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ABSTRACT
In this paper, we introduce generalized directable fuzzy automaton
and discuss their structural characterizations. We have shown that
a generalized directable fuzzy automaton is an extension of a
uniformly monogenically strongly directable fuzzy automaton by
a uniformly monogenically trap-directable fuzzy automaton and
obtain other equivalent conditions for a generalized directable
fuzzy automaton.
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1. INTRODUCTION
Fuzzy set is a generalization of a classical set was introduced

by Zadeh in 1965 [11]. This concept is applied in different
discipline including medical sciences, artificial intelligence, pattern
recognition and automata theory. Fuzzy ideas applied in automata
was first proposed by Wee in 1967 [10]. Santos proposed fuzzy
automata as a model of pattern recognition [9]. John N. Mordeson
and D.S. Malik gave a detailed account of fuzzy automata and
applications in their book 2002 [8].
The notion of a generalized directable automaton was introduced

by T. Petkovic et.al [13]. In this paper, we introduce a
generalized directable fuzzy automaton and discuss their structural
characterizations. We have shown that every finite fuzzy automaton
can be uniquely represented as an extension of a direct sum
of strongly connected fuzzy automata by a monogenically trap-
directable fuzzy automaton and obtain a necessary condition for
a fuzzy automaton to be strongly generalized directable. We have
shown that a generalized directable fuzzy automaton is an extension
of a uniformly monogenically strongly directable fuzzy automaton
by a uniformly monogenically trap-directable fuzzy automaton
and obtain other equivalent conditions for a generalized directable
fuzzy automaton.
2. PRELIMINARIES
This section present basic concept and results to be used in the
sequel.

Let X denote a universal set. Then a fuzzy set A in X is set of
ordered pairs: A = {(x, µA(x)|x ∈ X} , µA(x) is called the
membership function or grade of membership of x in A which
maps X to the membership space [0, 1] [12].
A finite fuzzy automaton is a system of 5 tuples, M =
(Q, Σ, fM , q0, F ),
where, Q is set of states, Σ is input symbols, fM is transition
function fromQ×Σ×Q→ [0, 1], q0 is an initial state and q0 ∈ Q,
and F ⊆ Q set of final states. The transition in a fuzzy automaton
is as follows:
fM (qi, a, qj) = µ, 0 ≤ µ ≤ 1, means that when M is in state qi
and reads the input a will move to the state qj with weight function
µ.
fM can be extended to Q×Σ∗ ×Q→ [0, 1] by,

fM (qi, ε, qj) =

{
1 if qi = qj
0 if qi 6= qj

fM (qi, w, qm) = Max{Min{fM (qi, a1, q1), fM (q1, a2, q2), ..,
fM (qm−1, am, qm)}}

for w = a1 a2 a3 ... am ∈ Σ∗, where Max is taken over all the
paths from qi to qm [4].
Throughout this paper, we consider a fuzzy automaton without
initial state and final state and M denotes M = (Q,Σ, fM ), fM is
transition function from Q×Σ×Q→ [0, 1].
A fuzzy automaton M is called deterministic if for each a ∈ Σ and
qi ∈ Q, there exists a unique state qa such that fM (qi, a, qa) > 0
otherwise it is called nondeterministic [3].
Let M ′ = (Q′, Σ, fM ′), Q′ ⊆ Q and fM ′ is the restriction of fM .
The fuzzy automaton M ′ is called a subautomaton of M if
(i) fM ′ : Q′ ×Σ×Q′ → [0, 1] and
(ii) For any qi ∈ Q′ and fM ′(qi, u, qj) > 0 for some u ∈ Σ∗,

