
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

13

A Practical Approach and Mitigation Techniques on

Application Layer DDoS Attack in Web Server

Muhammad Yeasir Arafat
Department of Electrical and

Electronic Engineering
School of Engineering and

Computer ScienceIndependent
University, Bangladesh

Muhammad Morshed Alam
Department of Electrical and

Electronic
EngineeringIslamicUniversity
ofTechnology (IUT), Dhaka,

Bangladesh

Mohammad Fakrul Alam
Bdhub Limited,

Dhaka, Bangladesh

ABSTRACT

Denial of Service (DoS) or Distributed Denial of Service

(DDoS) is a powerful attack which prevents the system from

providing services to its legitimate users. Several approaches

exist to filter network-level attacks, but application-level

attacks are harder to detect at the host base firewall. Filtering

in application level can be computationally expensive and

difficult to scale, while DDoS attacks still creating bogus

positives that block legitimate users. In this paper, the authors

show application layer DoS attack for HTTP web server using

some open source DoS attack tools and also suggest some

realistic mechanisms that can protect a web server from

application-level DoS attacks especially while attacks

targeting the resources including CPU, sockets, memory of

the victim server. The authors propose a new DDoS defense

mechanism that protects http web servers from application-

level DDoS attacks based on the reverse proxy. The attack

flow detection mechanism detects attack flows based on the

symptom or stress at the server, since it is getting more

difficult to identify bad flows only based on the incoming

traffic patterns. A popular software known as Wireshark

which is a network protocol analyzer is used to capture the

packets during a DoS attack from the victim server Ethernet

interface to detect the attacking host IP address and analysis

the types of attack. We evaluate the performance of the

proposed scheme via experiment.

Keywords

HTTP, TCP, Slowloris, OWASP, OSI layer attack; Nginx,

fail2ban, IPtables.

1. INTRODUCTION
DoS attack is a malicious attempt to disrupt the service

provided by networks or servers. The power of a DoS attack is

amplified by incorporating over thousands of zombie

machines through bonnets [1] and mounting a DDoS attack.

Leveraging botnets and high-speed network technologies,

modern DoS attacks exceed the scale of 300 Gbps becoming a

major threat on the Internet [2]. Being one of the oldest type

of attacks on the Internet, DoS attacks are known for their

disruptiveness and ability to deplete the computing resources

and/or bandwidth of their victims in a matter of minutes.

Although many defense mechanisms have been proposed to

counter DDoS attacks [3], this remains a difficult issue,

especially because the attack traffic tends to mimic normal

traffic recently.

 If a small number of machines are participating in a DoS

attack to a selected server, the IP addresses of those attack

machines might be detected using the approaches[4] [5] of

without managing per-flow states. However, if the number of

machines participating in a DoS attack increase, each attack

node needs not send attack traffic at a high rate, since the

aggregate rate of attack traffic from many BOT nodes can be

sufficiently high to cause critical damage to the target node.

This kind of low rate DoS attacks may not be easily detected

by conventional metrics of per-flow traffic rate or SYN packet

rates, since such low rate attack traffic is not much different

from the traffic of normal users in terms of those metrics.

Thus, the decrease of the attack traffic rate due to the large

population of attack machines recruited through a botnet is

becoming a challenge for DDoS defense.

There is another factor that makes it more difficult to

discriminate attack traffic of bots from the traffic of normal

users. If DoS attack is launched at the application layer, then

the attack can be effective with a small number of packets.

For example, some specially crafted http request packets

might induce an extensive database search, inject, or modify

the data in the database disabling the target server ultimately.

Slowloris, slow header, slow header slow post and ddosim,

[6]-[8] are well-known tools that can launch network/transport

layer DoS attacks as well as application layer DoS attacks

such as http get flooding attack and CC attack.

