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ABSTRACT
Courses timetabling has been one of the main problems for plan-
ning, maintaining and optimizing educational institutions. How-
ever, the intriguing mathematical problem which usually result
from the attempt of promoting optimal courses timetabling has
prevented a widely dedication of education managers to this area.
The present paper aims to summarize the usefulness of approxi-
mate techniques (e.g. genetic algorithms) for dealing with courses
timetabling. In particular, the successful application of the re-
sulting algorithm in a Brazilian university center is highlighted.
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1. THE COURSES TIMETABLING
PROGRAMMING PROBLEM

The elaboration of courses timetabling can be mathematically clas-
sified as a NP-hard combinatorial problem [5]. Thus, the greater
the number of classrooms, disciplines, students, and professors, the
so much greater the required time for obtaining an optimal solu-
tion is. Therefore, depending on these parameters the computation
of exact solutions is challenging and numerical methods are re-
quired. In this way, one can find a number of researches in literature
based on approximate techniques such as Tabu Search [7, 4], Evo-
lutionary Algorithms [9], Scatter Search [8], Path Relinking, Vari-
able Neighborhood Search, and Hybrid Heuristics [10, 2]. Actu-
ally, timetabling approaches are in development since last decades.
Events like the Practice and Theory on Automated Timetabling and
the International Timetabling Competition have been paramount
for this purpose.
The parameters reflecting organizational characteristics of the ed-
ucational system (e.g. the number of classrooms, disciplines, stu-

dents, professors, and courses) are necessary for an adequate mod-
eling of the courses timetabling problems, though they are not suf-
ficient. Didactic and personal goals must also be taken into account.
The former are related to the demands for students’ learning and the
latter are usually dedicated to improve professors’ performance.
In fact, these constraints may change through the time [1] and they
must be respected in order to maintain the good performance of the
institution. Among the didactic goals one must emphasize:

—Each student has a maximum number of classes per day;
—Each class must satisfy its week workload;

Further objectives may also be considered. For the sake of illustra-
tion, in order to improve students’ learning performance, Costa [4]
suggests that disciplines of a same course must be spread as uni-
formly as possible in different days of the week. In turn, though
the elaboration of a timetabling that fully satisfy professors’ pref-
erences might be impossible in practice [12], the involvement of
weak constraints in this way would certainly allow the promotion
of a better performance of the educational system. In this way, to
qualitatively (i.e. from personal judgments only) handle courses
timetabling might be discouraged.
As follows a genetic algorithm (GA) approach designed to involve
organizational, didactic, and personal characteristics of a Brazilian
university center is presented. In order to specify the organizational,
didactic, and personal goals taken into account in the present paper,
Table 1 brings a summary of notations.

2. THE PROPOSED GENETIC ALGORITHM
GA are in fact one of the several available techniques designed for
optimization purposes. They are a probabilistic search technique in
the sense that they rely on analogies to natural processes by gener-
ating, combining, and mutating individuals. With this regard each
individual involves a chromosome which is in fact an instance from
the state space of a set of (decision) variables.
The evolution is governed according to a given fitness function ad-
justed to the resulting individuals [3, 11] in such a way that the
greater the fitness value of a given individual the greater the chance
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Table 1. Summary of notations.

Symbol Description Values

npf number of professors 14

npe number of periods 9

nda number of class days 7

nsc number of schedules (time intervals) 2

ndi number of disciplines 53

nlb number of laboratories 4

nth
g number of generations of the GA simula-

tion
1 million

y
(l)
ijk indicative functions related to the disci-

plines goals
1 or 0

x
(l)
ijk indicative functions related to the profes-

sors’ goals
1 or 0

fA(y(0)) the number of disciplines on undesirable
days

-

fB(x0)) the number of professors on undesirable
days

-

fC(y(1)) the number of disciplines on unavailable
days

-

fD(x(1)) the number of professors on unavailable
days

-

fE(y(2)) the number of disciplines allocations in
the laboratories

-

fF (x(2)) the number of allocations of the professor -

fitness(·) the value of the objective function related
to a given chromosome

-

of it is selected for the next generations. Specifically, genetic oper-
ators like selection, crossover, and mutation are enveloped by GA
for operating on the individuals [3, 11]. As follows such operators
are presented in the context of the present paper.

2.1 The real timetabling problem
The problem addressed in this work is composed by npf = 14
professors of the Computer Science Program of a given Brazil-
ian university center. The curriculum grid of the program involves
npe = 9 periods and the classes occur on nda = 7 days: from Mon-
days to Saturdays. Further, every class day is divided in nsc = 2
time intervals (schedules) and the institution offers nlb = 4 com-
puter laboratories (LABIN), where 20 out of the ndi = 53 available
disciplines should be distributed through the LABIN everyday. All
notation employed here is described in the Table 1 .

