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ABSTRACT 

This paper presents an analytical solution to the problem of 

selecting an optimum symbol detector for wireless MIMO 

communications in the LTE/4G suburban macrocell 

environments. Since, the use of a symbol detector in MIMO 

systems is often limited by the complexity it offers, it is of 

vital importance to use a detector which offers reliable 

performance but does not offer high complexity. This paper 

analyses the error rate performance and computational 

complexity of Zero Forcing (ZF), Minimum Mean Square 

Error (MMSE) and Maximum Likelihood (ML) and suggests 

the optimum detectors with reasonable complexity- 

performance trade-off. 
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1. INTRODUCTION 
Multiple-input–multiple-output (MIMO) technology has 

potential to greatly enhance the capacity of wireless cellular 

networks and/or the reliability of data transmission through 

wireless media [1]. Upcoming new standards, such as 3GPP 

LTE-Advanced and 802.11ac, are exploiting large MIMO 

systems to push the data rates in consumer wireless 

communications [2]. To fully exploit the potential of MIMO, 

a high- fidelity and low-complexity detection scheme at the 

receiving end is needed. 

In spatial multiplexing, the optimum detection technique is 

Maximum-Likelihood (ML) detection which is exhaustive in 

nature i.e. it performs search operation over entire symbol set 

[3]. This leads to exponential increase in complexity with 

increase in number of transmit antenna and modulation order 

and thus makes it impractical to be used for higher order 

constellations [2, 3]. 

To avoid such highly complex hardware, sub optimal 

detection algorithms such as Zero Forcing (ZF) [4] and 

Minimum Mean Square Error (MMSE) [5] are used. These. 

Algorithms offer very less complexity and are often used in 

practical MIMO hardware in one form or other. 

Rest of this paper is divided into 6 sections. Section 2 explains 

the MIMO system model. Section 3 gives a detailed 

explanation of ZF, MMSE and ML detector. Section 4 

presents complexity analysis of ZF and MMSE detectors. 

Section 5 contains the specifications and scenario of 3GPP 

suburban macrocell environment. Section 6 presents the 

results and discussion. Section 7 concludes the paper. 

2. MIMO SYSTEM MODEL 
A MIMO system with „MT‟ transmit antenna and „MR‟ 

receiving antenna is represented as [6] 

y =  Hs +  n                                                    (1) 

Where s is [MT x 1] transmitted symbol vector derived, y is 

received symbol vector of dimension [MR x 1],H is [MR x 

MT] channel matrix and n is [MR x 1] dimensional noise 

vector introduced by channel. 

3. CONVENTIONAL DETECTION    

METHODS 
On the basis of error rate performance, symbol detection 

methods are classified as optimal, sub optimal and near 

optimal algorithms [7]. Maximum Likelihood (ML) detection 

is offers optimum performance but it uses exhaustive search 

approach which leads to very high complexity [8]. Suboptimal 

algorithms exhibit very low complexity but unlike ML 

detection, their performance is not reliable for bad channels. 

Commonly used sub optimal methods are Zero Forcing (ZF), 

Minimum Mean Square Error (MMSE) Method and 

Successive Interference Cancellation (SIC)[8,9]. Near optimal 

detection methods are generally better performing with 

comparatively lower complexity than ML, but they are still 

evolving as their hardware implementation is a tedious task 

[10-12]. 

3.1 Maximum Likelihood (ML) Detection 
ML detection aims at minimizing the noise. The ML data 

vector is derived from equation (1) as.ML detection is carried 

out by searching for all the candidate vectors from the 

transmitting symbol set exhaustively and then selecting the 

one with the smallest error from received symbol.  

Complexity of ML detection increases exponentially with the 

number of transmitted antennas because it searches for every 

possible candidate. For example, when a transmitter is 

equipped with 4antennas and 4-QAM scheme is used, total 

number of possible candidates is 44= 256. 