These low rate application-level attacks may not be detected

by conventional DoS detection mechanisms based on the SYN

packet rate or traffic rate. In this paper, a new approach is

investigated to detect this application-level DoS attacks,

especially targeting http web servers. Recently emerging

application-level DoS attacks may not be distinguished from

normal user traffic. However, the intention of the attacking

machines differs from that of normal users. Although normal

users just want to get the information in which they are

interested, malicious machines attempt to burden the target

server as much as possible. Thus, we attempt to discriminate

the attack flows from normal user flows based on the time

interval during which each client makes the server busy. Since

this step requires at least tens of seconds, this attack flow

detection mechanism may be insufficient to protect a given

web server in real time. Thus, we use an additional step of IP

whitelist-based admission control to protect the given web

server or server farm in real time.

The remainder of this paper is organized as follows. Authors

first discuss related work in Section 2. In Section 3, authors

showed different types DoS attack on the web server and also

showed effect of the DoS attack on web server. In Section 4,

authors propose a mitigation technique based on reverse

proxy. In Section 4, the performance of the proposed DDoS

defense mechanism is evaluated by experiment in linux based

web server. Finally, conclusions are presented in Section 5.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

14

2. RELATED WORK
Mirkovic et al. [9] has classified DoS attacks into two

categories. The first type is the flooding attack, which targets

overwhelming the resource of the victims, by sending a

sufficiently large amount of traffic to the victims. The second

type is the vulnerability attack, which takes advantage of a

vulnerability in the victim and sends specially crafted

messages to the victim to disable it. In this paper, we focus

only on the first type of attack. Several types of low-rate DoS

attacks have been reported recently. One example is shrew

attack against TCP [10]. The attacker sends bursts of packets

to create packet losses in a link and increments the

retransmission timeout for certain TCP flows. The bursts are

sent only around the expiration times of these flows to reduce

the overall throughput. Another example is low-rate DoS

attacks against application servers [11].

Regarding the defense against these low-rate DoS attacks, Sun

et al. [12] reports that the ON/OFF traffic pattern of the Shrew

attack can be detected using the autocorrelation of the traffic

rate signal and dynamic time warping (DTW). Other

researchers have tried to detect the attack, from analyzing the

frequency information by spectral analysis [13] or by

considering the correlation between the ON/OFF traffic rate

signal and the round trip time of the affected flows [14].

However, since the attack traffic is generated by the attacker,

there is a possibility that the attackers evade these traffic

signatures-based detection mechanisms by changing the

traffic pattern. Thus, we attempt to detect attack flows based

on the symptoms appearing in the server, rather than based on

the incoming traffic pattern.

Srivasta et al. [15] suggested a mechanism based on

admission control and congestion control. In the admission

control step, the client is required to solve a computational

puzzle that is implemented through JavaScript. In the

congestion control step, the server monitors the behavior of

each flower to give a higher priority to well-behaving flows.

When the behavior is monitored, the response time for each

request packet is also considered. The packet response time is

related to the metric of the busy period considered in this

paper, but they are different, as described in the subsequent

sections. In addition, the congestion control functions are

performed in the server-side kernel or firewall. However,

since these defense functions can be a burden to the server

itself, we consider the defense mechanism that can protect a

single server or server farm while running on a machine

physically separated from the servers.

Ranjan et al. [16] tried to provide DDoS resilience to web

servers by allocating suspicion measure to each session and

scheduling the requests of each session based on the suspicion

measure. Since the suspicion measure tries to capture the

deviation of session behavior of the normal model, it is very

important to set up a reliable normal model. However, the

normal model construction is usually difficult, and normal

model might be susceptible to pollution by the attackers.

Ranjan's mechanism does not consider large scale attacks that

involve a large number of attack sessions, but our proposed

scheme can cope with such a large scale attack, because our

mechanism registers malicious flows in a blacklist and drops

the packets from the blacklisted IP addresses, instead of

allowing them with a lower priority.

3. TYPES OF HTTP DOS ATTACK AND

EFFECTS ON WEB SERVER
Application layer DDoS attacks employ legitimate HTTP

requests to flood out victim’s resources. Attackers attacking

victim web servers by HTTP GET requests (HTTP flooding),

HTTP post requests and pulling large image files. Sometimes

attackers can run a large number of queries through victim’s

search engine or database query and bring the server down.

