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ABSTRACT 
The front end of a compiler is generally responsible for 

creating an intermediate representation of the source program 

whereas the back end of the compiler constructs the desired 

target program from the intermediate representation and the 

information in the symbol table. Before the intermediate code 

is passed to the back end of the compiler, it is necessary to 

improve the intermediate code so that better target code will 

result. The code optimization phase in a compiler attempts to 

improve the target code without changing its output or 

without side-effects. 

Today, most of the compiler research is done in the 

optimization phase. There are many classical techniques (e.g. 

Eliminating common sub-expressions, Dead-Code 

elimination, Constant Folding etc.) that have been used in 

code optimization. However, the increasing size and 

complexity of software products and the use of these products 

in embedded, web-based and mobile systems results in the 

demand for more optimized versions of the source code. This 

research paper discusses the challenges involved in code 

optimization for such systems and some recently developed 

techniques in code optimization. 
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1. INTRODUCTION 

1.1 What is Code Optimization 
Code Optimization is the process of transforming a piece of 

source code to produce more efficient target code. Efficiency 

is measured both in terms of time and space. Optimization is 

generally implemented using a set of optimizing 

transformations, i.e., algorithms which take a piece of source 

code and transform it to produce a semantically equivalent 

output code that uses fewer resources. Most of the 

optimization techniques attempt to improve the target code by 

eliminating unnecessary instructions in the object code, or by 

replacing one sequence of instructions by another faster 

sequence of instructions.  

1.2 Why Optimization is an important 

phase in Compiler Design 
Optimization is one of the most important phases in a 

Compiler. Code optimization attempts to improve the source 

code so that better target code will result. Usually, a better 

target code is one that is better in terms of time and space. 

However, some other objectives may also be considered to 

measure the goodness of code, such as target code that 

consumes less power. In modern times, processor 

architectures are becoming more complex. With the 

introduction of multicore and embedded systems requiring a 

faster target code that consumes less space and power to 

execute. The code optimization phase in a compiler attempts 

to resolve these issues and produces better target code without 

changing the desired output. 

1.3 Presence of the Optimization phase in 

the Compiler Architecture 
Code optimization may either be performed on the 

intermediate representation of the source code or on the un-

optimized version of the target machine code. If applied on 

the intermediate representation, the code optimization phase 

will reduce the size of the Abstract Syntax Tree or the Three 

Address Code instructions. Otherwise, if it is applied as part 

of final code generation, the code optimization phase attempts 

to choose which instructions to emit, how to allocate registers 

and when to spill, and so on. 

2. OPTIMIZATION TECHNIQUES 
There are many classical optimization techniques that have 

been used in code optimization since the last decade. Some of 

these techniques are applied to the basic blocks in the source 

code and others are applied to the whole function. As the 

result of recent researches, many new optimization techniques 

have been introduced. In this research paper, the emphasize 

will be on the new techniques of code optimization; however, 

a brief overview of the classical techniques have also been 

introduced. 

2.1 Classical Optimization Techniques 
The classical techniques for code optimization can be 

categorized as: 

1. Local Optimization 

2. Global Optimization  

3. Inter-Procedural Optimization 

2.1.1 Local Optimization 

The code optimization phase in a compiler begins with 

partitioning the sequences of three-address instructions into 

basic blocks. These basic blocks become the nodes of a flow 

graph. Local optimization is performed within each basic 

block. We can often obtain a substantial improvement in the 

running time of code by performing local optimization within 

each basic block by itself. Since basic blocks have no control 

flow, these optimizations need little analysis.  

Local optimization can be performed using the following 

techniques- 

(i) Eliminating local common subexpressions, 

(ii) Dead code Elimination 

(iii) The use of algebraic identities- 

(a) The use of arithmetic identities 
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(b) Local reduction in strength, that is, 

replacing a more expensive operator 

by a cheaper one. 

(c) Constant Folding 

(iv) Reordering statements that do not depend on one 

another. 