SML
 = arg mins∈ s N T  y − Hs 2 (2) 

3.2 Equalization Based Detection 
In linear equalization based detection, an estimate of the 

transmitted data vectors is formed using an equalization 

matrix „G‟ [2]. 
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3.2.1 Zero Forcing (ZF) Detection 
The equalization matrix „G‟ for ZF detection method is given 

by the pseudo-inverse of H [5]: 

𝐺𝑍𝐹 = 𝐻# =  𝐻𝐻  𝐻 −1𝐻𝐻                         (3) 

Thus, the result of ZF equalization is 

𝐺𝑍𝐹
 = 𝐺𝑍𝐹𝑦 =  𝐻𝐻  𝐻 −1𝐻𝐻𝑦 = 𝑠 + 𝑛              (4) 

Which is the transmitted data vector s corrupted by the 

transformed   noisen = H#n. This means that the interference 

caused by the channel H is completely removed “Forced to 

zero". However, in general the transformed noise n = H#n is 

larger than n i.e. noise enhancement [5]. As can be seen from 

equation (4), the complexity of ZeroForcing detector is linear, 

but its performance can be unreliable in many cases. 

3.2.2 Minimum Mean Square Error (MMSE) 

Detection 
To minimize the effect of environmental noise, the MMSE 

detector employs an equalizer which tries to nullify the noise 

by using noise variance at receiver. The equalization matrix 

„G‟ for MMSE is given by [5]. 

G = (HH  H +  σW
2  I)−1HH                  (5) 

Here G is minimizing the mean-square error. Thus, the result 

of MMSE equalization is 

                                  𝑦𝑀𝑀𝑆𝐸 = (𝐻𝐻  𝐻 +  𝜎𝑊
2  𝐼)−1𝑦                 (6)                                

  

Like ZF detector, the complexity of MMSE is linear but ZF or 

MMSE detection can only exploit a diversity of order r- t+1 

[5]. 

4. COMPLEXITY OF EQUALIZATION 

BASED DETECTION METHODS 
The Zero Forcing technique is based on calculation of the 

pseudo-inverse of the channel matrix H of dimension (r × t) 

The payload processing for ZF consists of a matrix-vector 

multiplication per transmitted vector and a slicing step to 

translate the estimated elements of x to the possible 

transmitted symbols. The matrix-vector multiplication is 

given by [6] 

                                        HP = (HH  H)−1HH                    (7)                            

The complexity of this product is equal to MT2 (MR-1) 

complex additions and MT×MR complex multiplications. The 

result is a square matrix with dimension MT × MT. For this 

square matrix HHH the inverse needs to be determined. It was 

shown in [6], that the direct inversion of a given square matrix 

A (with dimension MR× MR) has a complexity in the order of 

MR3   additions andMR3 multiplications in total.  So, 

inverting HHH has a complexity of MT3. 

Finally, the inverse of HHH is multiplied by HH. The 

complexity of this last multiplication is equal to MR addition 

and MT2× MR multiplication. The payload processing for ZF 

consists of a matrix-vector multiplication per transmitted 

vector and a slicing step to translate the estimated elements of 

s to the possible transmitted symbols. The matrix-vector 

multiplication is given by [6] 

x  =  Hpr                                (8) 

The complexity of this product is equal to MT × (MR-1) 

complex additions and MT× MR complex multiplications. 

Summarizing,   the   complexity of the ZF algorithm per 

transmitted vector s equals [6] 

CZF  flops = 7MT
3 + 7MT

2MR − 2MT + 4MTMR +

                            
 1

2
MR log2(M)                                       (9)                        

Complexity of MMSE 

The complexity of the MMSE algorithm is almost equal to the 

complexity of the ZF method described in the previous 

section. 

In the preamble-processing phase, the following MIMO 

processing matrix needs to be determined [6] 

                          G = (HH  H + σIMT
 )−1HH                            (10)                         

The calculation of this matrix has almost the same complexity 

as the determination of the pseudo-inverse in case of the ZF 

algorithm. Since is real, the only additional complexity 

consists of the real additions of σ (i.e., the addition of σ to the 

real part of the diagonal elements of HH H). This leads to a 

total complexity in the preamble-processing phase of 

                      CMMSE −pre  flops = 7MT
3 + 7MT

2MR             (11) 

The complexity of MMSE during the payload processing is 

equal to that of ZF and consists of a matrix-vector product 

5. 3GPP SUBURBAN MACROCELL 

ENVIRONMENT 
The 3GPP Suburban Macrocell Environment represents 

sparsely populated environments with low infrastructure. 