To utilize the standard valid GET requests used to fetch

information, as in typical URL data retrievals (images,

information, etc.) Targeted server is barraged with basic GET

requests. Generally Botnets are usually employed in HTTP

GET flood attacks. HTTP GET flood attacks are hard to tell

from valid traffic because they use standard URL requests.

Slowloris used time-delayed HTTP headers to hold on to

HTTP connections and exhaust web server threads or

resources. This method employs HTTP POST requests used

with forms whose entire set of headers is sent correctly by

waiting for the complete message body to be sent, web servers

can support users with slow or intermittent connections.

Hence, any website which has formed, i.e. accepts HTTP

POST requests, is susceptible to such attacks common uses of

HTTP POST requests: login, uploading photo/video, sending

webmail / attachments, submitting feedback and etc. Are You

Dead Yet is used for launching HTTP Post DDoS Attack.

3.1 Slowloris HTTP DoS Attack
Slowloris is a GET-based DDoS tool on the impression of

keeping the server busy with very few resources by allowing a

single server to take down another web server with low

bandwidth and side effects on unrelated services and ports.

Slowloris holds connections open by sending slow,

incomplete HTTP requests and also time-delayed HTTP refers

headers to the victim web server and continues to send

consequent headers at normal intervals to keep the sockets

from closing. Slowloris is a highly-targeted attack, enabling

one web server to take down another server, without affecting

other services or ports on the target network. Slowloris does

this by holding as many connections to the target web server

open for as long as possible. It accomplishes this by creating

connections to the target server, but sending only a partial

request. Slowloris constantly sends more HTTP headers, but

never completes a request. The targeted server keeps each of

these false connections open. This eventually overflows the

maximum concurrent connection pool and leads to denial of

additional connections from legitimate clients.

The script is written by Rsnake. When the victim web server

receives incomplete HTTP headers, it assumes that a client is

on an unreliable and slow network, and the rest will arrive in

disjointed packets. On the other hand the request that actually

sent by slowloris tool usually never gets completed that cause

unavailable of sockets to the legitimate users with no http

acknowledgement. Instead of flooding the server with

requests, it holds the links open for a very long time. While

the slowloris attack is running, the log file will not be written

to the victim server until the request is completed. When the

attack stops or the session gets close there will be several 400

errors in the web server logs in Figure 1. Finally the victim

web server connection pool will be entirely busy processing

with httpd web application services to remain dedicated to the

client attacking due to lots of incomplete http requests

generated by slowloris tool and then it will start denying new

connection attempts from genuine clients.

Slowloris script runs on Linux based operating systems (OS)

like Centos or Ubuntu with a general format of the command

given below:

[root@web~]# perl ./slowloris.pl –dns [www.testserver.com]

–options

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

15

Here for the test and research purpose authors used slowloris

script in centos based Linux kernel with host Internet Protocol

(IP) address 123.200.0.38. The authors also choose a web

server with IP address 123.200.0.36 that also runs at centos

based Linux kernel which will be used as a victim web server

that will face slow loris DOS attack from the host

123.200.0.38.

Fig. 1 Basic difference between normal http request and

partial http request using slowloris tool

Here authors will discuss how the slowloris tools works and

how rapidly it can down a web server to its legitimate users.

Command to run the slowloris tool with domain or IP address

123.200.0.36 on the victim web server from the attack server

with IP address 123.200.0.38 is given below:

[root@web~]#perl ./slowloris.pl -dns 123.200.0.36 -port 80 -

timeout 1 -num 600000 –cache

After running this command slowloris script starts to send lots

of packets known as slow, incomplete http get request with

low bandwidth via building rapid sockets as we discussed

earlier to the victim web server which is 123.200.0.36 where

the slowloris script running OS with IP address 123.200.0.38

using the default http port 80 as like as below Figure 2.

