
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.10, December2015

21

Exploratory Testing: An Overview

Rashmi N.
Dayananda Sagar College of Engineering

S.M. Hills, K.S.Layout
Bangalore 560078

Suma V.
Dayananda Sagar College of Engineering

S.M. Hills, K.S.Layout
Bangalore 560078

ABSTRACT

There exist various approaches in software testing to test

software under development. Exploratory Testing is one such

important approach where no predefined test cases are used to

test the software. It is proven by researchers that exploratory

testing is equally effective in detecting defects as the

traditional testing where predefined test cases are used to test

the software. Hence, this paper brings in deeper insight to gain

knowledge of exploratory testing approach. Accordingly, this

paper put forth an understanding of the characteristics,

benefits, advantages and challenges, techniques, tools and

recent advances in exploratory testing. This awareness acts as

a travel light for further areas of research and progress in

exploratory testing. Further, thus gained understanding

enables the test team to formulate strategies towards better

modes of developing customer satisfied software products.

Keywords

High Quality Software, Software Engineering, Software

Testing, Exploratory Testing

1. INTRODUCTION
Human life today is highly unimaginable without software

which has found its use in almost all the fields such as

business, medical, education, military and

telecommunications. This dependency of human life on

software demands IT organizations to develop high quality

software [1]. High quality software is defect free, produces

predictable results and delivered within time and cost

constraints. Also, high quality software is manageable,

maintainable, dependable, understandable and efficient. The

important factors which affect the quality of a product are

quality of the process and the quality of the people which can

be represented mathematically as shown below [2].

(1)

Where, i = 1 requirement phase, 2 = …, 3= …. n =

maintenance phase of software development process

Hence, delivering such high quality software that possesses all

the above mentioned characteristics is a challenge in reality

faced by IT companies. As a solution, IT industries use

several software engineering processes, methods, techniques

and standards. One such process is Software Verification and

Validation, which detects defects in non-executable and

executable software under development and ensures that

software which is delivered to the customer, is almost defect

free. A defect is any inaccuracy, inadequacy, or undesired

behaviour that occurs either in the deliverable or in the

product. Software defects have an inherent nature of dwelling,

propagating and magnifying with the passage of development.

Fixing of these defects at later stages of development becomes

costly and time consuming. Thus, it is very much necessary to

detect and remove these defects right at the point they are

injected [2]. Software Testing, which is a quality control

activity, plays a significant role in identifying the presence of

defects in executable software. There exists various software

testing techniques which can be categorized into Scripted and

Unscripted Testing [3]. Exploratory Testing is an unscripted

testing where unlike scripted testing, there are no predefined

test cases to be executed and is a simultaneous learning,

design and execution of test cases. This paper intends to

provide an overview of Exploratory Testing in terms of its

characteristics, benefits, advantages and drawbacks. The paper

also discusses the techniques, models, metrics and tools

supporting Exploratory Testing.

2. EXPLORATORY TESTING
Exploratory Testing, introduced by Cem Kaner in 1960’s is a

recognized testing approach but has commonly been referred

to as ad hoc testing or error guessing [3]. It differs from the

conventional test case based testing in that the tests are not

based on the predefined test cases. Instead it is a creative,

experience based approach in which test design, execution

and learning are simultaneous activities and the results of the

tests executed are in turn applied for designing further tests.

Therefore, exploratory testing is deemed to be a testing

activity which involves simultaneous learning in association

with test design generation and conducting test execution [3].

There are several scenarios which are considered to be best

suitable for Exploratory Testing. For an instance, the

following scenario explains a situation where the tester is

assigned the task of testing a photo editing program in four

hours. The tester's aim here is to assess the program against

the standards of the Microsoft Windows Compatibility
Certification Program and to report any existing compatibility

violations. In order to test this, the tester sets the memory

slide bar to 5% and performs memory intensive functions. The

tester sets the image size to 100 inches square which is a big

canvass, fills the canvass with a color and also tries to add the

special graphical effect such as ripple effect to the image.

When tester was doing this he immediately gets an error

message informing that there is insufficient memory to

perform the operation. So this satisfies the desired stability of

the program. Next, the tester goes ahead with applying the rest

of the graphical effects to the image and to his surprise the

program would crank away for five minutes eventually giving

an error message: " Error -32: Sorry, this error is fatal" and the

application crashed [3].