then qj ∈ Q′.
M is said to be strongly connected if for every qi, qj ∈ Q, there
exists u ∈ Σ∗ such that fM (qi, u, qj) > 0. Equivalently, M is
strongly connected if it has no proper subautomaton [8].
Let qi ∈ Q. The subautomaton of M generated by qi is denoted by
〈qi〉 and is given by 〈qi〉 = { qj / fM (qi, u, qj) > 0, u ∈ Σ∗}.
It is called a least subautomaton of M containing qi and it is
also called a monogenic subautomaton of M. For any non-empty
H ⊆ Q, the subautomaton of M generated by H is denoted by
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〈H〉 and is given by 〈H〉 = { qj / fM (qi, w, qj) > 0, qi ∈
H, w ∈ Σ∗}. It is called a least subautomaton of M containing
H . The least subautomaton of a fuzzy automaton M is called the
kernel of M [6].
A state qj ∈ Q is called a neck of M, for every qi ∈ Q if there
exists u ∈ Σ∗ such that fM (qi, u, qj) > 0. In that case qj is also
said to be a u-neck of M and the word u is called a directing word
ofM . IfM has a directing word, then we say thatM is a directable
fuzzy automaton. The set of all necks of M is denoted by N(M)
and the set of all directing words of M is denoted by DW (M). If
N(M) 6= φ, then N(M) is a subautomaton of M [6].
A state qj ∈ Q is called local neck of M if it is neck of some
directable subautomaton of M. The set of all local necks of M
is denoted by LN(M) [6]. A state qi ∈ Q is called reversible
if for every word v ∈ Σ∗, there exists a word u ∈ Σ∗ such that
fM (qi, vu, qi) > 0. The set of all reversible states of M are
called the reversible part of M. It is denoted by R(M). R(M) is
non empty, then R(M) is a subautomaton of M . If each state of
a fuzzy automaton M is reversible, then the fuzzy automaton M
is called reversible fuzzy automaton [6]. A fuzzy automaton M is
said to be a direct sum of its subautomata Mα, α ∈ Y, if M =
∪α ∈ Y Qα and Qα ∩ Qβ = φ, for every α, β ∈ Y such that
α 6= β. M is called monogenically directable if every monogenic
subautomaton of M is directable. M is said to be monogenically
strongly directable if every monogenic subautomaton of M is
strongly directable. M is called monogenically trap-directable if
every monogenic subautomaton of M has a single neck [6].
Let M be a fuzzy automaton. We say that u ∈ Σ∗ to be a common
directing word of M if u is a directinng word of every monogenic
subautomaton ofM, i.e., u ∈ DW (〈qi〉), for every qi ∈ Q. The set
all common directing words of M will be denoted by CDW (M).
In other words, CDW (M) = ∩qi ∈ QDW (〈qi〉) [6]. A fuzzy
automaton M is called uniformly monogenically directable fuzzy
automaton if every monogenic subautomaton of M is directable
and have at least one common directing word. M is said to be
uniformly monogenically strongly directable fuzzy automaton if
every monogenic subautomaton of M is strongly directable and
have at least one common directing word. M is called uniformly
monogenically trap-directable if every monogenic subautomaton of
M has a single neck and have at least one common directing word.
A subset I of a semigroup S is called an ideal if SIS ⊆ I [6].
Let M be a fuzzy automaton. An equivalence relation R on Q
in M is called a congruence relation if for all qi, qj ∈ Q and
a ∈ Σ, qi R qj implies that, then there exists ql, qk ∈ Q such
that fM (qi, a, ql) > 0, fM (qj , a, qk) > 0 and ql R qk [1, 2].
Let M be a fuzzy automaton. The quotient fuzzy automaton
determined by the congruence ∼= is a fuzzy automaton
M/ ∼= = (Q/ ∼=,Σ, fM/∼=), where Q/ ∼== {Qi = [qi]} and
fM/∼=(Q1, a,Q2) =
Min {fM (q1, a, q2) > 0 / q1 ∈ Q1, q2 ∈ Q2 and a ∈ Σ} [7].
Let M be a fuzzy automaton and M ′ = (Q′, Σ, fM ′) be a
subautomaton of M. A relation RM ′ on M is defined as follows.
For any qi, qj ∈ Q, we say that (qi, qj) ∈ RM ′ if and only
if either qi = qj or qi, qj ∈ Q′. This relation is clearly an
equivalence relation and it is also congruence. This relation is
called Rees congruence relation on Q in M determined by M ′.
A fuzzy automaton M/M ′ is called Rees factor fuzzy automaton

determined by the relation RM ′ and it is defined as M/M ′ =
( Q, Σ, fM/M ′), where Q = { [qi] / qi ∈ Q} and fM/M ′ :
Q×Σ×Q→ [0, 1].
Let M be a fuzzy automaton. We say that two states qi, qj ∈ Q
are said to be mergeable or reducible if there exists a word u ∈ Σ∗

and qj ∈ Q such that fM (qi, u, qk) > 0⇔ fM (qj , u, qk) > 0 [5].

3. GENERALIZED DIRECTABLE FUZZY
AUTOMATA

A fuzzy automaton M is called a generalized directable fuzzy
automaton if for every v ∈ Σ∗ and qi ∈ Q, there exists a word
u ∈ Σ∗ and qj ∈ Q such that fM (qi, uvu, qj) > 0 ⇔
fM (qi, u, qj) > 0. In this case the word u is called generalized
directing word of a fuzzy automaton M and the set of all
generalized directing words of M are denoted by GDW (M).
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In the above fuzzy automaton, for any qi ∈ Q and v ∈ Σ∗, ∃ aa ∈
Σ∗ such that fM (qi, aavaa, qj) > 0 ⇔ fM (qi, aa, qj) > 0. In
that case, the word aa ∈ Σ∗ is a generalized directing word of M.
Note
1) A directable fuzzy automaton always implies that generalized

directable fuzzy automaton. The converse need not be true.
2) Consider the fuzzy automaton M in Fig. 3.1 . The fuzzy

automaton M is generalized directable fuzzy automaton but not
a directable fuzzy automaton.