Fig.2 slowloris script running from the attacking server

with IP address 123.200.0.38

When the script runs from the attacking server with IP address

123.200.0.38 for the detection on the attacking host authors

run tcpdump command on the victim server with IP address

123.200.0.36 to see the packets that pass through its Ethernet

interface 0 and save the file as slowlorisdetection.pcap in root

directory using below command-

[root@web ~]#tcpdump -n -i eth0 -s 0 -w

slowlorisdetection.pcap

Above pcap file gives the flow graph at wireshark which

shows the victim server IP address 123.200.0.36 sends 400

http bad requests to the attacking server 123.200.0.38 as like

as Figure 3 since the victim sever busy with handling

incomplete slow http get request. Therefore, it causes denial

of service (DoS) attack by using a very slow HTTP get

requests to the victim site as slow as possible, the server is

enforced to continue to wait for the complete headers to

arrive. If enough connections are opened to the victim server

in this format, it is quickly unable to handle legitimate

requests. As slowloris increased the running process of

service application httpd of Linux kernel it has a huge impact

on CPU initialization percentage.

Fig. 3 400 HTTP bad requests to the attacking server

123.200.0.38 from the victim 123.200.0.36

When attacker runs slowloris tool as DoS attack it increases

the CPU uses percentage of a victim machine as the service

httpd process increased from the kernel. Service httpd running

process at normal condition on the victim server with IP

addresses 123.200.0.36 when a legitimate user login to the

server.

3.2 OWASP HTTP Slow Header DoS

Attack
For a web server HTTP headers contain significant

information which is coming from the user, while the

requests are processed, web server waits to capture complete

request of http headers before processing for a message as an

acknowledgment to the request sender. DoS attackers took the

benefit of this behavior and produced lots of fake requests

which keep sending incomplete headers and requests that

never complete. Therefore server connections and memory

resources are tied up with these incomplete requests. The

Slow header attack works by exploiting the client idle timeout

value on the victim web server. This timeout is configured at

server side to drop a client connection if a client was found

idle during the time period. The Slow header attack finds the

estimated timeout value set on the victim server side and then

chooses a value which is lower than the configured value.

Then this attack generates an HTTP requests with partial

header or incomplete header to the victim web server. It keeps

sending one header based on the selected value such that

client idle timeout will not be triggered on the victim web

server and requests will not be completed. From above

discussions, Slow HTTP POST attack is very similar to

Slowloris. Here headers of HTTP POST requests are sent

correctly, including the content-length. After the headers are

sent and received, the POST message body is sent at a very

low rate, thus keeping the connection open for an extended

time. The server has to wait until all content arrives according

to the declared content-length.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

16

This tool provides graphical view and runs even on Windows

operating systems. For the research purpose authors have used

this tool in Windows-7 operating systems with IP address

202.4.96.197 and the victim server IP address is 202.4.96.198

which is centos based operating system with having a httpd

web server. The graphical view of this tool is given Figure 4.

Fig.4 OWASP DoS attack tool for HTTP slow headers

attack

When this attack runs, data traffics are captured from the

victim web server Ethernet interface using wireshark which

gives lots of partial http request packets mentioning a message

that the continuation of headers or non-http traffic as given

Figure 5.

Fig.5 Received partial HTTP packets captured from

victim Web server

Due to receive lots of incomplete http headers which never

complete therefore victim web server httpd service application

increases rapidly. The CPU utilization percentage and

memory resources are tied up as discussed earlier. Below

command is used for to see the httpd service running

processes on victim web server during the attack.

3.3 HTTP Slow Post DoS Attack
The distinction between slow header and slow post HTTP

DoS attack is that in case of slow header, the attack works

with partial or incomplete HTTP header. On the other hand,

slow post attack sends a full HTTP request header but sends

partial data. Slow post DoS attack works by partial posting of

data to the victim web server and keeping the socket

connections always alive. HTTP slow-post DoS attack uses a

common form of HTTP method used in most of applications,

thus causing high memory and CPU resource utilization in the

victim web server due to run lots of httpd service processes.

