
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.14, December2015

43

Load Balancing Approaches: Recent Computing Trends

Varsha Thakur
Research scholar Pt.Ravishankar shukla

University, Raipur (C.G), India

Sanjay Kumar
Associate Professor Pt.Ravishankar Shukla

University, Raipur (C.G), India

ABSTRACT
This paper presents thorough survey of work addressing on

load balancing in recent computing trends. There are many

issues whose solutions lead to the need for load balancing.

The objective of load balancing is to increase the performance

of parallel and distributed system by distributing the load

among the processors. Load balancing is a major factor for

achieving high performance. It affects the execution time

significantly by expediting it. Load imbalance is a well-

known problem in the areas involving parallelism. However,

offering load balancing is a difficult and challenging task.

Various algorithms have been proposed for load balancing.

These algorithms have distinguished features and each uses

different mechanisms. Various Load balancing algorithms like

biased sampling, honey bee, active clustering, and join idle

queue have been studied.

General Terms
Parallel and distributed computing.

Keywords
Load Balancing, Cloud Computing, CloudSim

1. INTRODUCTION
High-performance computing (HPC) was once restricted to

institutions that could afford the significantly expensive and

dedicated supercomputers of the time. There was a need for

HPC in small scale and at a lower cost which lead to cluster

computing. The emergence of cluster platforms was driven by

a number of academic projects, such as Beowulf [1], Berkeley

NOW [2], and HPVM [3]. The popularity of the Internet and

the availability of powerful computers and high-speed

network technologies have changed the way computers are

used. Grid computing originated in academia in the

mid-1990s with an aim to facilitate users to remotely utilize

idle computing power within other computing centers when

the local one is busy [1].Initially, it only referred to a

compute grid and had a rather limited audience. However,

after years of development the grid gained momentum and

came to mean an effective way for coordinated resource

sharing and problem solving in dynamic, multi-institutional

virtual organizations. Cloud computing, is a kind of

computing model that came into existence around the end of

2007. It provides a pool of computing resources which the

users can access through Internet. The basic principle of

cloud computing is to shift the computing done from the local

computer into the network [4]. Load balancing is a term

which basically comes from electrical engineering. It is a

technique used by electric power stations to store excess

electrical power when demand is low and release that power

when demand increases.

2. LOAD BALANCING
A Parallel computer will have number of processors and

interconnected resources which can work independently or in

cooperation with each other. Each processor and resource has

their own workload which represents an amount of work to

be performed and every one may have different processing

capability. To minimize the execution time, workload has to

be evenly distributed over all resources and processors based

on their processing speed.

2.1 Taxonomy of Load Balancing:
Static load balancing distributes the processes to processors at

compile time, while dynamic load balancing binds processes

at run time. Static load balancing algorithms may be either

deterministic or probabilistic. Deterministic algorithms use

the information about the properties of nodes and the

characteristics of the processes. Probabilistic load balancing

uses information regarding static attributes of the system such

as number of nodes, the processing capability of each node,

the network topology and so on. Dynamic load balancing is

further categorized as centralized and distributed. Centralized

load balancing technique store global information at a central

location and use this information to balance the load.

Centralized load balancing uses the computing and storage

resources of one or more processors while in distributed load

balancing, the state information is distributed among the

processors that are responsible in managing their own

resources or allocating tasks residing in their queues to other

processors. In non-cooperative approach each processor has

autonomy over its own resource while in cooperative load

balancing, processes work together towards a common

system-wide global balance. Dynamic load balancing is

further classified depending on who initiated the load

balancing such as sender initiated, receiver initiated and

symmetric. In sender initiated, the overloaded nodes transfer

one or more of their tasks to several under loaded nodes. In

receiver initiated, under loaded nodes request tasks to be sent

to them from nodes with higher load. In the symmetric

approach, both the under loaded as well as the over loaded

nodes may initiate load transfers [4].

