.95 17.79
4-14-256-8 99.891% 99.641% 17.16 17.10
4-18-256-8 100% 99.969% 14.52 14.51
4-256-256-8 100% 100% 1.48 1.48

The Table shown above gives the values of KCR and PEW for prob-
lem 3 (the nested 4 d clusters), for a variety of architectures which
were trained using BP.

7We define the ‘number of equations’ as the total number of conditions im-
posed while training.This is equal to number of training samples multiplied
by the number of processing elements in the last layer.

12



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

6. THE METHOD OF ORIENTATION VECTORS IS
NOT NP HARD

Suppose we have arrived at our so called “Minimalistic” architec-
ture by using the method of Orientation vectors for solving a par-
ticular problem involving N clusters and k classes. (It is assumed
that in this section we are dealing with large dimension space with
sparse cluster). Now what happens if we increase the number of
clusters by ∆(N) and the number of classes from k to k+1? By
this time, we have covered enough ground to be able to answer this
question.
Suppose we a have a certain number of clusters say N = Nf , in
a large n dimension space, how do we begin to separate them by
planes? We will now describe such a process. We start with a cer-
tain number of clusters in an initial set (say) N = N0, belonging
to the actual configuration of N = Nf clusters and then choose
an initial set of planes q = q0, to separate these N0, as a start 8

we will assume N0 << 2q0 . We will then include more clusters
into this set and at the same time choosing an additional plane (or
planes) to separate the new arrivals of clusters from one another
and from those which are already in this set. This study will help
us to understand that as we increase the number of clusters, the
number of planes needs to be increased at a far, far lesser rate, thus
demonstrating that our method is not NP hard. We will then arrive
at N = Nf and q = qf = O(log2(Nf )) . Suppose that at some
intermediate stage of our process, we have arrived at a situation
where the clusters are as shown in figure 5 and this stage (say) we
have N = N in our set which are all separated by q planes. Now
suppose we include a new cluster from the configurations thus in-
creasing the number of clusters in our collection by one,N to N+1,
this new cluster has to appear some where in the diagram. If it is
far away from the entire figure say ‘above’ all the rest then it can
be separated from the others by introducing just one ’horizontal‘
plane. Now if the new cluster appears inside the figure, then it will
have, at most, one neighboring cluster from which it is not sepa-
rated by a plane. This is because if it has (say) two neighbors not
separated by a plane, then this implies that there is no plane sepa-
rating the other two clusters - an impossibility: since all the other
clusters have already been separated from each other.(We ignore,
the rare case when the new cluster will happen to cut by a plane,
since the clusters are sparsely distributed). Let us say that this new
cluster has a neighbor 43, then in this case adding a new plane,
q → q + 1, separates this new cluster from 43 and automatically
isolates the new cluster from all the others.

It is worthwhile to investigate a little further: What happens if we
now add one more cluster to our set the (N + 2)nd cluster? The
answer to this is not too easy especially if we are dealing with
crowded clusters in low dimension spaces. Surprisingly as is shown
in Ref [30], it is easier to separate points by planes in a large n-
dimension space, rather than clusters. This is because cluster shapes
vary - they may be filamentary, dragon like or amoeba like objects
and to define the shape of a cluster requires more parameters than
to define the coefficients of a plane! In large dimension space the
many degrees of freedom available allows one to separate innumer-
able points with comparatively fewer planes. However for sparse
clusters this question will be answered by following the methods
of Ref[30], but with some what modified arguments because here,
we are dealing with separation of sparse clusters by planes rather

8Perhaps a good way to visualize a particular situation, is to assume that
n = 50;Nf = 10000 and starting values: N0 = 10 and q0 = 10, this
satisfies N0 << 2q0 .