THEOREM 3.1.. Every finite fuzzy automaton can be uniquely
represented as an extension of a direct sum of strongly
connected fuzzy automata by a monogenically trap-directable fuzzy
automaton.

Proof: Let M be a fuzzy automaton and qi ∈ Q.
Let M ′ = {qi / fM (qi, vu, qi) > 0, v, u ∈ Σ∗}. That is,
M ′ is set of all reversible part of M. M ′ is a subautomaton
of M. Since M ′ is reversible part of M, M ′ is a direct sum
of strongly connected fuzzy automata. On the otherhand, every
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Rees factor fuzzy automaton has a trap. Therefore, M/M ′ is a
monogenically trap-directable fuzzy automaton. Hence, every finite
fuzzy automaton can be uniquely represented as an extension
of a direct sum of strongly connected fuzzy automata by a
monogenically trap-directable fuzzy automaton.

THEOREM 3.2.. A fuzzy automaton M is strongly generalized
directable if and only if it is strongly connected and generalized
directable.

Proof: Let M be a strongly generalized directable fuzzy
automaton. It is clear that it is generalized directable. Now we will
prove that it is strongly connected, it sufficies to show that for any
qi, qj ∈ Q, there exists u ∈ Σ∗ such that fM (qi, u, qj) > 0. Since
qj ∈ N(M) [N(M) = Q], fM (qk, u, qj) > 0, for every qk ∈ Q.
Therefore, fM (qi, u, qj) > 0. Thus, M is strongly connected.
Conversely, let M be strongly connected and generalized
directable. Then N(M) 6= φ, N(M) is a subautomaton of M . But
since M is strongly connected, there is no proper subautomaton.
Hence, Q = N(M). Thus, M is strongly generalized directable.

THEOREM 3.3.. A fuzzy automaton M is generalized
directable if and only if it is an extension of a uniformly
monogenically strongly directable fuzzy automaton M ′ by a
uniformly monogenically trap-directable fuzzy automaton M ′′.
In that case:

(i) DW (M ′′).CDW (M ′) ⊆ GDW (M) ⊆ DW (M ′′) ∩
CDW (M);
(ii) LN(M) = M ′.

Proof:
Let M be a generalized directable fuzzy automaton.
Let M ′ = {qj / fM (qi, u, qj) > 0, qi ∈ Q, u ∈ GDW (M)}
be a subautomaton of M. Now we have to show that M ′ is a
uniformly monogenically strongly directable fuzzy automaton.
Let qj ∈ M ′. That is, fM (qi, u, qj) > 0, for some qi ∈ Q and
u ∈ GDW (M).
Then for every v ∈ Σ∗ we have that
fM (qi, u, qj) > 0⇔ fM (qi, uvu, qj) > 0

⇔Minqj ∈ Q {fM (qi, u, qj), fM (qj , vu, qj)} > 0
⇒ fM (qj , vu, qj) > 0.

By Lemma 4.1 [6], qj is a local neck and 〈qj〉 is a strongly
directable fuzzy automaton. Further u ∈ CDW (〈qj〉).
Therefore, M ′ is a uniformly monogenically strongly directable
fuzzy automaton and GDW (M) ⊆ CDW (M ′). ——–(1)
Define Rees congruence on M . Then there exists a factor fuzzy
automaton
M ′′ = M/M ′ which is a uniformly monogenically trap-directable
fuzzy automaton and GDW (M) ⊆ DW (M ′′). ——(2)
From (1) and (2), GDW (M) ⊆ CDW (M ′) ∩DW (M ′′). —-(3)
Conversely, let M be an extension of a uniformly monogenically
strongly directable fuzzy automaton M ′ by a uniformly
monogenically trap-directable fuzzy automaton M ′′. Consider an
arbitrary qi ∈ Q, u1 ∈ DW (M ′′),
u2 ∈ CDW (M ′) and v ∈ Σ∗.
Now, let u = u1u2 ∈ Σ∗. Then fM (qi, u1, qk) > 0,
fM (qi, u1u2vu1, qk) > 0 where qk ∈ 〈qi〉 for some strongly
directable subautomaton 〈qi〉 of M ′.
Now,

fM (qi, uvu, qj) = fM (qi, u1u2vu1u2, qj) > 0
⇔Minqk ∈ Q {fM (qi, u1u2vu1, qk), fM (qk, u2, qj)} > 0