2.1.2 Global Optimization (Intra-Procedural 

Methods) 

Global optimization techniques act on whole functions. In 

global optimization, improvement takes into account what 

happens across basic blocks. 

Most global optimization techniques are based on data-flow 

analysis. The results of data-flow analysis all have the same 

form: for each instruction in the program, they specify some 

property that must hold every time that instruction is 

executed. 

Some of the global optimization techniques are: 

(a) Eliminating global common sub-expressions. 

(b) Copy propagation. 

(c) Dead-code elimination. 

(d) Code Motion. 

(e) To find induction variables in loops and optimize 

their computation. 

(f) Constant folding. 

2.1.3 Inter-Procedural Optimization: 
Inter-procedural optimization (IPO) techniques are applied to 

programs that contain many frequently used functions. The 

technique is called inter-procedural because it analyses the 

entire program, whereas other optimizations such as local 

optimization or global optimization look at only a single 

function, or even a single block of code. 

Inter-procedural optimization techniques can be categorized 

as- 

(a) Address-token analysis 

(b) Array-dimension padding 

(c) Alias analysis 

(d) Automatic array transposition 

(e) Automatic memory pool formation 

(f) Common block variable coalescing  

(g) Common block splitting 

(h) Constant propagation 

(i) Dead code detection 

(j) Formal parameter alignment analysis 

The global code optimization technique is based on inter-

procedural information only.  

2.2 New Optimization Techniques 
In general, code optimization is performed for reducing the 

compiled code size and execution time .However, reducing 

the code size has become low-priority due to steadily 

decreasing cost of memory. Still, it is favorable to spend effort 

on the code size reduction instead of wasting memory. This is 

obviously true for embedded systems, where memory usage is 

particularly crucial.  

Some of the new optimization techniques used for code size 

reduction are discussed here 

2.2.1 Reverse-Inlining (or Procedural 

Abstraction) 
This code optimization technique attempts to reduce the size 

of the source code by replacing all common code patterns in a 

program with function calls. This technique is in fact opposite 

of the “Inlining of Code”, where the call to a function is 

replaced by a copy of the function body. In this technique, all 

common code patterns in a program are placed into compiler-

generated functions. Every occurrence of these patterns in the 

program is replaced by a call to the corresponding function. 

This technique is particularly useful for optimizing programs 

in which more occurrences of a given pattern can be found. 

Procedural abstraction involves the following steps: 

1. The source code is partitioned into basic blocks. 

2. A callgraph is created from these basic blocks. The 

following procedure is used to create the callgraph: 

a. All the basic blocks except the one where program 

execution starts are considered unused. 

b. The blocks which are actually entered by the control 

flow of the program are considered and marked as 

used. 

c. The blocks which are not included in the completely 

generated call graph are removed. 

3. A fingerprint is computed from each basic block. 

This fingerprint is used to find candidate blocks for 

outsourcing. The algorithm for creating the 

fingerprint is quite simple and it works as follows:A 

64-bit value from each basic block is created by 

looking at the first 16 opcodes of the block, and 

each of these opcodes is assigned a 4-bit code in the 

fingerprint. 

4. The compiler now checks all candidates for 

outsourcing based on the fingerprint, and if possible 

swaps them out into functions. 

The average code size reduction using this approach is up to 

30%. However, use of Object-oriented programming 

languages like C++, Java and C# further increases the 

opportunities for code compaction. 

Example of Procedural abstraction 

   Load  r1,$5200       Load  r1,$5200       Load  r1,$5300 

   add r1,r2    add r1,r2   add r1,r2 

   rot r1,$2    rot r1,$2   rot r1,$2 

   mul r1,r1    mul r1,r1   mul r1,r1 

  ret 

 (a)Original Code 

 

    call f      call f     load r1,$5300   f: Load  r1,$5200 

       add r1,r2      add r1,r2 

     rot r1,$2      rot r1,$2 

      mul r1,r1      mul r1,r1 

         ret 

 

(b) Procedural Abstraction Variant I 
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    Load r1,$5200     Load r1,$5200            Load r1,$5300 

    call f                        call f                           call f 

 

      f: add r1,r2  

            rot r1,$2 

         mul r1,r1 

            ret 

 

(c) Procedural Abstraction Variant II 

 

2.2.2 Cross-Linking Optimization: 

Cross-linking optimization technique is used for optimizing 

switch statements when multiple cases have the same tail 

code. These common tail codes can be factored out to reduce 

the code size. Cross-linking optimization can be applied both 

within a function and across functions. 

