
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.16, December2015

27

New trends and Challenges in Source Code

Optimization

Anjan Kumar Sarma
National Institute of Electronics and IT,
 Electronics Niketan, 6 CGO Complex,
 Lodhi Road, New Delhi-110003 (India)

ABSTRACT
The front end of a compiler is generally responsible for

creating an intermediate representation of the source program

whereas the back end of the compiler constructs the desired

target program from the intermediate representation and the

information in the symbol table. Before the intermediate code

is passed to the back end of the compiler, it is necessary to

improve the intermediate code so that better target code will

result. The code optimization phase in a compiler attempts to

improve the target code without changing its output or

without side-effects.

Today, most of the compiler research is done in the

optimization phase. There are many classical techniques (e.g.

Eliminating common sub-expressions, Dead-Code

elimination, Constant Folding etc.) that have been used in

code optimization. However, the increasing size and

complexity of software products and the use of these products

in embedded, web-based and mobile systems results in the

demand for more optimized versions of the source code. This

research paper discusses the challenges involved in code

optimization for such systems and some recently developed

techniques in code optimization.

Keywords
Optimization, Reverse Inlining, Cross Linking, Address-

Code, Leaf Function

1. INTRODUCTION

1.1 What is Code Optimization
Code Optimization is the process of transforming a piece of

source code to produce more efficient target code. Efficiency

is measured both in terms of time and space. Optimization is

generally implemented using a set of optimizing

transformations, i.e., algorithms which take a piece of source

code and transform it to produce a semantically equivalent

output code that uses fewer resources. Most of the

optimization techniques attempt to improve the target code by

eliminating unnecessary instructions in the object code, or by

replacing one sequence of instructions by another faster

sequence of instructions.

1.2 Why Optimization is an important

phase in Compiler Design
Optimization is one of the most important phases in a

Compiler. Code optimization attempts to improve the source

code so that better target code will result. Usually, a better

target code is one that is better in terms of time and space.

However, some other objectives may also be considered to

measure the goodness of code, such as target code that

consumes less power. In modern times, processor

architectures are becoming more complex. With the

introduction of multicore and embedded systems requiring a

faster target code that consumes less space and power to

execute. The code optimization phase in a compiler attempts

to resolve these issues and produces better target code without

changing the desired output.

1.3 Presence of the Optimization phase in

the Compiler Architecture
Code optimization may either be performed on the

intermediate representation of the source code or on the un-

optimized version of the target machine code. If applied on

the intermediate representation, the code optimization phase

will reduce the size of the Abstract Syntax Tree or the Three

Address Code instructions. Otherwise, if it is applied as part

of final code generation, the code optimization phase attempts

to choose which instructions to emit, how to allocate registers

and when to spill, and so on.

2. OPTIMIZATION TECHNIQUES
There are many classical optimization techniques that have

been used in code optimization since the last decade. Some of

these techniques are applied to the basic blocks in the source

code and others are applied to the whole function. As the

result of recent researches, many new optimization techniques

have been introduced. In this research paper, the emphasize

will be on the new techniques of code optimization; however,

a brief overview of the classical techniques have also been

introduced.

2.1 Classical Optimization Techniques
The classical techniques for code optimization can be

categorized as:

1. Local Optimization

2. Global Optimization

3. Inter-Procedural Optimization

2.1.1 Local Optimization

The code optimization phase in a compiler begins with

partitioning the sequences of three-address instructions into

basic blocks. These basic blocks become the nodes of a flow

graph. Local optimization is performed within each basic

block. We can often obtain a substantial improvement in the

running time of code by performing local optimization within

each basic block by itself. Since basic blocks have no control

flow, these optimizations need little analysis.

Local optimization can be performed using the following

techniques-

(i) Eliminating local common subexpressions,

(ii) Dead code Elimination

(iii) The use of algebraic identities-

(a) The use of arithmetic identities

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.16, December2015

28

(b) Local reduction in strength, that is,

replacing a more expensive operator

by a cheaper one.

(c) Constant Folding

(iv) Reordering statements that do not depend on one

another.

2.1.2 Global Optimization (Intra-Procedural

Methods)

Global optimization techniques act on whole functions. In

global optimization, improvement takes into account what

happens across basic blocks.

Most global optimization techniques are based on data-flow

analysis. The results of data-flow analysis all have the same

form: for each instruction in the program, they specify some

property that must hold every time that instruction is

executed.

