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ABSTRACT 

Swarm cognition is the field that explores the possibility of 

implanting human cognitive functions on machines by 

transplanting the processes in naturally self-organized 

colonies. These natural colonies, especially ant colony, honey 

bee colony, etc, have been deeply studied to explore the 

factors which enable them to simulate high cognitive 

functions, such as decision making, labor division, etc. In 

swarm cognition a human neuron is matched to an ant or a 

honeybee in a colony, because both have limited capabilities 

and their reactions mainly depend only on local interactions 

with their neighbors.  This paper has postulated that any 

individual in a swarm is itself a network of neurons and 

thereby swarm is a network of networks. Each child network 

react to its neighboring networks such a way that where the 

mother network will be enabled to respond appropriately to 

the environmental changes. Accordingly, the paper models a 

honeybee as a network of neurons. The basic model is 

evaluated by simulating the behavior that a honeybee 

generates when it reports the food sources to the colony 

members. A neuron was modeled as a spiking neuron and the 

network consists of excitatory and inhibitory spiking neurons. 

The results have demonstrated that the proposed model is 

capable of demonstrating food reporting process of a 

honeybee. 
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1. INTRODUCTION 
In the field of Swarm Cognition[1] the cooperative behavior 

of the large number of unsophisticated agents has been 

studied. Though these  unsophisticated agents have very 

limited capabilities but with their cooperative and local 

interactions they have demonstrated globally interesting 

behaviors that is necessary for their survival. Their 

interactions can  be direct or indirect. Visual or audio contact, 

such as waggle dance and tremble dance, of honeybees are 

examples of direct communication while stigmergy or 

pheromones based communication between social insects are 

some examples for indirect communication[2].    

It has been identified that self-organization as the key 

parameter that allows these colonies to demonstrate high level 

cognitive functions such as food foraging, division of labor, 

nest-selection, etc. By analyzing these cognitive behaviors of 

natural self-organized systems many efficient algorithms have 

been developed to solve and to optimize the complex 

problems mainly in human society. These swarm-based 

algorithms are capable of providing low cost, efficient, and 

robust solutions to solve complex problems in other 

information societies. Ant Colony Optimization (ACO)[3], 

Artificial Bee Colony (ABC)[4], and Particle Swarm 

Optimization(PSO) are such significant swarm algorithms 

which have been developed by observing the ants food 

foraging, honeybee food foraging and nest selection, and birds 

flocking behaviors respectively.  The principle of these 

algorithms are successfully applied in image and data 

analysis, machine learning, operational research, and in 

finance and business applications[5]. Moreover many 

significant attempts[6,7] have been made in developing 

models to demonstrate the dynamicity of these societies, and 

to investigate how random fluctuations of the key parameters 

of self-organization affect to the decision making process of 

the swarm. 

These cooperative interactions of a swarm have been further 

analyzed in terms of understanding higher cognitive behaviors 

of human beings[8]. Swarm cognition works on the basic 

postulation that a neuron as a part of the brain can be 

expressed  in similar to a social insect as a part of a colony. A 

neuron in isolation has very limited capabilities and depends 

only on local interactions[9], however, brain demonstrates 

highly complex cognitive processes similar to what swarm 

displays as a colony. Artificial neural network[10] is 

considered as a key technique to model both short-term and 

long-term memory on machines. Undisputedly, the cognition 

that arises in colonies should then be able to demonstrate by 

the neurons in neural network as a local and cooperative 

interactions of those artificial neurons. Although a bee is an 

unsophisticated agent with limited capabilities, it can sense 

fragrance of flower patches, quantity of foods available, etc. 

After all it has the ability to remember those findings for a 

short period of time and conveys these facts to the colony. 

This indicates that a bee itself is a network of neurons which 

has capability to self-organize its activity to generate 

appropriate outputs.  

As in swarm cognition, this paper postulates that a self-

organized colony is similar to a self-organized neural network 

where individual entity in the network is also a self-organized 

network that generates local outputs which allow the mother 

network to generate appropriate global outputs to the 

environment. Under this conjecture, the paper presents a 

model which explains a honeybee as local interactions of 

excited and, inhibited spiking neurons. The proposed model 

has been especially designed to simulate local interactions and 

cooperation occurred within a honeybee in particular when it 

communicates the food sources to the colony. 