Ad hoc testing, a special case of Exploratory Testing has a

sufficiently detailed test notes using which the tests can be

rerun by reading them [4]. Exploratory Testing emphasizes

learning and adaptability which comprises of four important

activities such as learning, design, execution and

interpretation activities [5].

Learning, guides what to test, how to test and how to

recognize a problem. A tester learns about competitive

products, and the history of the product. Also, the tester

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.10, December2015

22

inspects the product under test, questions, reviews written

sources, and experiments with the tools [5].

Design is an activity that enables the testers to create, and

construct tests according to the plan. Examples of design

activities include mapping of test techniques to test ideas,

tools to test techniques, staff skills to tools/techniques,

development of supporting test data, development of

supporting oracle and so on [5].

Execution, involves test execution and collection of results.

Execution is either manual or automated. Configuration of

the product under test, pair testing, creating and debugging

automated tests are examples of execution activities [5].

Interpretation makes the tester learn from the program in

terms of the product and the mode of testing the product.

Interpretation activities include determining the pass and fail

criteria of test [5].

Robust Characteristics of Exploratory Testing (ET)

Exploratory Testing is popular among testers because of its

capability to perform testing in absence of pre-defined test

cases and is lead by the results of previously performed tests.

The focus in exploratory testing is on finding defects by

exploration, thus, several unexpected defects can be predicted

and detected which otherwise escapes conventional testing

approaches.

The important characteristics of exploratory testing include

1. Test cases are not defined in advance. Instead,

exploratory testing is an exploration with a

universal mission without step-by-step instructions

on how to accomplish the mission.

2. ET is guided by the results of previously performed

tests and the gained knowledge from them. An

exploratory tester uses any available information

such as requirements documents, a user’s manual,

or even a marketing brochure for testing purposes.

3. ET is highly focused on detecting defects by

exploration as opposed to developing test cases for

later use.

4. Exploratory testing is simultaneously learning the

system under test, designing the test, and execution

of the test.

5. Effectiveness of exploratory testing depends on

tester’s knowledge, skills, and experience [6].

Benefits of Exploratory Testing

The vigorous nature of exploratory testing is useful in various

ways during software development process. Some of the

benefits of exploratory testing are

1. It increases the defect detection efficiency in terms

of defect count, defect severity levels and number of

false defect reports.

2. Improves the skills of the tester through

simultaneous learning since the tester can learn

about the behavior and the failure of the system

under test.

3. Pre-defined test cases are not required in

exploratory testing which hence leads to reduced

documentation.

4. Exploratory testing does not require detailed

requirements or specification document.

5. A rapid flow of feedback from testing to developers

and testers without the need to hold to

organizational obstacles [6].

Despite of benefits, yet, ET is suitable in few types

of applications which are mentioned below.

Areas well suited for Exploratory Testing

Exploratory Testing is applicable in the following situations.

 When a rapid feedback is needed on a new feature

or a product.

 When a product needs to be learnt quickly.

 When the tests on the product needs to be expanded

and the product is already tested using pre-defined

test cases.

 When an important defect needs to be detected in

the shortest period of time.

 When a particular needs to be investigated and

isolated.

 When the status of a particular risk needs to be

investigated.

In addition to the above situations exploratory testing also fits

in the following situations.

 To improve scripted tests.

 To interpret imprecise test instructions.

 To perform product analysis and test planning.

 To write new test scripts.

 To perform regression testing based on old bug

reports[7].

Exploratory Testing is basically an approach where any

testing technique for e.g. scenario-based testing, model-based

testing can be performed in an exploratory manner [7].

Structure of ET

Exploratory Testing has a definite structure with external and

internal dimensions. External structure consists of elements

such as time, tester, product, mission and reporting. A tester

over a period of time interacts with a product to satisfy a

testing mission and reporting results. During this process the

tester aligns towards the testing mission, the tester imagines a

series of questions about the product, designs tests and

executes the tests to get the answers for those questions. The

tester adjusts the tests and continues exploring if the answers

are not satisfactory. The status and the results of the tests are

reported by the tester anytime. Internal structure of

exploratory testing exists inside the mind of the tester.

Therefore, an exploratory tester possesses the following

characteristics.

Test Design: Being a test designer an exploratory tester

designs the test which systematically explores the product.

