
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

41

A Survey on Scheduling Approaches for Hard Real-Time

Systems

Mehrin Rouhifar
Computer Engineering Department

Central Tehran Branch – Islamic Azad University
Tehran - Iran

Reza Ravanmehr
Computer Engineering Department

Central Tehran Branch – Islamic Azad University
Tehran - Iran

ABSTRACT

In this paper, main scheduling algorithms for hard real-time

systems (RTSs) have been investigated that include both uni

and multi processors schemes. It provides the summary of

schedulability analysis and well-known attributes. This paper

composed of two parts; first part surveyed the basic hard RTS

scheduling algorithms that guarantee the on-time completion

of the tasks. Second part contains the different heuristic and

partitioned approaches for some specific factors of real-time

systems such as energy consumption, dependability,

performance, scheduling feasibility and utilization of memory

resource. Finally, the analysis and evaluation of the mentioned

methods are shown based on the schedulability of task sets

and efficiency.

Keywords

Real-time system, Hard RTS, Scheduling, Schedulability.

1. INTRODUCTION
Real-time systems are computational systems that must

perform their operations correctly, considering the predefined

time constraints [1], [2]. Processes in RTSs, refer to tasks that

each of them has specific characteristics as Deadline,

Execution time and Release time. The real-time system has

requirements in terms of the deadline, so depending on the

consequences of deadline missing, a real-time task can be

classified to three categories of hard, soft or firm. In case of

hard real-time task if a deadline missed, it will lead to

complete failure of system and occur the catastrophic

consequences. In the soft real-time system a deadline can be

missed, while lead to no complete failure, only decrease

system performance. Also, a real-time task is firm because if

the deadline is missed, producing result will be not useful and

cause no damage of system [3].

Today, hard real-time systems are extensively used in many

various application fields including; automotive electronics,

avionics, space systems, medical systems, household

automation, and robotics [2, 4]. Scheduling algorithms in

RTSs have special importance to ensure the desired and

predictable behavior of system. In multiprocessor systems,

tasks scheduling and processors management on distinct

processors are as important issues in designing of scheduling

algorithms. One of the generic methods is global or

hierarchical scheduling in which a processor has played the

role of manager and divides the tasks between processors

based on the general parameters. Then, each processor can

independently perform the scheduling according to the

internal approaches. Therefore, selecting an appropriate

algorithm has very effects on the RTS behavior and hence

exist many types of them. Also, other important factors in

real-time scheduling methods include issues such as response

time, average of scheduling rate, energy consumption and

fault tolerance.

Increasing the applications of embedded real-time systems in

modern life and need to the more processing, has been
pervasive the use of multi-core processors. Enhancing the

processing power, be increased the energy consumption. As a

result, the effective use of energy will be more important. On

the other hand, due to variety of tasks and different

requirements of each task, how to schedule the distinct tasks

on processors will has greater importance. Gradually, real-

time applications become the main role in this field.

Therefore, the scheduling algorithms should simultaneously

handle the time constraints of tasks and energy consumption.

Dynamic and static consumed power is the source of energy

consumption for processors. Dynamic consumed power

derives from the mode change of processor internal circuits to

perform the tasks and leakage current is the source of static

consumed power. The dynamic consumed power is an

important part of the power consumption of the processor in

micron technology. In recent years, the number of cores,

density and temperature are enhanced, so static consumed

power is greatly increased. Therefore, both dynamic and static

consumed power parameters should be considered for

optimizing the energy consumption.

DVFS (Dynamic Voltage and Frequency Scaling) and DPM

(Dynamic Power Management) are two general techniques to

reduce the energy consumption in processors. DVFS and

DPM techniques were provided to reduce the dynamic

consumed power and static consumed power respectively.