Example 

switch(a) { 

case 1:   statement1; 

CodeSegment1; 

break; 

case 2:   statement2; 

statement3; 

break; 

case 3:   statement4; 

CodeSegment1; 

break; 

case 4:   statement5; 

CodeSegment2; 

break; 

case 5:   statement6; 

CodeSegment2; 

break; 

default:   CodeSegment1; 

break; 

} 

/* break jumps to here */ 

Code: (a) Un-optimized Code 

switch(a) { 

case 1:   statement1; 

break1; 

case 2:   statement2; 

statement3; 

break; 

case 3:   statement4; 

break1; 

case 4:  statement5; 

break2; 

case 5:   statement6; 

break2; 

default:   break1; 

} 

/* break1: */ 

CodeSegment1; 

goto break; 

 

/* break2: */ 

CodeSegment2; 

goto break; 

/* break: */ 

Code (b): Optimized Code 

In the above example, the original code (code (a)) has two 

common code tails (CodeSegment1 and CodeSegment2). 

CodeSegment1 is included in case 1 and case 2 whereas 

CodeSegment2 has been included in case 4 and case 5. If 

these common code tails can be removed from the source 

code, there will be a substantial reduction in code size. It is 

done in the optimized version of the code by generating three 

exit labels: break1, break2 and break. The label break1 

contains codesegment1, break2 contains codesegment2 and 

the label break is for normal exit. The labels break1 and 

break2 contains jump to the normal break.  

2.2.3 Address-Code Optimization: 
It is sometimes a good idea to rearrange the layout of data in 

memory to reduce or simplify address computations. As 

number of data processing instructions increases, the size of 

the address manipulation code also increases. The address 

code optimization techniques attempt to optimize the address 

manipulating instructions themselves by rearranging the 

layout of data in memory.   

There are two variants of Address Code optimization: Simple 

Offset Assignment and General Offset Assignment. Both of 

these reduce address computation code by rearranging 

variables in memory. 

     

Fig: (a) 

 

Fig: (b) 

The above figure depicts the Simple Offset Assignment 

optimization in a DSP (Digital Signal Processing) specific 

compiler. The compiler allocates one of the Address Registers 
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as a frame pointer (FP) which is used to address local 

variables on the stack. There are three local variables A, B, 

and C, on the stack. Suppose, the sequence S=(A,C,A,B) 

specifies the order in which these local variables will be 

accessed. Also, the auto increment range is suppose R=[-1,1]. 

In figure: (a), the variables are assigned to stack locations n, 

n+1 and n+2 in the order A-B-C and FP is initially pointing to 

variable A at address n. According to the sequence S, the next 

access goes to variable C located at address n+2. Thus, FP 

needs to be modified by the value +2. But, since the auto 

increment range is restricted to R=[+1,-1] and +2 does not fall 

in this range, the request cannot be served. The other two 

accesses of the variables B and C according to the sequence S 

require FP modifications by the values (-2) and (+1), of which 

only the last FP modification (+1) can be implemented by 

auto-increment. In order to implement the FP modifications 

+2 and -2, two extra instructions would be required. But, if the 

variables are reassigned to memory locations in the order B-

A-C, these two extra instructions would not be required, since 

the access sequence now requires FP modifications by the 

values +1, -1 and -1. All of these values fall in the auto-

increment range R and thus all FP modifications can be 

implemented by auto-increment. 

It is therefore a good choice to rearrange the variable layout in 

memory to get better code. The goal of address code 

optimization techniques is to compute such good variable 

layouts. 