Some of the global optimization techniques are:

(a) Eliminating global common sub-expressions.

(b) Copy propagation.

(c) Dead-code elimination.

(d) Code Motion.

(e) To find induction variables in loops and optimize

their computation.

(f) Constant folding.

2.1.3 Inter-Procedural Optimization:
Inter-procedural optimization (IPO) techniques are applied to

programs that contain many frequently used functions. The

technique is called inter-procedural because it analyses the

entire program, whereas other optimizations such as local

optimization or global optimization look at only a single

function, or even a single block of code.

Inter-procedural optimization techniques can be categorized

as-

(a) Address-token analysis

(b) Array-dimension padding

(c) Alias analysis

(d) Automatic array transposition

(e) Automatic memory pool formation

(f) Common block variable coalescing

(g) Common block splitting

(h) Constant propagation

(i) Dead code detection

(j) Formal parameter alignment analysis

The global code optimization technique is based on inter-

procedural information only.

2.2 New Optimization Techniques
In general, code optimization is performed for reducing the

compiled code size and execution time .However, reducing

the code size has become low-priority due to steadily

decreasing cost of memory. Still, it is favorable to spend effort

on the code size reduction instead of wasting memory. This is

obviously true for embedded systems, where memory usage is

particularly crucial.

Some of the new optimization techniques used for code size

reduction are discussed here

2.2.1 Reverse-Inlining (or Procedural

Abstraction)
This code optimization technique attempts to reduce the size

of the source code by replacing all common code patterns in a

program with function calls. This technique is in fact opposite

of the “Inlining of Code”, where the call to a function is

replaced by a copy of the function body. In this technique, all

common code patterns in a program are placed into compiler-

generated functions. Every occurrence of these patterns in the

program is replaced by a call to the corresponding function.

This technique is particularly useful for optimizing programs

in which more occurrences of a given pattern can be found.

Procedural abstraction involves the following steps:

1. The source code is partitioned into basic blocks.

2. A callgraph is created from these basic blocks. The

following procedure is used to create the callgraph:

a. All the basic blocks except the one where program

execution starts are considered unused.

b. The blocks which are actually entered by the control

flow of the program are considered and marked as

used.

c. The blocks which are not included in the completely

generated call graph are removed.

3. A fingerprint is computed from each basic block.

This fingerprint is used to find candidate blocks for

outsourcing. The algorithm for creating the

fingerprint is quite simple and it works as follows:A

64-bit value from each basic block is created by

looking at the first 16 opcodes of the block, and

each of these opcodes is assigned a 4-bit code in the

fingerprint.

4. The compiler now checks all candidates for

outsourcing based on the fingerprint, and if possible

swaps them out into functions.

The average code size reduction using this approach is up to

30%. However, use of Object-oriented programming

languages like C++, Java and C# further increases the

opportunities for code compaction.

Example of Procedural abstraction

 Load r1,$5200 Load r1,$5200 Load r1,$5300

 add r1,r2 add r1,r2 add r1,r2

 rot r1,$2 rot r1,$2 rot r1,$2

 mul r1,r1 mul r1,r1 mul r1,r1

 ret

 (a)Original Code

 call f call f load r1,$5300 f: Load r1,$5200

 add r1,r2 add r1,r2

 rot r1,$2 rot r1,$2

 mul r1,r1 mul r1,r1

 ret

(b) Procedural Abstraction Variant I

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.16, December2015

29

 Load r1,$5200 Load r1,$5200 Load r1,$5300

 call f call f call f

 f: add r1,r2

 rot r1,$2

 mul r1,r1

 ret

(c) Procedural Abstraction Variant II

2.2.2 Cross-Linking Optimization:

Cross-linking optimization technique is used for optimizing

switch statements when multiple cases have the same tail

code. These common tail codes can be factored out to reduce

the code size. Cross-linking optimization can be applied both

within a function and across functions.

Example

switch(a) {

case 1: statement1;

CodeSegment1;

break;

case 2: statement2;

statement3;

break;

case 3: statement4;

CodeSegment1;

break;

case 4: statement5;

CodeSegment2;

break;

case 5: statement6;

CodeSegment2;

break;

default: CodeSegment1;

break;

}

/* break jumps to here */

Code: (a) Un-optimized Code

switch(a) {

case 1: statement1;

break1;

case 2: statement2;

statement3;

break;

case 3: statement4;

break1;

case 4: statement5;

break2;

case 5: statement6;

break2;

default: break1;

}

/* break1: */

CodeSegment1;

goto break;

/* break2: */

CodeSegment2;

goto break;

/* break: */

Code (b): Optimized Code

In the above example, the original code (code (a)) has two

common code tails (CodeSegment1 and CodeSegment2).