DVFS method dynamically adjusts the processor operating

voltage and frequency level to reduce the consumed power,

while does not consider to reducing the static consumed

power. DPM method also, finds the idle time between the

processor tasks and it varies the processor mode from idle to

sleep to reduce the static consumed power. Since, switching

the processor mode has the energy and delay headers so,

mode variation must be perform when idle time be more than

a certain threshold. Several papers reduced the energy

consumption using each of two above methods or hybrid of

them. The effects of two methods are unequal and have

distinct results in different conditions.

The fault tolerant system is a system that with existence of the

hardware and software faults, is continued still to perform its

services. In designing this type of system, mechanisms should

be used that ensure the expected services accuracy, even in the

presence of fault. According to the real-time nature of many

fault tolerant systems, it is clear that provided mechanisms for

this purpose will not be consistent with the scheduling

constraints of real-time applications. It should be noted, PB

(Primary Backup) and TMR (Triple Module Redundancy) are

two generic methods for fault tolerance in real-time tasks

scheduling of multiprocessor environments [5].

The remaining of the paper is organized as follows: Section 2

describes the basic methods of scheduling for hard real-time

systems including uniprocessor and multiprocessor. Section 3

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

42

presents the Quality of Service (QoS) factors and also

challenges and respective issues. In Section 4, hard real-time

scheduling algorithms have been investigated in some specific

factors such as energy consumption, reliability (fault

tolerance), partitioned and memory centric methods. The

results of analysis and comparison of the mentioned methods

describe in section 5. Finally, section 6 concludes the

approaches with schedulability analysis and QoSs.

2. HARD REAL-TIME SYSTEM

SCHEDULING APPROACHES
Scheduling schemes in RTS are important to the desired

behavior of system be predictable. Scheduling algorithm is a

set of rules that determines how to manage a RTS by the

scheduler. In other words, it specifies the task queuing and

allocates time to processor. In addition, many tasks are

duplicated and are performed once in each period which it

called periodic. In Off-line scheduling algorithms, be made

the decisions about the scheduling the system start to execute

and the scheduler has the complete information from all the

tasks. So, the tasks execute with a predetermined order

whereas, on-line scheduling algorithms create a time table for

tasks and schedule them in execution during. It should be note

the scheduling in terms of the tasks priorities are categorized

into the static and dynamic algorithms. In static algorithms, be

allocated a fixed priority to the tasks before they begin to

execute but the order of executing the tasks be determined

during execution in dynamic algorithms. On the other hand,

scheduling algorithms are classified to two types, preemptive

and non-preemptive. In case of preemptive algorithms, when

the task is executed on a processor, if another task arrives with

higher priority, it will stop whereas in non-preemptive

algorithms, the task’s execution no stop until it completed and

finished. So according to all of the above, real-time

scheduling can be classified as shown in Figure 1.

Figure1: Taxonomy of real-time scheduling algorithms

Selecting the appropriate algorithm for scheduling depends on

the type of system that whether it is uniprocessor,

multiprocessor or distributed. The uniprocessor system

executes only a single process and it switches between the

different processes. The multiprocessor system could be a

multi-core or multiprocessor which it handles the several

separate uniprocessor independently. The nodes are

independent in a distributed system, while they greatly

interact with each other in multiprocessors [3].

2.1 Scheduling Algorithms for

Uniprocessor Systems
Scheduling algorithm for uniprocessor systems must ensure to

allocate the enough time to all the system tasks at certain

points of time that they can meet their deadline as far as

possible. Figure 2 shows the classification of different kinds

of algorithms.

Figure 2: Scheduling algorithms for uniprocessor systems

2.1.1 Static Algorithms
Some of the most important static-priority scheduling

algorithms are described as follows:

 RM (Rate Monotonic)

RM is a preemptive and static priority scheduling algorithm

on uniprocessor systems. In this algorithm, the tasks with

shorter periods have higher priority for execution because if

the demand rate be more, the period would be shorter and the

priority would increase. Therefore, it is used in periodic tasks.