DoS attacker using this tool sends a HTTP post request with

large content-length header value. Due to this, the victim web

server has to consider that the user is going to send so much

of data as mentioned in the HTTP header. Therefore the

victim web server keeps the connection open to receive

content-length significance of data. But this DoS attack tool

sends one byte of POST data at regular time interval

configured by the attacker such that connection remains alive

while this creates lots of service httpd processes at victim web

server causing high memory and CPU utilization. Because of

this client idle timeout will not be triggered and server keeps

the connection alive till all the bytes of data specified in

content-length header were received by the web server.

This tool provides graphical view and runs even on Windows

operating systems. For the research purpose authors have used

this tool in Windows-7 operating systems with IP address

202.4.96.197 and the victim we server IP address is

202.4.96.198 which is a Centos based operating system with

having an httpd web server. The graphical view of this tool is

given in Figure 6.

Fig.6 OWASP DoS attack tool for HTTP slow post attack

When this attack runs, data traffics are captured from the

victim web server Ethernet interface using wireshark which

gives lots of partial http request packets mentioning a message

that the continuation of headers or non-http traffic as given

Figure 7.

Fig.7 Received HTTP packets with partial data captured

from the victim web server

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

17

This attack has significant effects of the memory and CPU

utilization of victim web server as lots of service httpd web

application processes to keep alive connections to get the

complete data as declared large content-length http header

value by the attacker in the attack-specific perimeters.

As the tool sent http headers with large content-length lots of

traffic of http packets has been sent to the victim web server,

however this tool sent one byte of POST data at regular time

interval configured by the attacker. During this attack packet

vs tick (X-axis shows Time, Y-axis shows packet) graph

shows high traffic that captured from the victim server

Ethernet interface as like as Figure 8.

Fig.8 Packet/tick Graph captured from the victim web

server interface during the HTTP slow post attack

The victim web server tied up to handle lots of slow httpd

processes with receiving large content-length of http header

where data’s are sent slowly one byte per regular interval.

Therefore, it shows the connection was reset to the legitimate

users during the attack.

4. PROPOSED MITIGATION

MECHANISM
In this paper, the authors approach some mechanism that can

protect a web server from application-level DoS attacks,

especially, the attacks targeting the resources, including CPU,

sockets, or memory of the web server. Since almost all the

DoS attack tools intend to disable the server or degrade the

performance of the server by offering excessive work to the

server or holding the limited resource of the server, authors

attempt to detect the malicious node based on the amount of

work given by each source node.

4.1 Approach 1: Reverse Web Proxy
A reverse proxy is a kind of proxy server that retrieves

resources on behalf of a client from one or more servers.

These resources are then returned to the client as though they

originated from the server itself or servers themselves. A

reverse proxy takes requests from the Internet and forwarding

them to servers in an internal network. Those making requests

connect to the proxy and may not be aware of the internal

network. Reverse proxies can hide the existence and

characteristics of an origin server or servers [17]. There are

several application firewall features in reverse proxy that can

protect against common web-based attacks. Without a reverse

proxy, removing malware or initiating takedowns can become

difficult. A reverse proxy can distribute the load from

incoming requests to several servers, with each server serving

its own application area. In the case of reverse proxying in the

neighborhoods of web servers, the reverse proxy may have to

rewrite the URL in each incoming request in order to match

the relevant internal location of the requested resource. A

reverse proxy is able to reduce load on its origin servers by

caching static content, as well as dynamic content known as

web acceleration.

In this paper author proposed an open source web proxy for

the mitigation DDoS attack called NGINX [18]. It is a load

balancing and as a proxy solution to run services from inside

those machines through your host's single public IP address.