2. NECTAR FORAGING OF 

HONEYBEES 
A honeybee foraging process and communication patterns 

were analyzed to identify the key parameters that are used to 

communicate information about the found food sources to 

their community. Usually honeybees communicate through 

various communication channels such as using pheromones, 
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Fig 1: Waggle dance of a honeybee 

or tactile dancing with or without some vibrating sounds.  

Among many communication channels, waggle dance has 

been used by honeybees to inform new rewarding flowering 

sites to the colony and to recruit new foragers to the newly 

found flower patches[11]. The process of waggle dance with 

all its key features in general ecology of nectar foraging of 

honeybees can be described as follows:  

A colony is composed of a queen, female workers and drones. 

These worker bees are mainly responsible of caring hives, 

such as cleaning the hive, caring the larvae and youngs, 

feeding the queen and the drones, making honey, and 

gathering and storing nectar, water, etc. Therefore, the larger 

portion of the colony is workers and small of portion of them 

are scouts who search flower patches[12]. A scout keeps 

searching until its energy level is depleted or it finds flower-

patches. If it finds a flower patch, it comes to the comb and  

unloads the nectar sources to the receivers at the comb. The 

receiver takes the nectar to the storage area of the hive. The 

returned scout can either be a scout again, or a forager, or an 

unemployed bee. If the returned scout feels that the flower 

patch from where it brought the nectar is in high quality and 

quantity, it performs waggle dance to recruit more foragers.  If 

it is in considerable quality it simply returns and brings the 

nectar from the flower patch.  Otherwise, a scout can forget 

the visited flower patch and settle as an unemployed bee until 

it is recruited. Or it can become a scout again searching for 

new flower patches.   

Sometimes forager bees perform tremble dances to get 

unemployed bees to engage in nectar-receiving task [13, 14]. 

Key message that a forager wants to convey through this 

tremble dance is that it has found more-rewarding nectar 

source and no enough receivers to unload them efficiently. 

Meanwhile by performing this dance the forager tries to 

inform other mate-foragers not to recruit additional foragers to 

their nectar sources. Therefore, the tremble dances of a 

honeybee helps the colony to keep the balance between nectar 

storing and nectar take-in. Once foragers unload their nectar 

they may start to perform waggle dance to recruit unemployed 

foragers to visit their explored flower patches. If a forager bee 

has to wait too long to unload the nectar (when it was unable 

to find a receiver), then the forager bee does not perform the 

waggle dance to recruit additional foragers bees, because it 

does not have enough receivers to handle the unloading 

process. The receiver bee may get delayed for searching 

further away through the hive when the hive has not enough 

vacant storage cells, and it is almost full.   

 

 

 

 

 

 

 

 

 

 

 

Waggle dance [7,11,15-17] is a communication behavior 

which conveys the information about locations, and quality 

(high concentration, distance, easy to collect, etc) of the food 

sources that have been found. A dancing bee runs forward and 

performs the waggle dance as shown in the figure 1, while she 

is on the run, she vibrates her abdomen laterally and then 

comes back to her starting point.  According to the sources in 

the literature, a distance to the food source is proportioned to 

the length of this waggle run and the angle of the run to the 

sun represents the direction of the food sources. The higher 

the quality of nectar source, the higher the number of waggle 

runs per dancing bout and that increases the number of 

recruiters. Furthermore, the number of recruiters increases in 

proportion to the probability of returning forger would dance 

and the number of waggle runs made by her per visit. Through 

this mechanism the colony gathers nectar more efficiently by 

sending foragers to the better flower patches by abandoning 

less reward flower-patches, recruiting to more-rewarding 

patches, and searching for new patches. 

According to Seeley[16], a honeybee measures the 

profitability of located nectar source by sensing the energetic 

efficiency of its foraging. Therefore, the number of waggle 

runs per dance is not directly a linear function of closeness of 

the located nectar source to the hive but the energy 

expenditure per foraging trip. Moreover, through its waggle 

dance, a dancing bee reports on the current level of energy 

profitability of her forage site. Therefore, the number of 

waggle runs per bout is high when the nectar source is 

abundant, and it is low when it is scarce. The dancing bee 

does not perform her dance in one place but distributes it over 

the dance floor. Therefore when number of forage sites are 

being reported on the dancing floor, foragers can easily take a 

random sample of the dance information. This allows the 

colony to allocate foragers to more-rewarding food sources.  