RM algorithm has been considered with following

assumptions:

1) The periodic tasks have fixed runtime and they are

ready to be executed at the beginning of each period

T.

2) The implicit deadline of tasks (D) represents the end

of period namely D=T.

3) The tasks are independent and do not block each

other.

4) The scheduling overhead is assumed to zero due to

time of context switching and exchanging.

 DM (Deadline Monotonic)

There is another scheduling algorithm called DM and is

similar to RM with difference that D≤T (constrained

deadline). So, RM can be considered as a specific case of DM

which the deadline determines task priority. Consequently, a

task with the shorter deadline will be executed at higher

priority.

Some extensions have been performed on RM to increase its

performance. So that, when the tasks share its resources, we

can also use the RM. In order to prevent the simultaneous use

from the shared resources, is used a technique called

semaphore. In which case, when the task arrives to the critical

section, it will lock and after the task exiting is released. The

critical section is a part of the code for access to a shared

source. Using the semaphores may have problems such as

Scheduling Algorithms for Uni-processors

Dynamic

RM

Static (Fixed-Priority)

DM EDF LLF

Real-time Scheduling

Hard Soft

Static Dynamic

Preemptive Non-Preemptive Preemptive Non-Preemptive

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

43

Figure3: Scheduling algorithms for multiprocessor systems

blocking. It occurs when a task will not execute by tasks with

lower priority. To solve this problem, there are two methods

as follows:

 PIP (Priority inheritance protocol)

If a task blocks the task with higher priority,

dynamically task priority will change.

 PCP (Priority ceiling protocol)

This protocol has a semaphore that be allocated as

the priority ceiling. Hence, it prevents the deadlock

occurrence [6].

2.1.2 Dynamic Algorithms
Here there are two main dynamic-priority scheduling

algorithms that include:

 EDF (Earliest Deadline First)

EDF is a dynamic priority scheduling algorithm that

determines the task priority in terms of deadline. So, the

higher priority would allocate to a task which is close to the

end of its deadline. All the conditions and assumptions of RM

algorithm is also valid for EDF except TD  . Furthermore, it

is a preemptive method and has the capability of access to full

efficiency of system.

 LLF (least Laxity First)

The task priority of LLF algorithm has been determined based

on laxity, therefore the task priority will be higher that it had

less laxity. The laxity is the time interval that a task is relaxed

to execute.

Thus, if there are two tasks with the same laxity time, they

will constantly preempt each other and will stop another

execution. As a result, very context switching will create. But,

if we ignore its derived cost, LLF like EDF, will is an optimal

dynamic scheduling algorithm.

2.2 Scheduling Algorithms for

Multiprocessor Systems
Multiprocessor scheduling is an attempt to answer the two

problems of allocation and priority.

 Allocation problem: It determines which processor

should execute the task and includes the following:

 No Migration: The each task is allocated to a

processor and the any migration is not allowed.

 Task Level Migration: A task jobs execute on

different processors, but it should be noted that a job

is only executable on a single processor.

 Job Level Migration: A single job can be moved and

execute on various processors but, it cannot be

executed in parallel on different processors.

 Priority problem: It determines the tasks in what order

should execute and has the following types:

- Fixed Task Priority: Every task has a fixed priority for

all of its jobs.

- Fixed Job Priority: A task jobs have the different

priorities, whereas each job has a fixed priority.

- Dynamic Priority: each job may have the various

priorities at different times.

Microprocessors are the most important factor for power of

modern computers and their performance increase

exponentially every year because of two main reasons; First,

according to Moore's Law, the speed of transistors increase

which it has a direct impact onto the performance of

processors that have been made the transistors [7]. Second,

increasing in microprocessor performance is more than

Moore's Law estimation because the designers by controlling

the increasing transistors onto modern chips could reach the

more parallelism in compared with software techniques.