than separation of points by planes as was done in [30].It will be
clear that most of the time we need not add one more plane, the
new plane can be adjusted so that it can separate both the cluster
number N+1 and the cluster number N+2 at the same time. Now
if the (N + 2)nd cluster falls in an empty quadrant among all the
2q+1 current quadrants then it is already separated from the others
and we don’t need to do anything (no need to add a plane); but if it
falls in the a quadrant where say one of the existing clusters (say)
71 resides then we do as follows: we find the centroid of the 71 and
join it to the centroid of this N+2 cluster, these two centroids can
be thought of as the ends of a line segment, similarly the centroids
of the N+1 and 43 can be thought of as the ends of another line seg-
ment - we now modify the q+ 1 plane so that it passes through the
“mid points” of these two segments thus separating the N + 1 and
N + 2 from all the others and themselves. (Remember N + 1 and
N + 2 are already separated from each other because it is assumed
that they are in different quadrants). If the next n clusters do not
fall in empty quadrants, then we can actually add a total of N + n
clusters into our set and in all probability the (q + 1)st will take
care of all of them. Only when we have cluster number N + n+ 1
do we may need to add the (q + 2)nd plane. Actually this addition
of a new plane maynot even be needed as soon as cluster number
(N + n+ 1) because many of the n new clusters which are added
will likely fall on empty quadrants so there is no need to immedi-
ately account for them by adjusting the (q + 1)st plane or adding
the(q + 2)nd plane. (In this para we have extended the logic enun-
ciated in para preceding section V A). The logic will fail if the any
of the n new clusters happen to fall in the same quadrant or two
of them sharing the same quadrant space with an existing cluster
say 43, then of course we must introduce the (q + 2)nd as soon as
this happens. But the chance of two new (given) clusters falling in
the same quadrant has a probability of 1/2q+1 which is very rare
indeed! (And if this rare event happens, there is no real problem:
we simply add a new plane at this point and start counting the clus-
ters from here on).9 But we have already shown that the number
of planes for sparse clusters is log2(N), we thus have proved the
following: The present method of classification using ‘Orientation
Vectors’, is NOT NP hard for the type of problems we are dealing
with.10 If the number of clusters is increased from N to N + ∆N ,
then the number of planes increase at worst linearly by ∆N and
at best only logarithmically ∆(log(N)). Increasing the number of
classes from k to k+1 only increases a processing elements by one.
QED
A NOTE : Regarding Algorithm It is perhaps quite obvious that
the above process of including clusters and determining planes can
be the basis of an algorithm, the details of the algorithm is avail-
able in [29 b],[30] as applied to separation of points by planes, the

9Having arrived at N clusters and q planes we have added the (q + 1)st

plane, we now have 2q+1 quadrants from the present 2q ; it is interesting
to conjecture how many clusters can we accomodate before we fill up the
2q+1 quadrants, or before we need the (q + 2)nd plane? The above logic
seems to indicate that if our starting q was much larger than the required
that is if N < 2q , it is reasonable to expect that this must be of O(N)

clusters , see Ref[30] for more details. Another problem is when the new
plane cuts across some existing cluster if this happens (an event not likely
for sparse clusters)the resulting cluster needs to be treated as two separate
clusters - the clusters need to be renumbered.
10It will probably be appreciated by those who have followed our logic,
closely till now, that the situation is far from NP Hard, in fact, the rela-
tionship q = O(log2(N)) greatly underlines the efficiency of the present
method.

13



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Fig. 10. Cluster of sample points in n-dimensional space

methods of which can be modified to separation of sparse clusters
by planes. The results of this study will be reported subsequently.

6.1 Dimension reduction
Dimension reduction is done by using auto encoders or by MNN’s,
which are nothing but neural networks with many layers and a con-
verging diverging type of architecture. See figure
The task of the auto encoder is to reduce the dimensionality of in-
put data and they are trained in such a way that the output just
reproduces, “mirrors”, the input. Since an auto encoder first re-
duces the data from an initial dimension say n to a lower dimen-
sion say m and then increases it back to n, albeit in stages, we
can think of an auto encoder (or MNN) as a mapping engine which
uses a NN architecture of a special type. There is an alternative
way of training an auto encoder ie. is by considering it as a Boltz-
mann machine (with binary units), however we will not consider
this here primarily because a Boltzmann machine is stochastic and
non-deterministic and secondly its binary nature makes applica-
tions more difficult. So we will consider an auto encoder (or MNN)
as a mapping engine which uses a NN having a special converging-
diverging type of architecture.
The purpose of the auto encoder is to reduce the dimension of
the data: If all the samples belong to an n-dimensional X-space,
it is assumed that each sample uses more number of dimensions
to describe an exemplar then strictly necessary: hence all the n-
components of an input vector (sample) are not really all indepen-
dent and it is hypothesized that the data really can be described by
saym variables Therefore for every input sample (x1,x2,.., xn) in
X-space there exists some m dimensional vector say (y1,y2,.., ym)
in Y-space, which describes the input vector. If such an equiv-
alence between every vector in X-space and some vector in Y-
space exists for all exemplars in the entire data set in X-space,
then we can conclude that all the data can be described by us-
ing only m-dimensions. We can then say that every sample in X-
space is a function of m−variables in Y-space and we can think