3. STRATEGIES AND POLICY OF

LOAD BALANCING
Strategies of load balancing can be centralized or de-

centralized. In centralized strategies, the load balancer is

located on one master workstation node and all decisions are

made there while in a de-centralized strategies, the load

balancer is divided among all the workstations.

3.1 Policies in Load Balancing
Transfer Policy selects a job for transferring from a local node

to a remote nodes, Selection Policy specifies the processors

involved in the load exchange. Location Policy selects a

destination node for a transferred task is referred to as location

policy. Information Policy specifies what workload

information to be collected, when it is to be collected and

from where .The information exchange policy can obey one of

the following policies: Periodic policies in which all process

broadcast their state information at certain time intervals.

Setting time for intervals are very important because if this

time is very small it causes high overhead on the system and if

it is very large, it can decrease the accuracy of the system

Data-Demand policies collects the state of other nodes only

when it becomes overloaded or under loaded. State-change-

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.14, December2015

44

driven policies give information about their state whenever

their state changes by a certain amount. Triggering policy

determines the appropriate period to start a load balancing

operation.[2].

4. ALGORITHM
Depending on who initiated the process, If the load balancing

algorithm is initialized by the sender then it is Sender

Initiated. If the load balancing algorithm is initiated by the

receiver then it is Receiver Initiated and if it is the

combination of both sender and receiver then Symmetric.

Depending on the current state of the system it may be static

or dynamic. In static ,it doesn’t depend on the current state of

the system but Prior information of the system is needed

while in dynamic the load balancing are based on current

state of the system.

4.1 Static Load balancing
Static load balancing algorithms allocate the tasks of a parallel

program to processor based on either the load at the time

nodes are allocated to some task, or based on an average load.

The decisions related to load balance are made at compile

time when resource requirements are estimated. Some static

algorithms are Round Robin and Randomized Algorithms.

Round Robin and Randomized Algorithms are divided evenly

between all processors. Each new process is assigned to new

processor in round robin order. The process allocation order is

maintained on each processor locally independent of

allocations from other processors. Round Robin [5]

and Randomized schemes work well with number of

processes larger t h a n number of processors. Threshold

a l g o r i t h m assigned immediately upon creation to hosts.

Hosts for new processes are selected locally without

sending remote

Messages. Each processor keeps a copy of the system’s load.

The load of a processor can characterize by under

loaded,medium and overloaded. Recursive bisection

recursively divides the problem into sub-problems of equal

work while minimizing message passing. Simulated

annealing or genetic algorithms is a mixture allocation

procedure including optimization techniques.

4.2 Dynamic Load Balancing
Dynamic load balancing algorithms make changes to the

distribution of work among processors at run-time, they use

recent load information when making decisions.

Multicomputer with dynamic load balancing reallocates

resources at runtime and determine when and whose tasks can

be migrated. However, this comes at the additional cost of

collecting and maintaining load information, so it is important

to keep these overheads within reasonable limits. Central

Queue Algorithm works on the principle of dynamic

distribution. Each new job coming at the queue manager is

inserted into the queue. Then, whenever a request for an

activity is received by the queue manager, it removes the first

activity from the queue and sends it to the requester. When a

processor load falls under the threshold, the local load

manager sends a request for a new activity to the central load

manager. The central load manager answers the request

immediately if a ready activity is found in the process-request

queue, or queues the request until a new activity arrives. Local

Queue Algorithm is static allocation of all new job with

process migration initiated by a host when its load falls under

threshold limit, is a user defined parameter of the algorithm.

5. REVIEW
Load-balancing problems arise in many applications but, most

importantly, they play a special role in the operation of

parallel and distributed computing systems. Load-balancing

deals with partitioning a program into smaller tasks that can

be executed concurrently and mapping each of these tasks to a

computational resource such a processor. Hwakyung R gives

an efficient dynamic load balancing using the dimension

exchange method for [5] balancing quantized load on

hypercube multiprocessor. In this Dynamic load balancing on

hypercube is consider with emphasis on quantized load.