Careful Observation: Being a cautious observer an

exploratory tester observes anything unusual or mysterious

and must be able to distinguish between observation and

inference.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.10, December2015

23

Critical Thinking: Exploratory testers have the ability to

assess and describe their logic that helps in reporting the

status of the testing.

Diverse Ideas: Exploratory testers create new by making use

of heuristics such as guidelines, generic checklists,

mnemonics, or rules of thumb.

Rich Resources: A list of tools, information sources and test

data are prepared by exploratory testers so that they can be

applied appropriately during testing [7].

Exploratory Testing Techniques

Important exploratory testing techniques are

Freestyle Exploratory Testing

This technique does not include specific charters. The tester

freely explores the product by learning, designing and

executing the tests. Defect Reports are the only official result

obtained from this technique. Freestyle exploratory testing is

managed in two ways namely by delegation and by

participation. In exploratory testing managed by delegation,

the test lead specifies the charters and the testers continue

designing and executing the tests to achieve the charters, and

report back. The test reports in this technique may be written

or oral. In Exploratory Testing managed by participation the

test lead also performs testing along with other testers. This

participation eliminates potential confusions in the testing

team. Team exploratory testing is a technique where the

collective effort of the people in detecting the defects leads to

better ideas than if they worked individually [7].

Session Based Test Management

A session being the basic testing work unit, is an

uninterrupted block of reviewble, chartered test effort. By

"Uninterrupted" indicates no significant interruptions such as

no telephone calls, emails, chatting, meetings. "Reviewable"

indicates producing a session report that is reviewed by test

manager thus helping the manager in taking decisions. The

meaning of "chartered" is having a mission for testing

activity. A session normally lasts for 90 minutes, but there

might be short and long sessions which lasts for 45 minutes to

2 hours.

Each session in turn consists of three kinds of tasks namely,

test design and execution, bug investigation and reporting and

session setup. These are together called "TBS" metrics. Test

design and execution deals with scanning the product and

looking for problems. Bug investigation and reporting is the

process of detecting and the reporting of a bug. Certain

activities such as configuring equipment, studying manuals,

locating materials or writing a session report are required for

setting up a session. Session based test management is also

accompanied "opportunity" testing. Opportunity testing is

any testing which does not match with the charter of testing.

In addition to task breakdown metrics a session sheet also

contains three important parts such as bugs, issues and notes.

Bugs determine the quality of the product, issues are the

questions or problems related to the testing process, notes

consists of test case ideas, lists of functions, risks etc. At the

end of each session, debriefing of the session takes place.

Debriefing gives an idea of the progress done in a test session.

A session report consists of the following sections

1. Session Charter(areas to be tested)

2. Tester name

3. Date and time started

4. Task breakdown(TBS metrics)

5. Data files

6. Test notes

7. Issues

8. Bugs

These reports after the session are stored with other reports in

the database and are then scanned by a tool, which breaks

them into the basic elements, normalizes them and

summarizes them into tables and metrics. The scanning tool

makes about 80 syntax and consistency checks on each sheet.

Output of the scanner is a group of text tables. Each text table

is in a delimited format suitable for importing to MS Excel for

analysis purposes. The text tables are as follows

 Test Notes (test notes sections by session

ID)Bugs(bug records, by bug ID and session ID)

 Issues(issue records, by issue ID and session ID)

 Charters(charter statements and area keywords, by

session ID)

 Date Files(data file names by session ID)

 Session Breakdowns(Session metrics, by session

ID)

 Coverage Breakdowns(session metrics, by area

keywords)

 Tester Breakdowns(session metrics, by tester name)

 Day Breakdowns(session metrics, by day)

 ToDo sessions(Incomplete session sheets) [7]

Some of the metrics obtained from session based test

management method are

 Number of sessions completed.

 Number of problems found

 Function areas covered

 Percentage of session time spent setting up for

testing

 percentage of session time spent on testing

 percentage of time spent investigating problems

 velocity of charter

 average session execution Progress of testing can

then be measured using these metrics which helps

the management to take decisions.

A sample session sheet can be referenced in [8]

Thread Based Test Management

This method was introduced by James Bach in 2010. A thread

is a test idea or a test activity. Thread Based Test Management

is a generalization of Session Based Test Management.

Thread Based test Management is an easy and quick method

to start and is not limited by time. The method starts by listing

the test ideas as threads and then arranging these threads using

mind map tool [9].