of the components of m-variables in Y-space as independent vari-
ables and the n-components of the X-space vectors are actually not
independent but dependent on these m variables. The function of
an auto encoder (MNN) is to capture this functional dependence
between X and Y, and a neural architecture is used for approxi-
mately capturing this functional dependence. The weights of the
processing elements are determined by imposing the condition that
it should “mirror” each input sample in the data set. The figure
below shows a sequence of transformations X-space to S-space
to T-space then to Y-space then to R-space to U-space and back
to X-space (since the condition V=X is imposed). These can be
thought of as a sequence of mappings (functions of functions etc.)
which reduces the data from n-dimension X-space tom-dimension
Y-space and back to n-dimension X-space (V-space), in stages:
n > k > i > m < j < l < n . The variables (y1,y2,.., ym)
can be considered as the reduced “independent” variables 11 and
the input data as n-dimensional dependent variables in x space.
The purpose of this section is just to demonstrate only two facts:
(i) That the mapping performed by a fully trained auto encoder
(MNN) is such that each cluster starting from a cluster in an in-
put layer is mapped to a unique cluster in the next layer,and this
is true from layer to layer. To prove this we take a simpler MNN
shown below:
The mappings made by the above architecture are shown pictorially
below:
It is clear that since we want the MNN to “mirror” each vector
this property of the mapping moving from one cluster to another is
correctly depicted for points 1 and 2 as shown above. The case of

11Think of a sample vector (point) in X space as a large sized photograph
involving n pixels and its reduced sized photograph of m pixels as a vec-
tor in Y space representing the same photograph, m < n, in addition we
may have to think of m as a measure of the smallest sized photograph (the
smallest number m), which can be used to distinguish the photographs in
the input set one from another.

14



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

Fig. 11. A Typical Configuration of an Auto encoder (MNN)

Fig. 12. A Simple Auto encoder (MNN)

Fig. 13. Mapping Property of Auto encoder (MNN)

15



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

points 3 and 4 which start from different clusters and land in the
same cluster cannot happen, because if the points 3 and 4 land up
in the same cluster (as shown for e.g. in Y-space), the network can-
not “mirror” the input thus the input vector cannot be recovered.
This property is important because it leads to an important The-
orem which shows that such MNN architectures can be used for
hierarchical classifiers where classes can be further sub classified
to subclasses.See Ref. [24]-[25].
(ii) The second fact is with regard to the activation function intro-
duced after each processing element. Going back to Fig 2, we have
defined s1 = tanh(βy1), now if β is large say β = 5 then the out-
put s1 becomes either close to +1 or -1 , hence if we choose such a
β for all the processing elements in the network, then all the clus-
ters will be mapped near the center of each quadrant in each space.
Such a situation makes the training of a MNN difficult, so if one
chooses the activation functions such that β ≈ 0.5 or smaller than
the mapping will take place in such a manner that the image points
fill up the quadrant space and not just crowd around its ‘center’, this
situation makes the training easier and it makes the functioning of
the architecture more flexible and a suitable configuration that re-
duces the input data can be found more easily. Many researchers
in Deep Learning have found this to be the case in their numerical
experiments.

7. CONCLUSION
To conclude, this paper has the following contributions:

—Introduction of the method of Orientation Vectors to show that
the classification problem using neural networks can be solved
in a manner which is NOT NP hard.

—A correspondence between the method of Orientation Vectors
and the Kolmogorov technique provided some stringent condi-
tions in the latter are relaxed.

—Its proved that a classification problem wherein each cluster is
distinguishable from the other, is always solvable (classifiable)
with a suitable feed forward neural network architecture contain-
ing three hidden layers.