Result in difference in assigned loads to processors as large as

log n unit after balancing for size n a reduction to ½ log n is

done by using slam II Balancing method.

Fig 1. Basic Process for balancing load

Cybenko .G. [6] study diffusion schemes for dynamic load

balancing on message passing multiprocessor under which

dynamic schemes converge and their rates of convergence for

arbitrary topologies. These results use the eigen structure of

the iteration matrices that arise in dynamic load balancing.

Author completely analyzes the hypercube network by

explicitly computing the eigen structure of its node adjacency

matrix. Using a realistic model of interprocessor

communications, diffusion approach is used to load balancing

O. O Olakanmi1 and O.A Fakolujo [7] discuss processing-

elements stealing (PEs-S) technique to enforce load

balancing in multiprocessor architecture. In case of extreme

communication costs or very strong affinity of process for the

processors they are assigned to, work stealing will achieve the

optimal performance as a result of the fact that stolen works

will be transported from its initial processing element to the

new processing element. Affinity[8] is measure of cost of

moving the task and be generated by compiler on runtime.

Using data affinity determine the task to be migrated from

heavy loaded to idle processor .

Wentao Wang [9] discuss a design Of load balancing model

for multiprocessor in that they analyzed the basic reason for

overhead occurring in load balancing is the load

migration.They define the four possible states of the node,

and discusses the implementation rule of the algorithm in the

process of task execution and completion, it is needed to

check the task completion situations periodically and

Communicate with other nodes. It should be determined

whether the task is migrated or not, and the source Author

discuss efficient work stealing for Multicore Event-Driven

Systems [10] in this event coloring approach is adapted .

Event coloring is a promising approach it simply and

progressively inject support for the safe, parallel execution of

multiple event handlers through the use of annotations. It

works on stealing algorithm to dynamically balance the

Constructing Domain

Job Allocation

Load Calculation

Run Time Load Balancing

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.14, December2015

45

execution of event handlers on the available cores. Xiaozhong

Geng[11] study the Dynamic Load Balancing Scheduling

Model Based on Multi-core Processor and represents the

dynamic load balancing scheduling problem as a quintuple o f

E,T,L,S,C, which gives a formal description about all factors

that affect multi-core processors load balancing . Youngho

Ahn Won-Jin Kim[12] uses probabilistic information on the

expected execution time the child processes for each parent

process. The trade-off between load balancing effect of each

load balancing unit and the cost is taken into account. They

developed a novel method that efficiently distributes

workloads of applications into multiple cores with asymmetric

memory architecture and runs them in parallel. By collecting

precise information about how frequently the process creates

child processes and how long the child processes execute by

system calls. Jin Sun, Avinash Kodi, Ahmed Louri, and Janet

M. Wang proposes [13] a new design framework for multi-

core system that includes device wear-out impact. Based on

device fractional NBTI model. Enric Musoll proposed

hardware-based stateless load-balancing schemes for

homogeneous multicore architectures in terms of their power

and thermal behavior The different cores in the processor can

be switched on and off by usings power gating Round Robin

(RRB). It is the best one to distribute the temperature, but

fails at minimizing the power .Author [14] s tud y a thermal

friendly load balan cin g technique for multicore processor in

this they provides low overheads in performance and energy

with respect to highest performance. The scheduling

techniques evaluated, however, are again suitable for

implementation at the OS level,a temperature sensor for

each of the cores is required, which may not be feasible in

processors with a large number of cores. Author investigates

the effect of power gating the idle cores, a technique that is

very effective in reducing the overall power consumption of

the processor .Author[15] have developed a dynamic load

balancing library that allows parallel code to be adapted to

heterogeneous systems for a wide variety of problems. The

strategy was applied to a Dynamic Programming Algorithm,

the Resource Allocation Problem. The library has been

implemented in a way that does require minimal changing in

the code of existing programs.