CodeSegment1 is included in case 1 and case 2 whereas

CodeSegment2 has been included in case 4 and case 5. If

these common code tails can be removed from the source

code, there will be a substantial reduction in code size. It is

done in the optimized version of the code by generating three

exit labels: break1, break2 and break. The label break1

contains codesegment1, break2 contains codesegment2 and

the label break is for normal exit. The labels break1 and

break2 contains jump to the normal break.

2.2.3 Address-Code Optimization:
It is sometimes a good idea to rearrange the layout of data in

memory to reduce or simplify address computations. As

number of data processing instructions increases, the size of

the address manipulation code also increases. The address

code optimization techniques attempt to optimize the address

manipulating instructions themselves by rearranging the

layout of data in memory.

There are two variants of Address Code optimization: Simple

Offset Assignment and General Offset Assignment. Both of

these reduce address computation code by rearranging

variables in memory.

Fig: (a)

Fig: (b)

The above figure depicts the Simple Offset Assignment

optimization in a DSP (Digital Signal Processing) specific

compiler. The compiler allocates one of the Address Registers

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.16, December2015

30

as a frame pointer (FP) which is used to address local

variables on the stack. There are three local variables A, B,

and C, on the stack. Suppose, the sequence S=(A,C,A,B)

specifies the order in which these local variables will be

accessed. Also, the auto increment range is suppose R=[-1,1].

In figure: (a), the variables are assigned to stack locations n,

n+1 and n+2 in the order A-B-C and FP is initially pointing to

variable A at address n. According to the sequence S, the next

access goes to variable C located at address n+2. Thus, FP

needs to be modified by the value +2. But, since the auto

increment range is restricted to R=[+1,-1] and +2 does not fall

in this range, the request cannot be served. The other two

accesses of the variables B and C according to the sequence S

require FP modifications by the values (-2) and (+1), of which

only the last FP modification (+1) can be implemented by

auto-increment. In order to implement the FP modifications

+2 and -2, two extra instructions would be required. But, if the

variables are reassigned to memory locations in the order B-

A-C, these two extra instructions would not be required, since

the access sequence now requires FP modifications by the

values +1, -1 and -1. All of these values fall in the auto-

increment range R and thus all FP modifications can be

implemented by auto-increment.

It is therefore a good choice to rearrange the variable layout in

memory to get better code. The goal of address code

optimization techniques is to compute such good variable

layouts.

2.2.4 Leaf Function Optimization:
A function that calls no other function is called a leaf

function. These functions form the leaves of the call graph in

the call graph representation. A leaf function is expected to

run more efficiently if it does not make its own register

window. Therefore the set of registers that would normally be

reserved for making function calls and parameter passing can

be used for general computation in a leaf function. In leaf-

function optimization, non-leaf functions are transformed into

leaf functions that can be represented as the leaves of a call

graph.

There are several advantages of converting functions into leaf

functions. Since leaf functions can be inlined easily, there is

no need for function entry and exit code, which saves code

size. Register constraints are removed which also saves code

size. Besides, since the body of the inlined function becomes

part of the parent function, it becomes easier to further

optimize these functions as well.

Leaf functions can be derived from the original source code,

but sometimes they are the results of procedural abstraction.

Some non-leaf functions can even be treated as leaf functions.

For example, consider the factorial function

int fact (int n, int acc)

{

if(n==0)

return acc;

else return fact(n-1, acc*n);

 }

This function has a recursive call at the end of the function.

This recursive call can be transformed into a loop by

implementing it as a jump to the beginning of the function. If

implemented as a loop, the function behaves as a leaf

function. However, in order to transform this non-leaf

function into a leaf function, an accumulator variable need to

be added in the function.

For the special treatment of leaf functions, some other

conditions must also be met; for example, the registers must

be used for their own variables and temporaries.

The GCC Compiler performs register numbering before it

knows whether the function is suitable for converting to a leaf

function. It therefore needs to remember the registers in order

to output a leaf function. The GCC uses the following macros

to accomplish this.

(i) Macro: LEAF REGISTERS

(ii) Macro: LEAF-REG-REMAP

2.2.5 Type-Conversion Optimization:
The type conversion optimization attempts to reduce the code

size by reducing the size of the data itself.