3. BIOLOGY OF A HONEYBEE   
Nervous system of a honeybee (Apismellifera) comprises of 

the brain which is situated in the head, ocellus on the top of 

the brain, sub-esophageal ganglion which is at the bottom of 

the brain and seven other ganglia which are situated in the 

thorax and the abdomen. (two in the thorax and five in the 

abdomen) [18]. 

Nerve fibers connect the brain in to the ganglia, which 

resembles the spinal cord in higher animals. Ganglia seems to 

be work independently in their most of the functions, however 

they can be controlled by the brain also. Ganglia send the 

various information as well as feedbacks from internal and 

external environment to the main brain. So their behavior is a 

function of combine action of their brain and the ganglia. 

With this arrangement adult honeybee is capable to produce a 

range of complex behavior and execute some cognitive 

functions such as learning and short-term memory [19]. 

The brain of an adult is proportionately larger in comparison 

with its size. In the worker bee brain consists of the optic lobe 

that coordinate the visual sensations mainly. The central part 

(complex) of the brain seems acting as the main coordinating 

center [20].  So we hypothesized a simple neuronal model 

involving optic lobes central complex sub-esophageal 

ganglion and the thoracic and abdominal ganglia to explain 

the bee foraging behavior by assigning representative neurons 

for each component. 

In our hypothesized model the visual stimulus which are 

coming through the optic lobes (distance, direction to the sun, 

and other visual inputs) sub-esophageal ganglion (quantity 

and quality of the nectar) is relayed in the inter neurons of 

central complex it holds them in the short term memory, see 

figure 2.  Once the scout bee returns back to the colony it will 
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execute its dance mainly through the thoracic and optic 

ganglia depending on the feedback generated from the central 

complex. The rest of the colony through their mirror systems 

perceives this dance behavior (mainly through the central 

complex) and then selection flower patch will be done 

accordingly. 

 

 

.  

 

 

 

 

 

 

 

 

 

In order to test this hypothesis we assigned two neurons 

(sensory) for the visual and sub-esopgageal ganglia and one 

interneuron for the central complex. One motor neuron was 

assign for the thoracic and abdominal ganglia conveying 

signals to execute the dance. Feedback loops also assigned 

from each destinations from and to the central complex. The 

figure.3 depicts the skeleton of the neural network structure 

used to model a honeybee foraging behavior. Each neuron is 

connected to other neurons through a single synaptic 

connection. 

4. MODELING SPIKING NEURAL 

NETWORK  
A simplified spiking neuronal model of Izhikevich [21] was 

used to model neurons in our neural network. The simplified 

model is a derivative of Hodgkin-Huxley biophysical model 

and has high computational efficiency similar to integrate-

and-fire neuron model. This model describes dynamics of 

neurons using set of ordinal differential equations, eq.(1-3) as 

described in below: 

)1(1405204.0 Iuvv
dt

dv
  

)2()( ubva
dt

du
  

with the auxiliary after-spike resetting 

)3(,then,30if duucvmvv 
 

where v is the membrane potential of a neuron, u is the 

membrane recovery variable which controls both K and 
Na  ionic currents. The external current or the injected 

current is I(pA). The parameters a, b, and c describe the time 

scale of u, sensitivity of the u to v, and after spike reset value 

for v respectively.  The parameter t (ms) is the time step. 

Izhikevich [27] has estimated these parameters and many 

complicated cortical neuronal dynamics have been simulated 

using them. According to the findings, when v reaches to 

mv30 , a spike is generated, and both v and u are reset as in 

eq.(3).   

For excitatory neurons: a is 0.02, b is 0.2, c is -65mv,  and d is 

8. The inhibitory neurons or inter-neurons in the cortical cells 

are in two classes: fast spiking neurons and low-threshold 

spiking neurons. For our model we use low-threshold spiking 

neuron model because it is capable of retaining short-term 

Fig. 2: Schema to illustrate neural networks involved with honeybee foraging behavior 

Fig. 3: The skeleton of the neural network in terms of excitatory and inhibitory neurons 
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)6(1405204.0 synIIuvv
dt

dv


memory.  For the inhibitory neurons, the values for the 

parameters are  a = 0.02, b = 0.25, c = -65 mv and d =2.  