⇒ fM (qk, u2, qj) > 0
Now,
fM (qi, u1u2, qj) =

Minqk ∈ Q{fM (qi, u1, qk), fM (qk, u2, qj)} > 0.
fM (qi, uvu, qj) > 0⇔ fM (qi, u, qj) > 0.
Therefore, M is a generalized directable fuzzy automaton and
u ∈ GDW (M).
Hence, DW (M ′′).CDW (M ′) ⊆ GDW (M). ——–(4)
From (3) and (4), DW (M ′′).CDW (M ′) ⊆ GDW (M) ⊆
DW (M ′′) ∩ CDW (M ′).
Now let us prove that LN(M) = M ′.
By Lemma 4.3 [6], M ′ ⊆ LN(M).
Conversely, let qi ∈ LN(M).
By Lemma 4.1 [6], for every v ∈ Σ∗, there exists u ∈ Σ∗ such that
fM (qi, vu, qi) > 0.
If we assume that v ∈ DW (M ′′), then fM (qi, v, qk) > 0, for
some qk ∈ M ′.
Now,
fM (qi, vu, qi) > 0⇔Minqk ∈ Q{fM (qi, v, qk),

fM (qk, u, qi)} > 0
⇒ fM (qk, u, qi) > 0
⇒ qi ∈ M ′[Since M ′ is strongly connected].

Therefore, LN(M) ⊆M ′. Hence, LN(M) = M ′.

THEOREM 3.4.. Let M be a fuzzy automaton. Then the
following conditions are equivalent:
(i) M is a generalized directable fuzzy automaton;

(ii) every strongly connected subautomaton of M is directable;
(iii) every subautomaton ofM contains a direcable subautomaton;
(iv) (∀qi ∈ Q)(∃u ∈ Σ∗)(∀v ∈ Σ∗)(∃w ∈ Σ∗) such that
fM (qi, uvw, ql) > 0⇔ fM (qi, uw, ql) > 0, for some ql ∈ Q.

Proof:
(i)⇒ (ii)
Let M be a generalized directable fuzzy automaton.

Let M ′ = {qj / fM (qi, u, qj) > 0, qi ∈ Q, u ∈ GDW (M)}
be a subautomaton of M. Now we have to show that M ′ is a
strongly directable fuzzy automaton.
Let qj ∈ M ′. That is, fM (qi, u, qj) > 0, for some qi ∈ Q and
u ∈ GDW (M).
Then for every v ∈ Σ∗ we have that
fM (qi, u, qj) > 0⇔ fM (qi, uvu, qj) > 0

⇔Minqj ∈ Q {fM (qi, u, qj), fM (qj , vu, qj)} > 0
⇒ fM (qj , vu, qj) > 0.

By Lemma 4.1 [6], qj is a local neck and 〈qj〉 is a strongly
directable fuzzy automaton.
(ii)⇒ (i)
By Theorem 3.1, M is an extension of a fuzzy automaton M ′ by a
monogenically trap-directable fuzzy automatonM ′′, whereM ′ is a
direct sum strongly connected of fuzzy automata M ′

i, i ∈ [1, n].
By the hypothesis it follows that M ′

i is a directable fuzzy
automaton, for every i ∈ [1, n]. Since DW (M ′

i) is an ideal of
Σ∗, for each i ∈ [1, n] and the intersection of any finite family of
ideals is non-empty, then there exists u ∈ ∩ni=1 DW (M ′

i).
According to Theorem 1.3 [14], the fuzzy automaton M ′

is uniformly monogenically strongly directable and hence, by
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Theorem 3.3, M is a generalized directable fuzzy automaton.
(ii)⇒ (iii)
Let M ′′ be any strongly connected directable subautomaton of M.
Since M ′′ is strongly connected and directable, N(M ′′) = M ′′

which is a least subautomaton of M.
IfM ′ is any other subautomaton ofM, thenM ′′ ⊆M ′. Hence,M ′

is the subautomaton of M that contains a directable subautomaton
M ′′.
(iii)⇒ (i)
Consider an arbitrary qi ∈ Q. By the hypothesis, the monogenic
subautomaton 〈qi〉 contains a directable subautomaton M ′.
Therefore, there exists a u1 ∈ Σ∗ such that fM (qi, u1, qk) > 0, for
some qk ∈ M ′.
Let u = u1u2, where u2 ∈ DW (M ′) and let v ∈ Σ∗.
Now,fM (qi, u, qj) = fM (qi, u1u2, qj)