There is some reason for choosing NGINX likes event driven;

its notifications or signals are used to mark the initiation or

completion of a process. Thus, the resources can be used by

another process until a process initiation event is triggered and

resource can be allocated and released dynamically. This leads

to the optimized use of memory and CPU. Another one is

asynchronous; threads can be executed concurrently without

blocking each other. It enhances the sharing of resources

without being dedicated and blocked. It also has single

threaded; where multiple clients can be handled by a single

worker process as the resources are not blocked. Most

powerful tools are Nginx DDoS Plugins. Nginx available

plugins are testcookie-nginx-module and roboo HTTP Robot

mitigation.

4.2 Proposed Solutions Model
In the experimentation, the authors employed a virtual

environment setup shown in Figure 9. The hardware

specifications, for all servers are same Inter Core i5 processor,

8GB RAM. For web server and reverse web server, authors

use centos kernel and for attacker server used backtrack

operating system. In this study, the authors specifically

focused on the variations of application layer DoS attack:

low-rate, slow send and slow read. Both low-rate and slow

send require a knowledge of the web server’s request timeout

to determine the instants at which attack requests should be

sent.

In step 2, attacker server attacks on apache server directly

server resource optimization becomes saluting condition and

it goes down. In step 3, changed the design put a reverse

proxy server before on apache server and all request forward

to reverse proxy server then apache server. The author

measures the web server performance and traffic comes to

normal.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

18

Web Server :

NGINX
Attack Server

• Step 1: Change DNS entry for web.bdnog.org to

192.168.1.100 (nx.bdnog.org)

• Step 2: nx.bdnog.org works as reverse proxy

Reverse Proxy (nx.bdnog.org)

192.168.1.100

Web Server :

Apache

1

2

3

Step-3

Web Server :

NGINX
Attack Server

Web Server (web.bdnog.org)

192.168.1.150

• All the hardwares are configured in Virtual Box

• DDoS launched in closed network

Reverse Proxy (nx.bdnog.org)

192.168.1.100
Attack Server (attack.bdnog.org)

192.168.1.200

Web Server :

Apache

1

2

3

Step-1

Web Server : NGINX Attack Server

Web Server (web.bdnog.org)

192.168.1.150

• Step 1: Launch attack on web.bdnog.org

• Step 2: Check web server performance

Reverse Proxy (nx.bdnog.org)

192.168.1.100
Attack Server (attack.bdnog.org)

192.168.1.200

Web Server :

Apache

1

2

3
Step-2

 Fig. 9 Proposed Solution Design

4.3 NGNIX
NGINX work processing algorithm show in Figure 10. A

dynamic firewall call test-cookies-module is conscientious for

deciding if the requests to a particular situation would

overload the web application and creating rules to identify and

handle these requests by decision engine and reverse proxy

processing incoming traffic in accordance with set rules.

Fig.10 Working algorithm of reverse proxy NGINX

The reverse proxy is a simple context aware http request

router, which redirects legitimate requests to the web

application and suspicious requests to the analyzer. Reverse

proxy routing is rule based; the same philosophy as a regular

firewall. The decision engine implements an adaptive system,

using test cookies module. When NGINX proxies a request, it

sends the request to a specified proxy server, fetches the

response, and sends it back to the client. To pass a request to

an HTTP proxy server, the proxy pass directive is specified

inside a location.

4.4 Scripts (Finding the BOT)
IP set is an extremely useful plugin to iptables, particularly if

anyone wants to have a firewall rule that matches against a

large set of addresses, ports, or if wants to dynamically

change the addresses and/or ports that a rule matches against.

The fact is that if anyone use more hosts 1000 through

iptables average load becomes huge, since iptables not

working with a large number of hosts. Some scripts are given

here to find the BOT from the web server easily [19]. In

Figure 11 (a) shown finding GET requests from access log

file. In Figure 11 (b) finding all access IP address logs from

the web server. In Figure 11 (c) short most possible BOT IP

address which may attack on the web server. In Figure 11 (d)

creating a blacklist in server and set all IP address found in

Figure 11(c) as a blacklisted.