—The number of processing elements solely depends on the num-
ber of clusters in the feature space,

—Further, we have shown when the feature space is of largen di-
mension and the number of clusters, N , are sparse s.t. N < 2n,
then the processing elements in the first layer are O(log2(N)).

—When the problem size increases that is if the number of clus-
ters is increased from N to N + ∆N , then the number of planes
increase at worst, linearly by ∆N , and at best, only logarithmi-
cally by ∆(log(N)). Increasing the number of classes from k to
k + 1 only increases the processing elements by one.

—Many examples have been explicitly solved and it has been
demonstrated through them that the method of Orientation Vec-
tors requires much less computational effort than Radial Basis
Function methods and other techniques wherein distance com-
putations are required (e.g. statistical).

—A practical method of applying the concept of Occum’s razor to
choose between two architectures which solves the same classi-
fication problem has been illustrated.

—The ramifications of the above findings on the field of Deep
Learning have also been briefly investigated and we have found
that it directly leads to the existence of certain types of NN ar-
chitectures which can be used as a “mapping engine”, which has
the property of “invertibility”, thus improving the prospect of
their deployment for solving problems involving Deep Learning

and hierarchical classification. The latter possibility has a lot of
future scope.

As a future work to this paper, we would focus on finding meth-
ods to apply these methods on practical data sets which occur in
the areas of Deep Learning ([17] - [19]), [31] on cloud computing
platforms.

8. ACKNOWLEDGEMENTS
The authors thank C Chaitanya of Ozonetel for the many technical
discussions that we had with him. We thank the management of
SNIST and ALPES for their encouragement.

9. DEDICATION
This paper is dedicated to the memory of D.S.M. Vishnu, (1925-
2015), Chief Research Engineer, Corporate Research Division
BHEL, Vikasnagar Hyderabad.

10. REFERENCES
[1] A. N. Kolmogorov: On the representation of continuous func-
tions of many variables by superpositions of continuous func-
tions of one variable and addition. Doklay Akademii Nauk USSR,
14(5):953 - 956, (1957). Translated in: Amer. Math Soc. Transl. 28,
55-59 (1963).
[2] G.G. Lorentz: Approximation of functions. Athena Series, Se-
lected Topics in Mathematics. Holt, Rinehart, Winston, Inc., New
York (1966).
[3] G.G. Lorentz: The 13th Problem of Hilbert, In Mathematical
Developments arising out of Hilberts Problems, F.E. Browder (ed),
Proc. of Symp. AMS 28, 419-430 (1976).
[4] G. Lorentz, M. Golitschek, and Y. Makovoz: Constructive Ap-
proximation: Advanced Problems. Springer (1996).
[5] D. A. Sprecher: On the structure of continuous functions of
several variables. Transactions Amer. Math. Soc, 115(3):340 - 355
(1965).
[6] D. A. Sprecher: An improvement in the superposition theorem
of Kolmogorov. Journal of Mathematical Analysis and Applica-
tions, 38:208 - 213 (1972).
[7] Bunpei Irie and Sei Miyake: Capabilities of Three-layered Per-
ceptrons, IEEE International Conference on Neural Networks ,
pp641-648, Vol 1.24-27-July, (1988).
[8] D. A. Sprecher: A numerical implementation of Kolmogorov’s
superpositions. Neural Networks, 9(5):765 - 772 (1996).
[9] D. A. Sprecher: A numerical implementation of Kolmogorov’s
superpositions II. Neural Networks, 10(3):447 - 457 (1997).
[10] Paul C. Kainen and Vera Kurkova: An Integral Upper Bound
for Neural Network Approximation, Neural Computation, 21,
2970-2989 (2009).
[11] Jrgen Braun, Michael Griebel: On a Constructive Proof of
Kolmogorov’s Superposition Theorem, Constructive Approxima-
tion,Volume 30, Issue 3, pp 653-675 (2009).
[12] David Sprecher: On computational algorithms for real-valued
continuous functions of several variables, Neural Networks 59, 16-
22(2014).
[13] Vasco Brattka : From Hilbert’s 13th Problem to the theory of
neural networks: constructive aspects of Kolmogorov’s Superposi-
tion Theorem, Kolmogrov’s Heritage in Mathematics, pp 273-274,
Springer (2007).
[14] Hecht-Nielsen, R.: Neurocomputing. Addison-Wesley, Read-
ing (1990).