The new solution of microprocessors design is

"multiprocessor chips" which in fact, are the equivalent of

multi-core processors. The multiprocessor chip represents a

set of the uniprocessors on a single chip, so that generally

have the performance similar to a team. Indeed, instead of

filling the chip space with single large processor, it uses the

multiple small cores. Multi-core systems scheduling is a NP

(Non-deterministic Polynomial time) Problem [8], [9].

Whereas, scheduling for this kind of systems with a view of

improving the energy consumption is an NP-Hard problem

[10]. Different algorithms have been proposed for

multiprocessor scheduling. Principally, despite the presence of

various proposed solutions, achieving a fully optimized

solution with a lot of tasks almost is impossible while each of

the algorithms are trying to obtain a near-optimal solution.

These algorithms can be classified in the following, which is

also shown schematically in Figure 3.

 Classic Algorithms: In this category, there are some

algorithms such as EDF (Earliest Deadline First),

LPT (Longest Processing Time), SPT (Shortest

Processing Time), FDP (Fast Critical Path), FLB

(Fast Load Balancing). The most of these methods,

exclusively aren't in order to scheduling of multi-

core systems but are useable about them. The

above-mentioned algorithms often achieve the

answers with much less time-complexity but no

access to the optimal solution.

 Heuristics and Evolutionary Algorithms: They are

included DSH (Duplication Scheduling Heuristic),

Chaining, Min-Min, ISH (Insertion Scheduling

Heuristic), Tabu Search (TS), Simulated annealing

(SA), Genetic algorithms (GAs) and PSO (Particle

Swarm Optimization). These algorithms have been

widely using for multiprocessor systems scheduling.

Scheduling Methods for Multiprocessors

Classic Algorithms Heuristics & Evolutionary Algorithms

EDF LPT SPT FDP FLB DSH Chaining Min-Min ISH SA GA

s

PSO TS

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

44

Evolutionary algorithms provide a better solution

spending the more runtime compared to other

algorithms.

Multiprocessor systems scheduling are classified into three

categories as follows:

- Heterogeneous: In these systems, processors are

different. So, execution rate of each task depends on

both the processor and task.

- Homogeneous: The processors are identical in this kind

of systems. Thus, the execution rate is equal onto all of

the processors.

- Uniform: The execution rate of each task only depends

on the processor speed. Consequently, it is clear a

processor with more speed will execute the tasks faster.

It should be mentioned to solve the scheduling problem of

multiprocessor systems, the task model usually are considered

as an independent task set that they are no periodic. The hard

real-time tasks must be completed before their deadlines

expire. The multiprocessor environments comprise of m

processors or cores. This paper consider a task model [1] as a

set },...,,{ 21 nT 

where is composed of n independent

tasks and symbol i represents the task number. Every task is

defined by the characteristics),,,(iii DCT that iT , iC and iD

notations denote the period, runtime and relative deadline

respectively.

2.2.1 Scheduling of homogeneous multiprocessor

systems
In regard to daily increasing development of multiprocessor

systems in the last decade, generally the scheduling methods

of homogeneous multiprocessor systems is classified to three

categories of global, partitioned and hybrid [4]. The taxonomy

of scheduling methods for homogeneous systems is shown in

Figure 4.

Figure 4: Scheduling methods for homogeneous

multiprocessor systems

 Global scheduling algorithmsThese algorithms put the

ready tasks in a sorted queue based on their priority. The

highest priority task puts at first of queue. Then, it is

selected by scheduler and would execute on any

processors. Also, the task will migrate to the other

processor, if necessary.

 Partitioned scheduling algorithmsIn this method, each

task is allocated to a processor and it will only execute

on the same processor exclusively. Instead of having a

general queue, be used a separate execution queue for

each processor.