Most of the compilers insert many implicit type conversions

to support a variety of data types. For example, In C

programming language arithmetic operators operate on

integer-sized values (typically 32- bit) only. The compiler will

always select the most efficient integer size if we declare an

int, without specifying the size. Integers of smaller sizes (char,

short int) will be converted to types to integers of the default

size when doing calculations, and only the lower 8 or 16 bits

of the result will be used. We can assume that the type

conversion takes zero or one clock cycle. In a 64-bit system,

there is only a minimal difference between the efficiency of

32-bit integers and 64-bit integers.

Consider the following C language statement:

char a,b,c;

………

c=a+b;

………

Before doing the addition, the C compiler will promote char

(say signed 8-bit) variables a and b to integer types of the

default size. The result of this addition is of integer type and it

must be demoted to char type before being stored in the char

variable c. If a and b are stored in memory, four instructions

would be performed: two loads for loading a and b, one add

for the addition and one store for storing back the result in c.

However, if a and b are stored in registers, the compiler must

generate code that sign extends a and b before doing the

addition. The compiler will generate two instructions for each

sign extension: a left-shift to move the char sign bit into the

int sign bit, and then a right shift to restore the value and

propagate the sign bit into the upper 24-bits of the register.

However, if it is known in advance that the result of the

addition will be converted to a char type then there is no need

to sign extend a and b before addition. The addition can be

performed with 8-bit precision. Thus a careful analysis before

performing the addition can eliminate the sign extension

operations.

The type conversion optimization techniques use basic

principles type analysis to remove redundant type conversions

that can produce useful reductions in code size.

2.2.6 Multiple Memory Access optimization
The instructions which load or store two or more registers

simultaneously are called Multiple Memory Access (MMA)

instructions. Many microprocessors use MMA instructions for

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.16, December2015

31

reducing code size. MMA instructions include multiple loads

and multiple stores where a set of registers are loaded from, or

stored to, successive instruction words in memory. For

example, the ARM7 has LDM and STM instructions for

Load-multiple registers and Store-multiple registers. There is

a significant compactness in code size by expressing a large

set of registers with few instruction word bits. For example, in

a ARM7 processor, the LDM instruction uses only sixteen bits

to encode up to sixteen register loads (512 bits without the use

of the LDM instruction).). Effective use of LDM and STM

instructions in a ARM7 processor can save up to 480 bits

opcode space.

2.2.7 Combined Code Motion and Register

Allocation
This technique combines two traditionally antagonistic

compiler phases: code motion and register allocation. Code

motion aims to place instructions in less frequently executed

basic blocks, while instruction scheduling within blocks or

regions arranges instructions such that independent

computations can be performed in parallel. The Register

Allocation and Code Motion (RACM) algorithm aims to

reduce register pressure firstly by moving code (Code

Motion), secondly by Live-range splitting (Code-Cloning),

and thirdly by spilling. This optimization is applied to the

VSDG intermediate code, which greatly simplifies the task of

code motion. Data dependencies are explicit within the graph,

and so moving an operation node within the graph ensures

that all relationships with dependent nodes are maintained.

Also, it is trivial to compute the live range of variables (edges)

within the graph; computing register requirements at any

given point (called a cut) within the graph is a matter of

enumerating all of the edges (live variables) that are

intersected by that cut.

3. CHALLENGES IN CODE

OPTIMIZATION

3.1 Code optimization for Parallel

Processors
Code Optimization has a rich history that dates back half a

century. The researchers on code optimization have

contributed significantly to programmer productivity by

reducing the size and execution time of the compiled code and

by making code more portable. Often these innovations were

accomplished by the introduction of new ideas such as

interprocedural whole program analysis, pointer alias analysis,

loop transformations, adaptive-profile directed optimizations,

and dynamic compilation.

The current multi-core trend in the compiler industry is

forcing a paradigm shift in compilers to address the challenge

of „code optimization of parallel programs‟. All computers-

embedded, mainframe and high-end, are now being built from

multi- core processors with little or no increase in clock speed

per-core. This trend poses multiple challenges for compilers

of future systems as the number of cores continues to grow,

and the cores become more heterogeneous. In addition,

compilers have to keep pace with a sudden increase of new

parallel languages and libraries.