The ordinal differential equations in (1-2) can be further 

extended as in eq.(4-5) to describe the membrane potential 

updates of neurons due to synaptic conductance. 

 

where synI is the total synaptic current received by a neuron, 

in
jw is the weight of the jth pre-synaptic connection, 

in
jg  is the 

total ionic conductance of  jth  pre-synaptic connection, 
in
jE

 
is 

the reverse potential of jth pre-synaptic neuron, and 

msg 10
 
is the time decay constant for ionic conductance. 

We set 07.0in
jw  for excitatory synapses and 18.0in

jw  for 

inhibitory synapses. Furthermore, reverse potential for 

excitatory neurons are set to mvE in
j 30  and reverse 

potential for inhibitory neurons are set to mvE in
j 85 . The 

eq.(1) can be updated as in eq.(6) to integrate the pre-synaptic 

current, synI .  

 

The findings of Izhikevich [27] about human cortical neurons 

were adjusted to simulate the neuronal dynamics of 

honeybees. As per the findings of [22, 23], a spike is 

generated by a neuron of a honeybee when membrane 

potential of a honeybee's neuron reaches to mv45 . 

Therefore, the eq.(3) is adjusted  to release a spike at mv45 . 

We assumed that values of all the other parameters remain the 

same for the honeybee's neurons.  

5. IMPLEMENTATION AND RESULTS 
The relevant Matlab code for the network in figure.3 is given 

in figure.4. The modeled spiking neural network of a 

honeybee was evaluated under following six criteria to 

examine the output generated by the network . 

 Criteria 1: quantity of the nectar source is low, and 

quality of the nectar source is low. 

 Criteria 2: quantity of the nectar source is low, and 

quality of the nectar source is high. 

 Criteria 3: quantity of the nectar source is high, and 

quality of the nectar source is low. 

 Criteria 4: quantity of the nectar source is high, and 

quality of the nectar source is high. 

 Criteria 5: quantity of the nectar source is very 

high, and quality of the nectar is very high, for a 

shorter period of time. 

 Criteria 6: quantity of the nectar source is very 

high, and quality of the nectar is very high, for a 

longer period of time. 

Quantity of the nectar that honeybee has foraged is fed to the 

function by the parameter pIapp_1 and corresponding quality 

of the nectar has been feed to the system by using the 

parameter pIapp_2. The parameters startTime and endTime 

specify the starting time and the ending time of the honeybee 

dance.  From figure.5 to figure.10 illustrate the outputs 

generated under each criterion. Each figure from figure.5 to 

figure.10 has four subplots which shows the output (change 

of membrane potential in mv) generated by each neuron. 

 

function 

SimulationHoneyBee(pIapp_1,pIapp_2,startTime, 

endTime) 

total_legnth_time = 2000; 

n = 4;  

dt = 0.5;  

T = ceil(total_legnth_time/dt); 

neuroPara = ones(4,n); 

v = zeros(T,n); 

u = zeros(T,n); 

v(1,:) = -70  

u(1,:) = -14;  

neuroPara(1,:) = 0.02; 

neuroPara(2,:) = 0.2; neuroPara(2,3) = 0.25; 

neuroPara(3,:) = -65; 

neuroPara(4,:) = 8; neuroPara(4,3) = 2; 

in_synapse_hidden = 3;  

g_in_hidden = zeros(in_synapse_hidden,1); 

E_in_hidden = zeros(in_synapse_hidden,1); 

E_in_hidden(:,1) = -85; 

w_in_hidden = 0.9 * 2 * ones(1,in_synapse_hidden); 

tau_g_hidden = 10; 

p_inter = 0; 

in_synapse_motor = 1; g_in_motor = 

zeros(in_synapse_motor,1); 

E_in_motor = zeros(in_synapse_motor,1); 