Such type of environments generally correspond to villages, 

open areas, fields etc. Specifications for the environment are 

as follows [7]: 

• Cell radius: up to 30Kms 

• Fading: Log Normal Shadow Fading 

• Distance b/w transmitting antenna: 4λ 

• Distance b/w receiving antenna: 0.4λ 

• Carrier frequency : 2GHz 

• Vehicular speed : 0Kmph/ 35Kmph/ 120Kmph 

• Modulation order: 16-QAM/64-QAM/256-QAM 

6. RESULTS AND DISCUSSION 
The bit error rate performance of ZF, MMSE and ML 

detectors is measured on 3GPP suburban macrocell 

environment. Based upon the BER performance, optimum 

detector is decided. For the purpose of fair comparison, BER 

of 10-4 is taken as reference. All comparisons will be made on 

this BER. 

Figure 1(a), 1(b) and 1(c) shows the BER performance of ZF, 

MMSE and ML detector with stationary user at 16-QAM, 64-

QAM and 256-QAM respectively. 

Figure 1(a) reveals that for 16-QAM, ZF and MMSE perform 

very close to each other with ZF marginally outperforming 

MMSE. ML detector exhibits best performance amongst the 

three. ZF and MMSE achieve BER of 10-4 at nearly 8dB SNR 

while ML achieves the same at nearly 3dB SNR. 

Figure 1(b) and 1(c) show similar trends in BER performance 

results. In both cases ZF marginally outperforms MMSE. For 

64-QAM, BER of 10-4 is achieved at 9dB, for 256-QAM, it is 
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nearly 11dB. 

 

(a) 

 

(b) 

 

(c) 

Figure 1: BER vs. SNR plots for stationary user using 4x4 

MIMO with (a) 16-QAM (b) 64-QAM (c) 256-QAM 

Figure 2 presents the error performance curves for mobile 

user velocity of 35Kmph with aforesaid modulation schemes. 

It shows that increasing the velocity of end user increases the 

SNR requirements to maintain the error rate performance. 

Figure 2(a) shows the BER vs. SNR plot for 16-QAM. It 

shows that ZF achieves BER of 10-4 at 8dB SNR followed by 

MMSE with minor SNR difference. ML detector achieves this 

BER at mere 4dB SNR. 

For 64-QAM scheme, Figure 2(b) reveals that ZF and MMSE 

achieve the required BER of 10-4 at 9dB of SNR. ML, as 

usual, outperforms others and achieves zero BER at SNR of 

8dB. 

Figure 2(c) plots the BER vs. SNR curve ZF and MMSE 

detector with 256-QAM. At 12dB SNR, both these detectors 

achieve BER of 10-4. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 2: BER vs. SNR plots for user velocity of 35Kmph 

using 4x4 MIMO with (a) 16-QAM (b) 64-QAM (c) 256- 

QAM 

Figure 3(a) shows that for 16-QAM, ZF achieves BER of 10-4 

at SNR of nearly 9.5dB while MMSE achieves the same at 

10.5dB. Throughout the measured SNR range, ZF and MMSE 

show performance difference of 1dB SNR. ML achieves the 

same at about 6dB SNR. 

Figure 3(b) and 3(c) show BER vs. SNR plots for 64-QAM 

and 256-QAM. When using 64-QAM, ZF achieves the 

required BER at about 9.5dB SNR which is achieved by 

MMSE at about 10dB. 

For 256-QAM, the same BER is achieved by ZF and MMSE 

at 12dB and 13dB respectively. 

To summarize, ZF outperforms MMSE in every case, though 

the difference is substantial in case of end user speed of 

120Kmph. 
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(a) 

 

(b) 

 

(c) 

Figure 3: BER vs. SNR plots for user velocity of 120Kmph 

using 4x4 MIMO with (a) 16-QAM (b) 64-QAM (c) 256- 

QAM 

7. CONCLUSION 
This paper presents a comparative analysis of error rate 

performance and complexity of MIMO symbol detectors to 

select optimum detector for 3GPP Suburban macrocell 

environments. Error rate performance results reveal that ZF 

detector performs better than MMSE for all modulation 

schemes with all kind of end user velocities. Also, complexity 

analysis reveals that ZF exhibits least complexity between the 

two detectors. It can therefore be concluded that ZF detector 

is optimum detector in terms of performance and complexity 

for 3GPP suburban macrocell environments. The results 

obtain via simulations will play a significant role in 

establishing the infrastructure for last mile connectivity in 

sub-urban and rural areas and will lead to improvement in 

Quality of Service (QoS).  
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