16



International Journal of Computer Applications (0975 - 8887)
Volume 130 - No.7, November 2015

[15] Hecht-Nielsen, R.: Kolmogorov’s mapping neural network ex-
istence theorem. In Proceedings IEEE International Conference On
Neural Networks, volume II, pages 11-13, New York,IEEE Press
(1987).
[16] Rumelhart, D. E., Hinton, G. E., and R. J. Williams: Learning
representations by back-propagating errors. Nature, 323, 533–536
(1986).
[17] Yoshua Bengio: Learning Deep Architectures for AI. Foun-
dations and Trends in Machine Learning: Vol. 2: No. 1, pp 1-127
(2009).
[18] J. Schmidhuber: Deep Learning in Neural Networks: An
Overview. 75 pages, http:/ arxiv.org/abs/1404.7828,(2014).
[19] D. George and J.C. Hawkins: Trainable hierarchical
memory system and method, January 24 2012. URL https:/
www.google.com patents US8103603. US Patent 8,103,603.
[20] Corrinna Cortes and Vladmir Vapnik: Support-Vector Net-
works, Machine Learning, 20, 273-297 (1995)
[21] William B. Johnson and Joram Lindenstrauss: Extensions of
Lipschitz mappings on to a Hilbert Space, Contemporary Mathe-
matics, 26, pp 189-206 (1984)
[22]Sanjoy Dasgupta and Anupam Gupta: An Elementary Proof of
a Theorem of Johnson and Lindenstrauss, Random Struct.Alg., 22:
60–65, 2002 Wiley Periodicals.
[23] G.E. Hinton and R.R. Salkhutdinov: Reducing the Dimension-
ality with Neural Networks,v 313, Science, pp 504- 507 (2006)
[24] Dasika Ratna Deepthi and K. Eswaran: A mirroring theorem
and its application to a new method of unsupervised hierarchical
pattern classification. International Journal of Computer Science
and Information Security, pp. 016-025, vol 6, 2009.
[25] Dasika Ratna Deepthi and K. Eswaran: Pattern recognition and
memory mapping using mirroring neural networks. International
Journal of Computer Applications 1(12):88-96, February 2010.
[26] K Eswaran: Numenta lightning talk on dimension reduc-
tion and unsupervised learning. In Numenta HTM Workshop, Jun,
pages 23-24, 2008a.
[27] R.P. Lippmann: An introduction to computing with neural
nets, IEEE,ASSP magazine, pp 4-22 (1987)
[28] Ralph P. Boland and Jorge Urrutia: Separating Collection of
points in Euclidean Spaces, Information Processing Letters, vol 53,
no.4, pp, 177-183 (1995)
[29] K.Eswaran:A system and method of classification etc. Patents
filed IPO No.(a) 1256/CHE July 2006 and (b) 2669/CHE June 2015
[30] K.Eswaran: A non iterative method of separation of
points by planes and its application, Sent for publ. (2015)
http://arxiv.org/abs/1509.08742
[31] K.Eswaran and C. Chaitanya: Cloud based unsupervised learn-
ing architecture, Recent researches In AI and and Knowledge Engg.
Data Bases, WSEAS Conf. at Cambridge Univ. U.K. ISBN 978-
960-474-273-8, 2011.

17


	Introduction
	Approaches to the problem
	The Kolmogorov approach
	Orientation Vector approach

	Statement of Theorem and Proof
	Use of Unit Step Function
	Four layer problem

	EXAMPLES
	Three Dimensional Cube
	Four Dimensional Cube
	Nested Four Dimensional Cubes
	Generalization of Nested Cube Problem to n dimensions
	Generalization to sequence of nested cubes one inside the other

	 Application to Classification Problems
	Estimate of number of planes: Clusters of Level 1
	Estimate of number of planes: Clusters of Level 2
	Problems when the number of clusters are not sparse
	Some points for implementation in practical classification problems

	The method of orientation vectors is not NP hard
	Dimension reduction

	Conclusion
	ACKNOWLEDGEMENTS
	DEDICATION
	References