2.2.4 Leaf Function Optimization:  
A function that calls no other function is called a leaf 

function. These functions form the leaves of the call graph in 

the call graph representation. A leaf function is expected to 

run more efficiently if it does not make its own register 

window. Therefore the set of registers that would normally be 

reserved for making function calls and parameter passing can 

be used for general computation in a leaf function. In leaf-

function optimization, non-leaf functions are transformed into 

leaf functions that can be represented as the leaves of a call 

graph. 

There are several advantages of converting functions into leaf 

functions. Since leaf functions can be inlined easily, there is 

no need for function entry and exit code, which saves code 

size. Register constraints are removed which also saves code 

size. Besides, since the body of the inlined function becomes 

part of the parent function, it becomes easier to further 

optimize these functions as well.   

Leaf functions can be derived from the original source code, 

but sometimes they are the results of procedural abstraction. 

Some non-leaf functions can even be treated as leaf functions.  

For example, consider the factorial function 

int fact (int n, int acc)  

{ 

if(n==0) 

return acc; 

else return fact(n-1, acc*n); 

 } 

This function has a recursive call at the end of the function. 

This recursive call can be transformed into a loop by 

implementing it as a jump to the beginning of the function. If 

implemented as a loop, the function behaves as a leaf 

function. However, in order to transform this non-leaf 

function into a leaf function, an accumulator variable need to 

be added in the function. 

For the special treatment of leaf functions, some other 

conditions must also be met; for example, the registers must 

be used for their own variables and temporaries. 

The GCC Compiler performs register numbering before it 

knows whether the function is suitable for converting to a leaf 

function. It therefore needs to remember the registers in order 

to output a leaf function. The GCC uses the following macros 

to accomplish this. 

(i) Macro: LEAF REGISTERS 

(ii) Macro: LEAF-REG-REMAP 

2.2.5 Type-Conversion Optimization: 
The type conversion optimization attempts to reduce the code 

size by reducing the size of the data itself. 

Most of the compilers insert many implicit type conversions 

to support a variety of data types. For example, In C 

programming language arithmetic operators operate on 

integer-sized values (typically 32- bit) only. The compiler will 

always select the most efficient integer size if we declare an 

int, without specifying the size. Integers of smaller sizes (char, 

short int) will be converted to types to integers of the default 

size when doing calculations, and only the lower 8 or 16 bits 

of the result will be used. We can assume that the type 

conversion takes zero or one clock cycle. In a 64-bit system, 

there is only a minimal difference between the efficiency of 

32-bit integers and 64-bit integers. 

Consider the following C language statement: 

char a,b,c; 

……… 

c=a+b; 

………   

Before doing the addition, the C compiler will promote char 

(say signed 8-bit) variables a and b to integer types of the 

default size. The result of this addition is of integer type and it 

must be demoted to char type before being stored in the char 

variable c. If a and b are stored in memory, four instructions 

would be performed: two loads for loading a and b, one add 

for the addition and one store for storing back the result in c. 

However, if a and b are stored in registers, the compiler must 

generate code that sign extends a and b before doing the 

addition. The compiler will generate two instructions for each 

sign extension: a left-shift to move the char sign bit into the 

int sign bit, and then a right shift to restore the value and 

propagate the sign bit into the upper 24-bits of the register. 

However, if it is known in advance that the result of the 

addition will be converted to a char type then there is no need 

to sign extend a and b before addition. The addition can be 

performed with 8-bit precision. Thus a careful analysis before 

performing the addition can eliminate the sign extension 

operations.  

The type conversion optimization techniques use basic 

principles type analysis to remove redundant type conversions 

that can produce useful reductions in code size. 