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.10, December2015

24

Figure 1: Thread Based Test Management

3. xBTM
xBTM was first introduced by Michael Albrecht and Christin

Wiedemann of AddQ Consulting in 2011. xBTM is the

combination of Session Based Test Management and Thread

Based Test Management where "x" represents number of

sessions or threads. xBTM starts by using session based test

management or thread based management. A mind map is

designed based on the context by listing test ideas for test

activities, estimating the number of charters needed and

updating the mind map as and when the test progresses [9].

Figure 2: xBTM

Tour Based Exploratory Testing

An exploratory tester justifies for five specific properties such

as user inputs, state, code-paths, user data and execution

environment while performing exploratory testing. During

this process, the tester would be taking decisions regarding

small things such as choosing among atomic inputs, arranging

atomic inputs in combination or in sequence. The tester does

this with the use of input filters, use of input checks and

exception handlers etc. For taking large decisions concerning

feature interaction, data flows and choosing the path through

UI exploratory testers use tourism metaphor where the

exploration of the software is done using the tools such as

organized tours, guidebooks, maps and local information. This

helps the tester in setting goals during testing.

"Tourist " metaphor is suitable for exploratory testing where a

tester tries to explore a new destination. An exploratory tester

selects a combination of features while performing

exploratory testing similar to a mix of landmarks and sites as

selected by tourists on a tour. As tourists partition the

destination into physical boundaries or districts such as

business district, entertainment district, theatre district etc an
exploratory tester partitions the features of an application.

1. Business District - It contains the features and functions on

which the business of an organization mainly depends. It

consists of starting and the shutdown code. Tours associated

with the district are

i) The guidebook Tour

ii) The Money Tour

iii) The Landmark tour

iv) The Intellectual Tour

v) The FedEx Tour

vi) The After-Hours Tour

vii) The Garbage Collector's Tour

2. Historical District - The main aim in this district is to test

the functionality of the legacy code and verify the bug fixes.

The tours associated with the district are

i) The Bad Neighborhood Tour

ii) The Museum Tour

iii) The Prior Version Tour

3. Tourist District - This is district where new testers are

always attracted than the experienced. The tours associated

with the district are

i) The Collector's Tour

ii) The Lonely Businessman Tour

iii) The Supermodel Tour

iv) The TOGOF Tour

v) The Scottish Pub Tour

4. Entertainment District - This district involves supporting

features such as formatting texts, modifying backgrounds in a

word processor than the main features. In a word processor,

the supporting features are formatting texts, modifying

backgrounds and templates etc. The associated tours are

i) The Supporting Actor Tour

ii) The Back Alley Tour

iii) The All-Nighter Tour

5. Hotel District - This district often involves tours where a

tester tests the secondary and supporting functions. Associated

tours are

i) The Rained Out Tour

ii) The Couch Potato Tour

6- Seedy District - In this district the testers test the sections

of software that are vulnerable. The tours associated are

i) The Saboteur

ii) The Antisocial Tour

iii) The Obsessive-Compulsive Tour

Hybrid Exploratory Testing Techniques

Scripted and Exploratory Testing

Scripted and Exploratory Testing coexists where the scripts

present a structure and exploratory testing adds variation to

increase the effectiveness of the combined approach. This

approach begins with formal scripted testing, which is later

continued by exploratory testing..

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.10, December2015

25

Scenario Based Exploratory Testing

End-to-End Scenario Testing is performed by testers when

they perform manual testing. The popularity of scenario

testing is because of the confidence it gives to the users about

the product that it will work as expected. A Scenario performs

the following functions

 tells a user story

 describes a requirement

 demonstrates how a feature works

 demonstrates an integration scenario

 describes setup and installation

 describes cautions and things that could go wrong

Scenario Based Exploration is performed using existing

scenarios and variations are injected as and when required,

thus translating a single scenario into many test cases by

considering choices in input selection, data usage and

environmental conditions. There are two ways through which

variations are injected into a scenario testing: by scenario

operators and tours [10].

Exploratory Testers

Exploratory testing is based on the knowledge of the testers

that varies from person to person just as any other kind of

knowledge. The knowledge that the testers possess may be

obtained from previous projects, or drawn on the experience

of other people. Exploratory testers may also have on the

knowledge from the training they received or from the

published sources [11].