Fig.11 (a) Finding the GET requests from the server

Fig.11 (b) Finding the GET request IP address from the server

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

19

Fig.11 (c) Sorting the GET request IP address from the server

Fig.11 (d) Set all IP address in IPtables

Fig.11 (e) Script for ipset

Fig.11 (f) Filter attack IP address in Filter rules

In Figure 11 (e) showed members of blacklisted IP address. In

Figure 11(f) filters all blacklisted IP address. Once an IP

comes in the blacklist, this IP will be drop automatically in

next time until it moves from the blacklist. Now run this

command as a frequent interval with the help of schedule Job

in linux based platform.

*/1 * * * * root /sbin/iptables/DDOS_HTTP_FILTER

4.5 Evaluation of the proposed DDoS

defense mechanism via simulation
In this subsection, the authors evaluate the performance of the

proposed DoS defense mechanism via real test bed

simulation. For this simulation authors used linux platform.

The authors investigate the efficacy of the proposed defense

mechanism in protecting web servers from low-rate but

resource-consuming attacks, by measuring the server response

time with and without the defense mechanism. Figure 20

shows the network topology for simulation. In the simulation

model, there are three servers which are on linux platform.

One server is attacker server, from where attacker generates

the DDoS attack. Another server is a web server with apache.

Rest server is our proposed reverse proxy NGINX server.

All the link rates are fixed to 100 Mbps, and the propagation

delay on each hop is fixed to 0.25 msec. Authors use the same

traffic model for both normal flows and attack flows to

investigate the scheme when the attack traffic pattern is

indistinguishable from the normal traffic pattern. Each normal

client or attack node makes only one TCP connection to an

internal server, and sends http request packets in a persistent

mode without closing the TCP connection. In order to

consider the worst case scenario, authors let each newly

established session persist until the end of the simulation.

Normal sessions arrive from the beginning of the simulation

with an average inter-arrival time of 1 sec. Attack flows arrive

after 1000 sec from the start of the simulation, with an

average inter-arrival time of 0.5 sec. The http request packets

are sent to the server with an exponentially distributed inter-

arrival time within each session. The average inter-arrival

time of request packets is set to 1 sec for both normal flows

and malicious flows. However, authors assume that the

request packets of the attackers require more processing time

at the server. Thus, the processing time of request packets

from normal nodes is modeled by an exponential distribution

with an average of 5 msec, and that of request packets from

malicious nodes is exponentially distributed with an average

of 250 msec.

After applying the defense mechanism authors showed the

http incoming traffic in Wireshark. As the tool sent http

headers with large content-length lots of traffic of http packets

has been sent to the victim web server, however this tool sent

one byte of POST data at regular time interval configured by

the attacker. During this attack packet vs tick (X-axis shows

Time, Y-axis shows packet) graph shows high traffic that

captured from the victim server Ethernet interface as like as

Figure 8. Now, authors compare the Figure 12 and Figure 8.

In Figure 8, it showed that without any defense mechanism

we received huge http traffic (25000 packets). Which makes

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.1, December2015

20

server resource saturation and out of service. After applying

our proposed defense mechanism, again authors start a DDoS

attack on the target server. But in this time server showed

normal traffic and it’s operated fine. In Figure 12 showed http

traffic after applying defense mechanism.

Fig.12 Packet/tick Graph captured from the victim web server interface during the HTTP slow post attack

5. CONCLUSION
In this paper, the authors investigated a new two-stage

mechanism that can protect web servers from low rate

resource-consuming DoS attacks. The proposed mechanism is

based on two key ideas. The first one is a reverse proxy-based

admission control scheme in the first stage, which protects the

servers from a sudden surge of attack flows. The authors also

investigated the condition to detect the victim servers and

freeze the whitelist based on the server response time in

detail. The second key idea is to detect attack flows based on

the concept of a whitelist-based admission control defined for

each pair of client and server IP addresses in the second stage.