E_in_motor(in_synapse_motor,1) = -30; 

w_in_motor = 0.07 * ones(1, in_synapse_motor); 

tau_g_motor = 10; 

for t = 1:T-1 

 if t*dt > startTime && t*dt < endTime 

       Iapp1 = pIapp_1; 

       Iapp2 = pIapp_2; 

    else 

        Iapp1 = 0; 

        Iapp2 = 0; 

   end 

   if v(t,1)< 45  

       dv = (0.04* v(t,1)+5)*v(t,1)+140-u(t,1); 

       v(t+1,1)= v(t,1)+ (dv +Iapp1)*dt; 

       du = neuroPara(1,1)* (neuroPara(2,1)*v(t,1) - 

u(t,1)); 

       u(t+1,1) = u(t,1) + dt*du; 

       p_visual = 0; 

   else 

       p_visual = 1; 

       v(t,1) = 45; 

       v(t+1,1) = neuroPara(3,1); 

       u(t+1,1) = u(t,1)+ neuroPara(4,1); 

)5(/
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SimulationHoneyBee(2, 2, 200, 500);

   end   

   if v(t,2)< 45  

       dv = (0.04* v(t,2)+5)*v(t,2)+140-u(t,2); 

       v(t+1,2)= v(t,2)+ (dv +Iapp2)*dt; 

       du = neuroPara(1,2)* (neuroPara(2,2)*v(t,2) - 

u(t,2)); 

       u(t+1,2) = u(t,2) + dt*du; 

       p_quality = 0; 

   else 

       p_quality = 1; 

       v(t,2) = 45; 

       v(t+1,2) = neuroPara(3,2); 

       u(t+1,2) = u(t,2)+ neuroPara(4,2); 

   end  

    g_in_hidden(1,1) = g_in_hidden(1,1) + p_visual; 

    g_in_hidden(2,1) = g_in_hidden(2,1) + p_quality; 

    g_in_hidden(3,1) = g_in_hidden(3,1) + p_inter; 

    iapp_hidden = w_in_hidden * (g_in_hidden .* 

E_in_hidden); 

    iapp_hidden = iapp_hidden - (w_in_hidden * 

g_in_hidden).* v(t,3); 

    g_in_hidden = (1- dt/tau_g_hidden)*g_in_hidden; 

    if v(t,3)< 45 

        dv = (0.04* v(t,3)+5)*v(t,3)+140-u(t,3); 

        v(t+1,3)= v(t,3)+ (dv + iapp_hidden)*dt; 

        du = neuroPara(1,3)* (neuroPara(2,3)*v(t,3) - 

u(t,3)); 

        u(t+1,3) = u(t,3) + dt*du; 

        p_inter = 0; 

    else 

         v(t,3) = 45; 

         v(t+1,3) = neuroPara(3,3); 

         u(t+1,3) = u(t,3) + neuroPara(4,3); 

         p_inter = 1; 

    end  

    g_in_motor(1,1) = g_in_motor(1,1) + p_inter; 

    iapp_motor = w_in_motor * (g_in_motor .* 

E_in_motor); 

    iapp_motor = iapp_motor - (w_in_motor * 

g_in_motor).* v(t,4); 

    g_in_motor = (1- dt/tau_g_motor)*g_in_motor; 

     if v(t,4)< 45 

        dv = (0.04* v(t,4)+5)*v(t,4)+140-u(t,4); 

        v(t+1,4)= v(t,4)+ (dv + iapp_motor)*dt; 

        du = neuroPara(1,4)* (neuroPara(2,4)*v(t,4) - 

u(t,4)); 

        u(t+1,4) = u(t,4) + dt*du; 

        p_motor = 0; 

    else  

         v(t,4) = 45; 

         v(t+1,4) = neuroPara(3,4); 

         u(t+1,4) = u(t,4) + neuroPara(4,4); 

         p_motor = 1; 

    end  

end  

plot((0:T-1)*dt,v(:,1),'r'); 

title('Excited Neuron that simulates Nectar 

Quantity'); 

xlabel('Time[ms]'); 

ylabel('Membrant voltage [mV]'); 

figure 

plot((0:T-1)*dt,v(:,2),'b'); 

title('Excited Neuron that simulates Nectar 

Quality'); 

xlabel('Time[ms]'); 

ylabel('Membrant voltage [mV]'); 

figure 

plot((0:T-1)*dt,v(:,3),'m'); 

title('Interneuron Neuron that simulates Short-term 

Memory'); 

xlabel('Time[ms]'); 

ylabel('Membrant voltage [mV]'); 

figure 

plot((0:T-1)*dt,v(:,4),'k'); 

title('Excited Neuron that simulates Sting 

Vibrations'); 

xlabel('Time[ms]'); 

ylabel('Membrant voltage [mV]'); 

end

 

 

Fig.4: The corresponding Matlab code of the 

modeled spiking -neural network.  