Table 1. Approaches used for load balancing

S

No

Author Research Approach

1. Hwakyung

R

quantize

d load on

hypercube

Dimension

Exchange

Method

2. O

Olakanmi

Macro Pipeline

Multiprocessor

ELements

stealing

3. Fabien G Workstealin

g for

Multicore

Event

coloring

4. Alejandro Heterogeneous

Multicore/Mul

t iGPU

load

balancing

library

5. Albert Y. Observations Genetic

algorithm

6. Xiaozhong

Scheduling

Model Based
on Multi-core

Scheduling

6. ISSUES IN DESIGNING OF LOAD

BALANCING ALGORITHM
Load Estimation Policy: Determine how to estimate work

load of particular node.

Process Transfer Policy: Determines whether to execute

process locally or remotely.

State Information Exchange Policy: Determines how to

exchange the system load information among nodes.

Location Policy: Determines which node a process will select

for transfer.

Priority Assignment Policy: Determines to the priority of

execution of local and remote processes at a particular node.

Migration Limiting Policy: Determines total number of times

a process can migrate from one node to other.

7. LOAD BALANCING METRICES
In recent computing, load balancing is required to distribute

the dynamic local workload evenly across all the nodes. It

helps to achieve a high user satisfaction and resource

Utilization ratio by ensuring an efficient and fair allocation of

every computing resource. Proper load balancing aids in

minimizing resource consumption, implementing fail-over,

enabling scalability, avoiding bottlenecks and over-

provisioning etc [16].

In this paper various performance metrics has been considered

for existing load balancing techniques such as:

Throughput is used to calculate the no. of tasks whose

execution has been completed. Overhead Associated

determines the amount of overhead involved while

implementing a load-balancing algorithm. It includes

overhead due to movement of tasks, inter-processor and inter-

process communication. Fault Tolerance is the ability of an

algorithm to perform uniform load balancing in case of link

failure. The load balancing should be a good fault-tolerant

technique. Migration time is the time to migrate the jobs

or resources from one node to other. It should be minimized

in order to enhance the performance of the system. Response

Time is the amount of time taken to respond by a particular

load balancing algorithm in a distributed system. Resource

Utilization is used to check the utilization of resources.

Scalability is the ability of an algorithm to scale according to

the requirement.

Performance is used to check the efficiency of the system.

8. LOAD BALANCING AGORITHMS
Honey bee foraging: The main idea behind the algorithm is

derived from the behavior of honey bees for finding and

reaping food. M. Randles et al. [16] proposed a decentralized

honeybee-based load balancing technique that is a nature-

inspired algorithm for self-organization. In this case the

servers are grouped under virtual servers (VS), each VS

having its own virtual service queues. Each Server processing

a request from its queue calculates a profit or reward, which is

analogous to the quality that the bees show in their waggle

dance. If this profit was high, then the server stays at the

current virtual server otherwise then the server returns to the

forage. The algorithm performs as the system diversity

increases. But it has a big disadvantage that it does not

increase the throughput as the system size increases.

Biased Random Sampling: M. Randles et al. [2] investigated a

distributed and scalable load balancing approach that uses

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.14, December2015

46

random sampling of the system domain to achieve self-

organization thus balancing the load across all nodes of the

system. Here a virtual graph is constructed, with the

connectivity of each node (a server is treated as a

node). Representing the load on the server. Each server is

symbolized as a node in the graph, with each in degree

directed to the free resources of the server. The load

balancing scheme used here is fully decentralized, thus

making it apt for large network

Systems like that in a cloud. The performance is

degraded with an increase in population diversity.

Active Clustering: Active Clustering works on the principle of

grouping similar nodes together and working on these groups.