2.2 The chromosomes
In the present work, a chromosome is a given timetabling for the
aforementioned Computer Science Program. Specifically, it is a
matrix where each row is a period at first level and a time inter-
val (schedule) at second level, whilst each column is a week day.
Table 2 illustrates this structure in such a way that each cell bin
must be fulfilled by the double (Discipline and Professor).

2.3 Selection
A roulette wheel method, similar to the one described in James [6],
was adopted for selecting chromosomes. So the greater the value
of the fitness the greater the probability of the respective individual

Table 2. Chromosome structure.
Period Monday Tuesday ... Saturday

1 schedule 1 schedule 1 ... schedule 1
1 schedule 2 schedule 2 ... schedule 2
2 schedule 1 schedule 1 ... schedule 1
2 schedule 2 schedule 2 ... schedule 2
... ... ... ... ...
9 schedule 1 schedule 1 ... schedule 1
9 schedule 2 schedule 2 ... schedule 2

being selected for genetic manipulation. At the end of this step, the
population of individuals to be crossed and mutated is obtained.

2.4 Crossover
Given the set of selected individuals, the crossover operation is ded-
icated to combine their chromosomes. In this way, under a 80%
crossover probability each individual is crossed with other one.
Then the crossover between two chromosomes, say parenta and
parentb, is performed as follows in order to generate two new
chromosomes, say childab and childba: a period, say i, is selected
at random (from 1 to 9). Then, childab equals parenta but at pe-
riod i childab equals parentb. The composition of childba follows
the same reasoning.

2.5 Mutation
The mutation operator is designed to mimic the possibility of new
individuals bringing characteristics that disregard from genetic in-
heritance, something possible though rare in practice. Here each
new chromosome, say child, is exposed to mutation at random with
a 10% probability. Specifically, the mutation operation is given by
exchanging and it is summarized as follows: a period, say i, is se-
lected at random (from 1 to 9) as well as two days, say daya and
dayb. Then one discipline offered in daya and other in dayb of
child in period i are exchanged.

2.6 Stop condition
Two stop criteria are considered for the simulation: When the nth

g

generation is achieved or when every constraint is satisfied. This
latter condition is reflected in the best fitness value.

2.7 Fitness
In summary, the fitness (objective) funtion adopted in the present
paper involves organizational, didactic, and personal goals and con-
straints in such a way that the greater the fitness value the better the
individual is. The constraints taken into account with this regard are
grouped in three types: undesirable, unavailable, and the inviolable
ones.

—Undesirable constraints: They are considered weak in the sense
that they can be violated. For example, the professors’ prefer-
ences for a given day;

—Unavailable constraints: They are considered moderate in the
sense that they can be violated if and only if there is a com-
peting constraint of the same nature or even inviolable. In other
terms, an unavailable constraint might be violated if a viable
timetabling is prevented otherwise;

—Inviolable constraints: They are considered strong in the sense
that they can never be violated. As illustration, the allocation of
the same professor to different classrooms at the same time is
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inviolable as well as the number of classes in the laboratories at
a given schedule being bounded by the number of laboratories.

In order to formally define the fitness function and the constraints,
let y(l)

ijk and x
(l)
ijk be indicative functions, respectively related to the

disciplines and professors such as:

y
(0)
ijk

1, If the discipline y is allocated in the period i, at desir-
able day j and schedule k;

0, Otherwise.

y
(1)
ijk

1, If the discipline y is allocated in the period i, at unde-
sirable day j and schedule k;

0, Otherwise.

y
(2)
ijk

1, If the discipline y is allocated at a laboratory in the
period i, at day j, schedule k;

0, Otherwise.

y
(3)
ijk

1, If the discipline y is allocated in the period i, at un-
available day j and schedule k;

0, Otherwise.

In turn, regarding x
(l)
ijk:

x
(0)
ijk

1, If the professor x is allocated in the period i, at unde-
sirable day (to him) j and schedule k;

0, Otherwise.

x
(1)
ijk

1, If the professor x is allocated in the period i, at un-
available day (to him) j and schedule k;

0, Otherwise.

x
(2)
ijk

1, If the professor x is allocated in the period i, at day j
and schedule k;

0, Otherwise.

Regarding the undesirable, unavailable, and inviolable restrictions,

2.7.1 Undesirable constraints. A discipline y of the period i
should not be allocated in an undesirable day j and shedule k. This
restriction is mathematically formulated as follows:

fA(y
(1)) =

npe∑
i=1

nda∑
j=1

nsc∑
k=1

y
(1)
ijk ≤ 0, (1)

where
y belongs to the set of disciplines (indexed from 1 to ndi);
i ≡ index of the period (i = 1, 2,..., npe);
j ≡ index of day of the week (j = 1, 2,..., nda);
k ≡ index of the schedule (k = 1, nsc).
Taking professors’ preferences into account, the professor x should
not be allocated at schedule k of the period i in the undesirable day
j:

fB(x
(0)) =

npe∑
i=1

nda∑
j=1

nsc∑
k=1

x
(0)
ijk ≤ 0, (2)

where x belongs to the set of professors (indexed from 1 to npf ).