Exploratory testers use heuristics to make decisions.

Heuristics is defined as "Of or relating to a usually speculative

formulation serving as the guide in the investigation or

solution of a problem"(American Heritage Dictionary of the

English Language 3rd edition). James Bach has developed a

model named Satisfice Heuristic Test Strategy Model that

shows the types of the knowledge used by the explorers. In

this model, environment of the project, quality criteria defined

on the project and elements of the product being tested

combine with test techniques to affect the quality of the

product. Each of these elements in turn consists of several

components that help the testers to determine the information

they need for the project [11].

Figure 3: Satisfice Heuristic Test Strategy Model

Learning Styles and their applications to Exploratory

Testing

An important activity of exploratory testing is learning about

the software, including its weaknesses, potential failure

modes, potential applications, market, configuration

variability. Several models of learning styles have been

proposed. A learning style is a person’s “characteristic

strengths and preferences in the ways they take in and process

information In 1988 Felder-Silverman proposed a model of

learning styles that indicates a person's predilections on five

continua: Sensory/ Intuitive, Visual/Verbal,

Inductive/Deductive, Active/Reflective and Sequential/Global

[12].

Figure 4: Felder-Silverman Learning Styles

Sensory/Intuitive

According to this model, a person with a preference to

sensory information is one who relies more on the information

he receives through his external senses, while a person with a

preference for intuitive information relies on his internal

information (generated from memory, conjecture, and

interpretation) and intuition. The sensory-based person

focuses on his actual observations of the software. The

intuitor will focus on the internal model of the software that is

under test.

Visual/Verbal

Visual learners retain information they get from visual images

such as pictures, movies, diagrams or demonstrations. Verbal

learners retain information they hear (or read) such as

lectures, written words, and mathematical formulas.

Visual learners will tend to work with an internal model that

is picture-based such as a set of UML diagrams, flowcharts, or

even mental screenshots. Verbal learners would use a textual

model such as textual description of the system for testing.

Inductive/Deductive

An inductive learner prefers to work from specifics and derive

the generalities, while a deductive learner starts with the

generalities and applies them to the specific situations.

An inductive learner collects as many specifics as possible

and generalizes them to the application. A deductive learner

Sensory Intuitive

Visual Verbal

Inductive Deductive

Active Reflective

Sequential Global

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.10, December2015

26

does testing by keeping a collection of general principles and

heuristics and looks for ways to specifically and applies these

generalities.

Active/Reflective

Active learners discuss with others or may do experiment with

information as soon as they get it. Reflective learners think

about information before they use it. They prefer to work

alone.

An active tester often executes many test cases rapidly and

views each test case as an experiment. A reflective tester, on

the other hand, executes few test cases.

Sequential/Global

Sequential learners begin learning in small bits incrementally

building on the knowledge they have already learned. Global

learners, however, tend to learn in large portions.

A sequential learner builds information and knowledge in a

logical progression, while a global learner needs critical

pieces of information in order to get the understanding of the

subject [12].

Other Styles of Explorations

There exist other styles of explorations for real-time and

embedded systems to uncover uncertainties [13].

Environmental explorations

Environmental explorations simulate uncertainty in the

environment in which the system is operating. These

uncertainties may arise from operating system anomalies or

from operational domain disturbances, such as a power surge

or a violent storm.

Input explorations

Input explorations simulate uncertainties such as false or

missed interrupts, anomalous data, and deliberately poisoned

data which further leads to series of failures that overload the

system.

Output explorations

Output explorations simulate gross or subtle defective output

from a software control system which further perturbs the

system response.

State explorations

State explorations simulate internal faults, such as jumped

program counters, which further can lead to uncertainty of

program state that is difficult to diagnose, and nearly

impossible to recover from.

Behavioral explorations

Behavioral explorations simulate a wide class of timing and

scheduling problems that are the characteristic of real-time

systems.

Language explorations

A set of explorations are needed to test the compiler, and

other systems programs involved in the production of the

executable code (debuggers, linkers, loaders, etc.).

COTS explorations

These explorations uncover problems in software furnished by

third parties such as commercial vendors, or open source

software.

These explorations are extensively used in testing various

real-time embedded systems for avionics applications,

including the Space Shuttle Inertial Measurement Unit,

satellite systems, and other navigation systems [13].