3.2 Code Optimization for Embedded

processors
Computers are everywhere today. Beyond the desktop PC,

embedded computers dominate our lives. Almost all

electronic gadgets including digital alarm, digital radio and

television, car fuel indicator, micro-wave ovens, remote-

controlled devices etc. use embedded processors. Extensive

growth of these embedded systems demands more efficient

software to operate these systems. A crucial aspect in coding

for these systems is that these systems use limited memory.

Thus, code size reduction is particularly important for these

systems. Continuous researches in the embedded systems

results in the development of even smaller and smaller

devices which use very little memory. Thus, code

optimization for reducing size is a major challenge in case of

the embedded processors. Also, since these systems run on

battery power, developing code that consumes less power is

another challenge for these systems.

4. CONCLUSION AND FUTURE SCOPE
This research paper tries to introduce the current trends in

code optimization. Since, most of the compiler researchers are

conducting their researches on code optimization which

results in the development of newer techniques for code

optimization on a daily basis, it is not possible to cover all the

new techniques in this research paper. This paper includes a

few of these techniques and the basic principles of these

techniques. Since code optimization is a field of broad

research, it is not possible to cover all aspects of code

optimization in this paper.

The future scope of this research is to develop some new

techniques based on these existing ones. This research paper

will help the programmers to do smart coding by identifying

the redundancies in their code and by applying these

optimization techniques to their programs. This will also help

the compiler designers to provide more optimization

techniques in their compilers.

5. REFERENCES
[1] Alfred Aho, Ravi Sethi, Jeffrey D Ullman, “Compilers

Principles, Techniques and Tools”, Pearson Education

Asia

[2] O.G.Kakde, (2008), “Compiler Design”, Universities

Press

[3] Carole Dulong, Rajiv Gupta, Robert Kennedy, Jens

Knoop, Jim Pierce (editors), (2000) “Code Optimization

– Trends, Challenges, and Perspectives” Dagstuhl-

Seminar-Report; 286, 17.9.–22.9.2000 (00381)

[4] Caspar Gries, (2009), “New Trends in the Optimization

of C-Code”,

[5] Kenneth Hoste Lieven Eeckhout,ELIS Department,

Ghent University,” COLE: Compiler Optimization Level

Exploration”

[6] Urban Boquist, “Code optimization Techniques for Lazy

Functional Languages”, Thesis for the Degree of Doctor

,Goteborg University,

[7] Stan Yi- Huang Liao, “Code Generation and

Optimization for Embedded Digital Signal Processors”,

Massachusetts Institute of Technology

[8] Neil Edward Johnson, “Code Size Optimization for

Embedded Processors”, Robinson College, Thesis for the

Doctor of Philosophy at the University of Cambridge

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.16, December2015

32

[9] Neil Johnson and Alan Mycroft, “Using Multiple

Memory Access Instructions for Reducing Code Size”,

University of Cambridge

[10] Johnson, N., and Mycroft, A., (2003) “Combined Code

Motion and Register Allocation using the Value State

Dependence Graph.” In Proc. 12th International

Conference on Compiler Construction (CC'03) (April

2003), vol. 2622 of LNCS (Springer-Verlag)

[11] Gergö Barany, “Integrated Code Motion and Register

Allocation”, Thesis for the Degree of Doctor, Vienna

University of Technology

[12] Qingfeng Zhuge, Bin Xiao, Edwin H.-M. Sha,“

Performance optimization of Multiple Memory

Architectures for DSP”

[13] Josef Weidendorfer, “Analysis and Optimization of the

Memory Access Behavior of Applications”

[14] Prajakta Gotarane, Sumedh Pundkar, (2015) “Smart

Coding using New Code Optimization Techniques in

Java to Reduce Runtime Overhead of Java Compiler”,

International Journal of Computer Applications (0975 –

8887), Volume 125 – No.15, September 2015

[15] Keith D. Cooper 1 and L. Taylor Simpson, “Live Range

Splitting in a Graph Coloring Register Allocator”, Rice

University, Houston, Texas, USA,

[16] Preston Briggs, Keith D. Coope,Linda Torczon,,

“Aggressive Live Range Splitting”, Houston University,

Texas, USA

[17] Michael Burke, Linda Torczon, “Inter-procedural

Optimization: Eliminating Unnecessary Recompilation”,

IBM Research, Rice University

IJCATM : www.ijcaonline.org

https://support.sas.com/documentation/onlinedoc/sasc/doc700/html/clug/z1824677.htm
https://www.rapitasystems.com/software_optimization_techniques_12
https://gcc.gnu.org/onlinedocs/gccint/Leaf-Functions.html