2.7.2 Unavailable constraints. A discipline y of the period i
should not be allocate in an unavailable day j:

fC(y
(3)) =

npe∑
i=1

nda∑
j=1

nsc∑
k=1

y
(3)
ijk ≤ 0. (3)

Then, a professor x may not be allocate at one schedule k of the
period i in the day j classified as unavailable for him:

fD(x(1)) =

npe∑
i=1

nda∑
j=1

nsc∑
k=1

x
(1)
ijk ≤ 0. (4)

2.7.3 Inviolable constraints:. At schedule k the total sum of al-
locations of disciplines that make use of laboratories is constrained
by the number of laboratories of the institution:

fE(y
(2)) =

npe∑
i=1

nda∑
j=1

nsc∑
k=1

(
y
(2)
ijk − nlb

)
≤ 0. (5)

On the other hand, a professor may not assume more than a class-
room per schedule per day. Therefore the professor x may not be
allocated in two different periods i, in the same day j and same
schedule k:

fF (x
(2)) =

npe∑
i=1

nda∑
j=1

nsc∑
k=1

(x
(2)
ijk − 1) ≤ 0, (6)

Thus, in order to more severely penalize unavailable constraints in
relation to undesirable ones, the resulting fitness function is given
by

fitness(individual) =[
ndi∑
y=1

fA(y
(0))−

ndi∑
y=1

fA(y
(1))−

npf∑
x=1

fB(x
(0))

]
× 500

−

[
ndi∑
y=1

fC(y
(3)) +

npf∑
x=1

fF (x
(2))

]
× 1000

−

[npf∑
x=1

fD(x(1)) +

ndi∑
y=1

fE(y
(2))

]
× 3000 (7)

3. RESULTS
The resulting GA approach has been implemented in Java language
and it has been ran in a personal computer with Windows 7 Basic
operating system, with an Intel Pentium Dual-Core T4300 proces-
sor with 2.10 GHz and 4GB of RAM. The mutation and crossover
rates were respectively 10% and 80% whilst the population was
composed by 1500 individuals and the maximum number of gener-
ations equaled 1 million.
Four components of the fitness function have been accompanied
through simulation (the negative values considered in Equantion
(7) were suppressed). The first one calculates the aptitude with the
shock of the professors’ schedule (a), Equation (6); the second one
calculates the professors’ preferences (b), Equations (2) and (4);
the third computes the restrictions of the disciplines (c), Equations
(1), (3), and (5), and the last function (d) is the overall fitness value
from functions a, b, and c, Equation (7).
In Fig. (1) it is shown the results of the tests accomplished with 10
thousand and 50 thousand generations. As expected the greater the
number of generations the better the fitness is. Further, Function (a)
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Fig. 1. The performance of the best GA individual per function: (a) Num-
ber of schedule shocks; (b) Number of violations against professors’ prefer-
ences; (c) Number of violations against disciplines demands; (d) The overall
fitness function.

allows one to search for solutions where there is no schedule shock.
It is thus notable that this function is more intriguing than the other
ones (i.e., (b) and (c)). In turn, Function (b) is dedicated to optimize
professors’ preferences and it operates similarly to Function (a).
Regarding Function (d), the overall fitness value, it is evident from
the figure that the solution obtained with 50 thousand generations
is very similar to that involving 10 thousand generations.
To achieve the best solution, the algorithm has spent about two
hours of computation time. The quality of the solution provided by
the proposed algorithm was evaluated by means of the parameters:
quantity of shocks of schedules, number of violations against pro-
fessors’ preferences, disciplines, and the rate of laboratories usage
per day.
Regarding the best solution found in the simulation, Table 3 ex-
hibits that 7% (1 out of 14) of the professors would not have per-
sonal preferences satisfied, only. In turn, 18% (10 out of 53) of the
disciplines would not have its didactic constraints satisfied. In turn,
the found solution did violate no schedule constraint. Specifically,
every discipline which requires laboratories (a total of 20) had been
satisfied and the constraint regarding the number of laboratories per
schedule per day had always been satisfied. Such a solution seemed
unachievable in a qualitative timetabling elaboration.

Table 3. Summary of the satisfied and unsatisfied demands from
professors and disciplines.

Restriction Unavailable Undesirable Desirable

The professors’ pref-
erences

0% 7% 93%

Disciplines demands 0% 18% 82%

4. CONCLUSIONS
This work has addressed the courses timetabling problem of a
Brazilian university center by means of a genetic algorithm method.
The mathematical program problem taken into account had been an
effort to consider not only organizational constraints but also didac-
tic and personal goals.
The resulting algorithm has been implemented in Java language
and has presented useful solutions, though at high computational
time and memory demands. Anyway, it seems that the qualitative
elaboration (from personal judgments only) of a solution similar to
the proposed one would be an unlikely event.
In order to improve and allow the application of the resulting al-
gorithm in more complex educational systems, ongoing works re-
garding the research for alternative heuristics and languages are
currently in advance.
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