The performance of the system is enhanced with high

resources thereby in-creasing the throughput by using these

resources effectively. It is degraded with an increase in system

diversity [2].Join-Idle-Queue: This algorithm provides large-

scale load balancing with distributed dispatchers by, first load

balancing idle processors across dispatchers for the

availability of idle processors at each dispatcher and then,

assigning jobs to processors to reduce average queue length

at each processor. Y. Lua et al.[3] proposed a Join-Idle-

Queue load balancing algorithm for dynamically scalable web

services. It effectively reduces the system load, incurs no

communication overhead at job arrivals and does not

increase actual response time. It can perform close to optimal

when used for web services. However, it cannot be used for

today’s dynamic-content web services due to the scalability

and reliability. Min-Min Algorithm: It begins with a set of all

unassigned tasks. First of all, minimum completion time for

all tasks is found. Then among these minimum times the

minimum value is selected which is the minimum time among

all the tasks on any resources. Then according to that

minimum time, the task is scheduled on the

corresponding machine. Then the execution time for all

other tasks is updated on that machine by adding the

execution time of the assigned task to the execution times of

other tasks on that machine and assigned task is removed

from the list of the tasks that are to be assigned to the

machines. Then again the same procedure is followed until all

the tasks are assigned on the resources. But this approach has

a major drawback that it can lead to starvation

[18].Comparisons of various load balancing algorithms is

shown below.

Table 2: Comparison of load balancing algorithms

Parameters Honeybee

Scheduling

Biased

random

Sampling

Active

cluster

ing

Join

Idle

Queue

Min

-

min

Throughput No No No No Yes

Overhead No Yes Yes Yes Yes

Fault

Tolerance

No No No No No

Migration

Time

No No Yes No No

Response

Time

No No No Yes Yes

Resource

Utilization

Yes Yes Yes No Yes

9. CONCLUSION
Load balancing is a process of reassigning the total load to the

individual core of the collective processors to make resource

utilization effective and to improve the response time of the

job. Load balancing is required to increase the efficiency

of parallel and distributed computing, load balancing is

required. The field of parallel and distributed computing is

rapidly growing due to the varied advantages and diverse

application areas. Load balancing is one of the challenges

faced in multiprocessors and multicores. In this paper, a

number of Load Balancing techniques and algorithms have

been surveyed, each having different aspects of

balancing. In many cases, it was difficult to compare them

with each other directly as each one of them had different

assumptions and employed various mechanisms to achieve the

goal. According to the study, these techniques have different

strengths and drawbacks some are general and robust, but the

randomness result in convergence, the fault tolerance and

rejection rate are not considered. Centralized load balancing

algorithms suffer from scalability issue. A load balancing

technique can hardly satisfy all requirements, but each

technique is designed to provide the maximum possible

requirements, according to the scenarios. In the years to come,

as parallel and distributed computing grow, multiprocessors

and multicomputer will continue to flourish, and a load

balancing would be required with more modifications as it

will be very complicated and will have a tremendous amount

of information to be maintained. Satisfying most of the

requirements would result in maximizing throughput,

minimizing execution time and increase in performance.

Different algorithms have been discussed in the review; each

of them varies based on certain specific criteria. More efforts

are needed to formulate an efficient Load Balancing

Algorithm for processors based on different parameters like

queue length, migration cost , CPU utilization information

based on the event that change the load and job migration

with optimum resource utilization with increased

performance. Comparisons are done on various algorithms of

load balancing.

10. REFERENCES
[1] SadaShiv N. and Dilip K.S.M., “Cluster, Grid and Cloud

Computing: A Detailed Comparison”, International

Conference on Computer Science & Education,

Singapore, Aug, 2011, pp 477-482.

[2] http://www.nist.gov/itl/csd/cloud-102511.cfm.

[3] Rajath Y.S.,”A Novel way of Improving CPU Utilization

In Cloud”, thesis.

[4] Mohiuddin A., Abu S. M., Mustaq A., Md.