2.2.6 Multiple Memory Access optimization 
The instructions which load or store two or more registers 

simultaneously are called Multiple Memory Access (MMA) 

instructions. Many microprocessors use MMA instructions for 
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reducing code size. MMA instructions include multiple loads 

and multiple stores where a set of registers are loaded from, or 

stored to, successive instruction words in memory. For 

example, the ARM7 has LDM and STM instructions for 

Load-multiple registers and Store-multiple registers. There is 

a significant compactness in code size by expressing a large 

set of registers with few instruction word bits. For example, in 

a ARM7 processor, the LDM instruction uses only sixteen bits 

to encode up to sixteen register loads (512 bits without the use 

of the LDM instruction). ). Effective use of LDM and STM 

instructions in a ARM7 processor can save up to 480 bits 

opcode space. 

2.2.7 Combined Code Motion and Register 

Allocation 
This technique combines two traditionally antagonistic 

compiler phases: code motion and register allocation. Code 

motion aims to place instructions in less frequently executed 

basic blocks, while instruction scheduling within blocks or 

regions arranges instructions such that independent 

computations can be performed in parallel. The Register 

Allocation and Code Motion (RACM) algorithm aims to 

reduce register pressure firstly by moving code (Code 

Motion), secondly by Live-range splitting (Code-Cloning), 

and thirdly by spilling. This optimization is applied to the 

VSDG intermediate code, which greatly simplifies the task of 

code motion. Data dependencies are explicit within the graph, 

and so moving an operation node within the graph ensures 

that all relationships with dependent nodes are maintained. 

Also, it is trivial to compute the live range of variables (edges) 

within the graph; computing register requirements at any 

given point (called a cut) within the graph is a matter of 

enumerating all of the edges (live variables) that are 

intersected by that cut. 

3. CHALLENGES IN CODE 

OPTIMIZATION 

3.1 Code optimization for Parallel 

Processors 
Code Optimization has a rich history that dates back half a 

century. The researchers on code optimization have 

contributed significantly to programmer productivity by 

reducing the size and execution time of the compiled code and 

by making code more portable. Often these innovations were 

accomplished by the introduction of new ideas such as 

interprocedural whole program analysis, pointer alias analysis, 

loop transformations, adaptive-profile directed optimizations, 

and dynamic compilation. 

The current multi-core trend in the compiler industry is 

forcing a paradigm shift in compilers to address the challenge 

of „code optimization of parallel programs‟. All computers- 

embedded, mainframe and high-end, are now being built from 

multi- core processors with little or no increase in clock speed 

per-core. This trend poses multiple challenges for compilers 

of future systems as the number of cores continues to grow, 

and the cores become more heterogeneous. In addition, 

compilers have to keep pace with a sudden increase of new 

parallel languages and libraries. 

 

3.2 Code Optimization for Embedded 

processors 
Computers are everywhere today. Beyond the desktop PC, 

embedded computers dominate our lives. Almost all 

electronic gadgets including digital alarm, digital radio and 

television, car fuel indicator, micro-wave ovens, remote-

controlled devices etc. use embedded processors. Extensive 

growth of these embedded systems demands more efficient 

software to operate these systems. A crucial aspect in coding 

for these systems is that these systems use limited memory. 

Thus, code size reduction is particularly important for these 

systems. Continuous researches in the embedded systems 

results in the development of even smaller and smaller 

devices which use very little memory. Thus, code 

optimization for reducing size is a major challenge in case of 

the embedded processors. Also, since these systems run on 

battery power, developing code that consumes less power is 

another challenge for these systems. 

4. CONCLUSION AND FUTURE SCOPE 
This research paper tries to introduce the current trends in 

code optimization. Since, most of the compiler researchers are 

conducting their researches on code optimization which 

results in the development of newer techniques for code 

optimization on a daily basis, it is not possible to cover all the 

new techniques in this research paper. This paper includes a 

few of these techniques and the basic principles of these 

techniques. Since code optimization is a field of broad 

research, it is not possible to cover all aspects of code 

optimization in this paper. 

The future scope of this research is to develop some new 

techniques based on these existing ones. This research paper 

will help the programmers to do smart coding by identifying 

the redundancies in their code and by applying these 

optimization techniques to their programs. This will also help 

the compiler designers to provide more optimization 

techniques in their compilers.  
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