Tools supporting Exploratory Testing

Tools are infrequently used in Exploratory Testing. Following

table gives the list of the tools supporting exploratory testing

[14].

Table 1: Tools Supporting Exploratory Testing

Software

Tools Supporting Exploratory Testing

Mind Maps(e.g.XMind)

Custom made tool

Rapid Reporter

Evernote

Excel

qTrace

Vim-Editor

Jira Test Sessions

One Note

Perclip

IETester

BB Flashback

Non-Software Literature

 PostIts

 Checklists

 Paper & Pen

Challenges of Exploratory Testing

Following challenges faced by conventional test case based

testing are also applicable for Exploratory Testing.

 Learning challenge is about knowing the program.

 Visibility is about determining the progress of the

testing process

 Control is about setting internal data values

 Risk/Selection is about determining the best tests to

run

 Execution is about the most efficient way to run the

tests

 Logistics is about determining the environment is

needed to support test execution?

 The Oracle problem is about determining if the test

result is correct or not.

 The Reporting is about replicating a defect and

effectively reporting it.

 Documentation challenge is about determining the

test documentation required.

 Measurement is about deciding the appropriate

metrics.

 Stopping challenge is about deciding when to stop

testing?

Exploratory testing is an experience based testing and differs

highly from the document driven Case Based Testing. There

are only few research articles and books published on

exploratory testing. Practitioner reports on exploratory testing

assert ET is both effective in detecting defects and cost

efficient. More research is required to better understand all the

aspects of exploratory testing.

In conclusion, exploratory testing is encouraged in the

practitioner literature and scientific studies of exploratory

testing are yet an emerging technique. Effectiveness and

efficiency of ET approach are supported by studies comparing

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.10, December2015

27

ET with other testing approaches. This research paper

attempts to help interested testing and research community to

gain more knowledge about exploratory testing, its various

techniques, metrics, tools and challenges.

4. REFERENCES
[1] Humphrey, Watts S. “The Software Quality Challenge.”

CROSSTALK: The journal of Defense Software

Engineering (June 2008).

[2] V. Suma, T. R. Gopalakrishnan Nair, “Defect

Management Strategies in Software Development”, Book

on Recent Advances in Technologies", ISBN 978-953-

307-017-9, pp 379-404, Intec web Publishers, Vienna,

Austria, November 2009.

[3] Juha Itkonen, Mika V. Mantyla and Casper Lassenius, "

The Role of Knowledge in Failure Detection During

Exploratory Software Testing", IEEE Transactions on

Software Engineering, May 2011,

[4] Chris Agruss & Bob Johnson, " Ad Hoc Software

Testing: A perspective on exploration and

improvisation", 2000.

[5] Cem Kaner, "A Tutorial in Exploratory Testing", April

2008.

[6] Itkonen, J. and K. Rautiainen, “Exploratory testing:

amultiple case study,” Proceedings of

InternationalSymposium on Empirical Software

Engineering, 2005, pp. 84-93.

[7] James Bach, “Exploratory testing,” in The Testing

Practitioner, 2nd ed., E. van Veenendaal, Ed. Den Bosch:

UTN Publishers, 2004, pp. 253–265.

[8] Jonathan Bach, "Session-based test

management." Software and Quality Engineering

Magazine 2.6 (2000).

[9] Christin Wiedemann, "Exploratory Testing on Agile

Projects Effective, Efficient and Engaging”, SQDG,

Calgary, January 15th, 2013.

[10] James A Whittaker, "Exploratory Software Testing -

Tips, Tricks , Tours and Techniques to guide test

design", Pearson Education, 2009.

[11] Andy Tinkham, Cem Kaner, " Exploring Exploratory

Testing", 2003.

[12] Andy Tinkham, Cem Kaner, "Learning Styles and

Exploratory Testing", 2003.

[13] Phil Laplante, "Exploratory Testing for Mission Critical,

Real-Time and Embedded Systems", IEEE Transactions

on Reliability, pp. 449-482, Volume 59, Number 3,

September 2010.

[14] Pfahl, Dietmar, et al. "How is exploratory testing used?:

a state-of-practice survey." Proceedings of the 8th

ACM/IEEE International Symposium on Empirical

Software Engineering , Measurement. ACM, 2014.

IJCATM : www.ijcaonline.org