Fig. 5: Criteria 1: quantity is low, and quality is low. 
Matlab function " SimulationHoneyBee " is called with parameters where quantity of food sources was fed as 2, quality of food 

source was fed as 2, for the period of 300 ms. 
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SimulationHoneyBee(2, 8, 200, 500);
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SimulationHoneyBee(8, 2, 200, 500);
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Fig. 6: Criteria 2: quantity is low, and quality is high. 
Matlab function " SimulationHoneyBee " is called with parameters where quantity of food sources was fed 

as 2, quality of food source was fed as 8, for the period of 300 ms. 

 

Fig. 7: Criteria 3: quantity is high, and quality is low. 
Matlab function " SimulationHoneyBee " is called with parameters where quantity of food sources was fed 

as 8, quality of food source was fed as 2, for the period of 300 ms. 

 

Fig. 8: Criteria 4: quantity is high, and quality is high. 
Matlab function " SimulationHoneyBee " is called with parameters where quantity of food sources was fed 

as 8, quality of food source was fed as 8, for the period of 300 ms. 
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6. DISCUSSION 
The figures (from figure.5 to figure.9) depict the change of 

membrane potential as we change the rate of applied external 

current to excitatory sensory neurons (neuron that senses 

quality and neuron that senses quantity). When the rate of 

applied external current is significant to a particular sensory 

neuron that neuron has generated spikes (memory voltage of 

that neuron has reached to +45 mv). 

However, as depicted in these figures, even the applied 

external current has slightly excited the sensory neurons it has 

not significant enough to excite the interneuron through these 

excitatory neurons when the rate of the applied current is very 

low (see figures 5-7).  Therefore, interneuron has failed to 

excite the motor neuron and thereby the motor neuron has 

unable to perform any sting vibrations. On the other hand, 

when the rate of the applied current is significant (see 

figure.9), then it has successfully excited the interneuron and 

consequently has enabled the motor neuron also to fire by 

generating many spikes which results in strong sting 

vibrations.  

Furthermore, when we apply a higher rate of external current 

for a longer period of time to these excitatory neurons to 

indicate that higher volume and higher quality of a food 

source has been found, see figure.10, the motor excitatory 

neuron has increased the number of sting vibrations. 

Therefore, we can conclude that the proposed model has the 

ability to demonstrate honeybee food reporting behavior to 

their colony according to the abundance of the nectar. In 

particular, when the quality and the quantity of the food 

sources are not that significant then these excitations will 

inhibit the interneuron and thereby no sting vibrations will be 

produced by the excitatory motor neuron. On the other hand, 

if we increase the rate of the external current or the duration 

of the time period the external current has been applied, this 

Fig. 9: Criteria 5: quantity is very high, and quality is very high, for a shorter period of time. 
Matlab function " SimulationHoneyBee " is called with parameters where quantity of food sources was fed as 14, quality of 

food source was fed as 16, for the period of 300 ms. 

Fig. 10: Criteria 6: quantity is very high, and quality is very high, for a longer period of time. 
Matlab function " SimulationHoneyBee " is called with parameters where quantity of food sources was fed as 14, quality of 

food source was fed as 16, for the period of 700 ms. 
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will excite interneuron and  subsequently  will excite the 

motor neuron to perform sting vibrations.  

As further study the integration of LSTM (Long-Short-Term 

Memory) structure to model the interneuron is more essential 

to overcome the issue of tracing and not over-whelming the 

inter-neuronal memory about  the reported food sources at the 

colony. Interaction of this smaller network (a honey bee) with 

other similar networks (other honeybees) is needed to be 

further analyzed so that they will enable themselves to 

simulate higher cognitive tasks.   
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