The experiment results show that the reverse proxy based

scheme protects the server at the initial stage of DDoS attack,

and the whitelist-based admission control policies attack flow

detection mechanism distinguishes attack flows from normal

flows and effectively filters the IP addresses of the attackers

from the banned list. Although authors focused on protecting

http-based web servers in this paper, the proposed approach

will be extended to other types of web servers in future study.

6. REFERENCES
[1] D. Dagon, G. Gu, C. P. Lee, W. Lee, “A Taxonomy of

Botnet Structures,” in Proc. of Annual Computer

Security Applications Conference (ACSAC), Dec. 2007.

[2] www.arbornetworks.com

[3] T. Peng, C. Leckie, K. Ramamohanarao, “Survey of

Network-Based Defense Mechanisms Countering the

DoS and DDoS Problems,” ACM Computing Surveys,

vol. 39, no. 1, pp. 1-42, Apr. 2007.

[4] S. Kandula, D. Katabi, M. Jacob, A. W. Berger, “Botz-4-

sale: surviving organized DDoS attacks that mimic flash

crowds,” in Proc. of NSDI, Boston, MA, 2005.

[5] C. Estan, G. Varghese, “New Directions in Traffic

Measurement and Accounting,” in Proc. of ACM

SIGCOMM, Aug. 2002.

[6] R.R. Kompella, S. Singh, G. Varghese, “On Scalable

Attack Detection in the Network,” in Proc. of ACM

Internet Measurement Conference (IMC), Oct. 2004.

[7] Jose Nazario, BlackEnergy DDoS Bot Analysis,

Technical report, Arbor Networks, Oct. 2007.

[8] Z. Zhu, G. Lu, Y. Chen, Z. J. Fu, P. Roberts, K. Han,

“Botnet Research Survey,” in Proc. of IEEE COMPSAC,

pp. 967-972, 2008.

[9] ha.cker.org security lab, Slowloris HTTP DoS,

http://ha.cker s.org/slowloris/

[10] J. Mirkovic, P. Reiher, “A taxonomy of DDoS attack and

DDoS defense mechanisms,” SIGCOMM Computer

Communication Review, vol. 34, no. 2, pp. 39-53, 2004.

[11] A. Kuzmanovic, E. Knightly, “Low-rate TCP-targeted

denial of service attacks (the shrew vs. the mice and

elephants),” in Proc. of ACM SIGCOMM, pp. 75-86,

2003.

[12] G.Macia-Fernandez, J.E.Diaz-Verdejo, P.Garcia-

Teodoro, “Evaulation of a low-rate DoS attack against

application servers,” Computers & Security, vol. 27, no.

7, pp. 335-354, 2009.

[13] H. Sun, J. Lui, D. Yau, “Defending against low-rate TCP

attacks: dynamic detection and protection,” in Proc. of

12th IEEE International Conference on Network

Protocols (ICNP04), pp. 196-205, 2004.

[14] W. Wei, Y. Dong, D. Lu, G. Jin, H. Lao, “A novel

mechanism to defend against low-rate denial-of-service

attacks,” Lecture Notes Comput. Sci. 3975,pp. 261-271,

2006.

[15] G. Macia-Fernandez, R. A. Rodriguez-Gomez, J. E.

Diaz-Verdejo, “Defense techniques for low-rate DoS

attacks against application servers,” Computer Networks,

vol. 54, no. 15, pp. 2711-2727, 2010.

[16] M Srivatsa, A. Iyengar, J. Yin, “Mitigating application-

level denial of service attacks on web servers: a client-

transparent approach,” ACM Transactions on the Web,

vol. 2, no. 3, pp. 15:1-15:49, July 2008.

[17] http://en.wikipedia.org/wiki/Reverse_proxy

[18] www.nginx.com

[19] Mohammad Fakrul Alam, "Application Layer DDoS, A

Practical Approach & Mitigation Techniques, “South

Asian network Operators Group (SANOG) -23 Conference,

Thimpu, Bhutan, 2014.

IJCATM : www.ijcaonline.org