Mahmudul H. R., “An Advanced Survey on Cloud

Computing and State-of-the-art Research Issues”. IJCSI

International Journal of Computer Science Issues, Vol. 9,

Issue 1, No 1, Jan 2012, pp601-608.

[5] Wilkinson B., Allen .M., 2004 Parallel Programming

Techniques & Applications Using Networked

Workstations & Parallel Computers 2nd ed., Pearson

Education Inc.

[6] Cybenko .G.,1989 Dynamic Load Balancing for

Distributed Memory Multiprocessors Journal of

Parallel and Distributed computing 7, pp 279-301.

[7] Olakanmi1 and O.A Fakolujo 2011,” Load Balancing in

the Macro Pipeline Multiprocessor System using

Processing Elements Stealing Technique”, Ubiquitous

http://www.nist.gov/itl/csd/cloud-102511.cfm

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.14, December2015

47

Computing and communication journal, pp 28.

[8] Stephens “the importance of locality in scheduling and

load balancing for multiprocessor”.

[9] Wentao Wang, Xiaozhong Geng Qing Wang, 2011,

“Design of a Dynamic Load Balancing

Model for Multiprocessor Systems”, IEEE computer pp

641-645.

[10] Fabien G, Sylvain G, Renaud L. B. Fabien M, Gilles V

Quéma,2010 “Efficient Workstealing for

Multicor Event-Driven Systems “International

Conference on Distributed Computing Systems

IEEE ;pp 516- 525.

[11] Xiaozhong Geng, Gaochao Xu, Yuan Zhang, “Dynamic

Load Balancing Scheduling model Based on Multi-

core Processor”, Fifth International Conference on

Frontier of Computer Science and Technology , pp

398 -403.

[12] Youngho. A & Won-J. K 2010 .”A novel load balancing

method for multicore with NUMA”, ISOCC 2010. pp

412-415 .

[13] Jin Sun_, Avinash Kodi, Ahmed Louri_, and Janet M.

Wang, “NBTI Aware Workload Balancing in Multi-core

Systems”.

[14] Musoll .E, 2008.” A thermal-friendly load-balancing

technique for multi-core processors” in International

Symposium on Quality Electronic Design , pp549 -552.

[15] Alejandro .A, Robert C, Vicente B, and Francisco,

2010,” A Dynamic Load Balancing on Heterogeneous

Multicore/MultiGPU”. Systems ieee, pp 467- 477.

[16] Sharma M. and Sharma P.,” Performance Evaluation of

Adaptive Virtual Machine Load Balancing Algorithm”,

(IJACSA) International Journal of Advanced Computer

Science and Applications, Vol. 3, No.2, 2012 pp 1-3

[17] Jasmin James and Dr. Bhupendra Verma, “Efficient VM

load balancing algorithm for a cloud computing

environment”, International Journal on Computer

Science and Engineering (IJCSE), 09 Sep 2012.

[18] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling

And Simulation Of Scalable Cloud Computing

Environments And The Cloudsim Toolkit: Challenges

And Opportunities,” Proc. Of The 7th High Performance

Computing and Simulation Conference (HPCS 09), IEEE

Computer Society, June 2009.

[19] CloudSim: A Framework for Modeling and Simulation

of Cloud Computing Infrastructures and Services, The

Cloud Computing and Distributed Systems (CLOUDS)

Laboratory, University ofMelbourne, (2011) available

from: http://www.cloudbus.org/cloudsim

[20] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov,

César A. F. De Rose, and Rajkumar Buyya CloudSim:

“A Toolkit for Modeling and Simulation of Cloud

Computing Environments and Evaluation of Resource

Provisioning” cloudsim.pdf 2011.

[21] Bhathiya, Wickremasinghe.”Cloud Analyst: A Cloud

Sim-based Visual Modeller for Analysing Cloud

Computing Environments and Applications”, 2010,

IEEE.

IJCATM : www.ijcaonline.org