= Minqk ∈ M ′ {fM (qi, u1, qk), fM (qk, u2, qj)} .
Since fM (qi, u1, qk) > 0 and M is a deterministic fuzzy
automaton, we have fM (qk, u2, qj) > 0.
Therefore, fM (qi, u, qj) > 0. ——-(1)
Now,
fM (qi, uvu, qj) = Minqj ∈ Q {fM (qi, u, qj), fM (qj , vu, qj)} .
Since from (1), fM (qi, u, qj) > 0 and M is a deterministic fuzzy
automaton,
we have fM (qj , vu, qj) > 0.
Therefore, fM (qi, uvu, qj) > 0. ——-(2)
From (1) and(2), we have
(∀qi ∈ Q)(∃u ∈ Σ∗)(∀v ∈ Σ∗) such that fM (qi, uvu, qj) > 0⇔
fM (qi, u, qj) > 0.
(i)⇒ (iv)
By the hypothesis, (∀ qi ∈ Q)(∃ u ∈ Σ∗)(∀ v ∈ Σ∗) such that
fM (qi, uvu, qj) > 0⇔ fM (qi, u, qj) > 0.
Let w = uu1 for some u1 ∈ Σ∗.
Now,fM (qi, uvw, ql) = fM (qi, uvuu1, ql)

= Minqj ∈ Q {fM (qi, uvu, qj), fM (qj , u1, ql)}
By the hypothesis, fM (qi, uvu, qj) > 0 and since M is a
deterministic fuzzy automaton fM (qj , u1, ql) > 0. Therefore,
fM (qi, uvw, ql) > 0. ——(3)
fM (qi, uw, ql) = fM (qi, uuu1, ql)

⇒Minqj ∈ Q {fM (qi, uu, qj), fM (qj , u1, ql)}.
Since fM (qi, u, qj) > 0, we have fM (qi, uu, qj) > 0 and
therefore, fM (qj , u1, ql) > 0.
Hence, fM (qi, uw, ql) > 0.——(4)
From (3)and (4), fM (qi, uvw, ql) > 0⇔ fM (qi, uw, ql) > 0.
Therefore, (∀ qi ∈ Q)(∃ u ∈ Σ∗)(∀ v ∈ Σ∗)(∃ w ∈ Σ∗) such
that
fM (qi, uvw, ql) > 0⇔ fM (qi, uw, ql) > 0.
(iv)⇒ (ii)

By the hypothesis,
(∀ qi ∈ Q)(∃ u ∈ Σ∗)(∀ v ∈ Σ∗)(∃ w ∈ Σ∗) such that
fM (qi, uvw, ql) > 0 ⇔ fM (qi, uw, ql) > 0 for some ql ∈ Q.
Take an arbitrary strongly connected subautomaton M ′ of M and
qi, qk ∈ M ′.
Now, fM (qi, u, qj) > 0 and fM (qk, u, ql) > 0, for some u ∈ Σ∗

and qj , ql ∈ M ′. Since M ′ is strongly connected, there exists
u1 ∈ Σ∗ such that
fM (qi, uu1, ql) > 0.
For that u1, there exists u2 ∈ Σ∗ such that

fM (qi, uu1u2, qm) > 0 ⇔ fM (qi, uu2, qm) > 0, for some
qm ∈ M ′.
fM (qi, uu2, qm) > 0⇔ fM (qi, uu1u2, qm) > 0.

⇔Minql ∈ M ′ {fM (qi, uu1, ql), fM (ql, u2, qm)} > 0
⇒ fM (ql, u2, qm) > 0.

Now,
fM (qk, uu2, qm) = Minql ∈ M ′{fM (qk, u, ql),

fM (ql, u2, qm)} > 0.
Therefore, we have proved that qi and qk are mergeable. Hence ,M ′

is a directable fuzzy automaton.

4. CONCLUSION

In this paper, we introduce generalized directable fuzzy automaton
and discuss their structural characterizations. We have shown
that every finite fuzzy automaton can be uniquely represented
as an extension of a direct sum of strongly connected fuzzy
automata by a monogenically trap-directable fuzzy automaton
and obtain a necessary condition for a fuzzy automaton to
be strongly generalized directable. Also, We have shown that
a generalized directable fuzzy automaton is an extension of a
uniformly monogenically strongly directable fuzzy automaton by
a uniformly monogenically trap-directable fuzzy automaton and
obtain other equivalent conditions for a generalized directable
fuzzy automaton.
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