 Hybrid scheduling algorithmsAccording to the hardware

architecture, the overhead cost of general scheduling

algorithms potentially is very high. In mentioned

method, the jobs can potentially be migrated from one

processor to another processor, which may lead to

excessive communication loads and a large amount of

cache is missed. As a result, WCET (Worst Case

Execution Time) will increase when, does not exists in

partitioned mode. Hybrid algorithm is a combination of

global and partitioned approaches and it contains two

methods of the semi-partitioned and clustering. Semi-

partitioned is an approach that is applied in partitioned

systems in order to use the sliced spare capacity and it

divides a few tasks between two processors. Clustering

case is also a partitioned method where in, clusters are

composed a few of fast processors which have been

allocated to tasks.

3. QUALITY OF SERVICE FACTORS
One of the QoSs for scheduling algorithms is to maximize the

number of tasks that will complete before its deadline. Other

QoS factors include the schedulability, efficiency, reliability,

on-time completion of tasks, rejection ratio, performance and

data quality. The guarantee of QoS for heterogeneous systems

and clusters has become a very important requirement in

today's real-time systems. Generally, data quality in the soft

RTS and reliability in hard RTS systems has particular

importance because the algorithms with requirement of

reliability can tolerant the failures and improve the system

reliability [11].

3.1 Challenges and Issues
Due to the increasing demand of the multiprocessor systems,

they have the high capability of efficiency and reliability as a

powerful computing solution in the hard real-time systems.

Scheduling of multiprocessor systems still is as one of the

challenges in the computer engineering field. The main

problem of the real-time tasks scheduling in multiprocessor

systems is to determine a task from the task set to execute and

also determining a processor which should be executed the

task on it. Other issues include the following:

 Restrictions of processor usage

 Ineffective tests of schedulability

 Considering the overhead (Cost)

 Limited task models for multiprocessor systems

 Limited policies of access to shared resources

(Resource Allocation)

4. HARD REAL-TIME SCHEDULING

ALGORITHMS AND APPROACHES

FOR SPECIFIC APPLICATIONS
In this section, we review a number of recent methods and

researches related to the area of scheduling of hard RT tasks

in multiprocessor environment. In some of them, scheduling

has been investigated from different aspects. Also, the issues

such as reliability, energy consumption and etc have been

considered for their implementation.

Houben and Halan [12] have proposed a dynamic scheduling

algorithm of energy aware for hard real-time systems that is

based on EDF scheme. As previously mentioned, DVFS is

one of the energy management techniques that it adjusts

dynamically the frequency and voltage in the scheduling

algorithms. Therefore, lead to decrease the idle time of

processor and increases the performance. In proposed

algorithm, separate modes change based on time. Since the

processor modes are specified by need of voltage, frequency

and performance values, so the energy consumption of

Scheduling Algorithms for Multi-processors

Partitioned

Semi-partitioned Clustering

Global Hybrid

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

45

processors is controlled separately. It is assumed the task set T

is consists of n periodic tasks in the form Ti=(Pi, ri, ai).

Symbol Ti

determines the ith task and its parameters specifies

the period, execution time and response time of ith task

respectively in fastest mode. The proposed method is for an

uniprocessor platform where the separate performance modes

of a processor are determined by of M={M1, M2, …, MN}. So

that, Mi=(Vi, Fi, Pi) and the parameters of Vi, Fi and Pi

represent the voltage, frequency and performance of the ith

mode. The different modes arranged in terms of their

frequencies in downtrend.

In order to dynamic scheduling, EDF algorithm is developed

by considering all of the constraints of hard real-time systems.

Hence, energy consumption decreased because it has a direct

relationship with consumed power. For this purpose, the task

set T divided to the two subsets of R and S. The R is a set of

the “ready tasks” to execute and S is a copy of “shadow

tasks”. Each task of subset R by finishing its execution enters

to the subset S and the other tasks that is executed only part of

them, depending on the request be rescheduled again. Subset

S also includes the tasks that not ready for execution but

waiting for activation.

Samal, Mall and Tripathy in [13] have proposed a heuristic

approach named GFTS (Genetic Algorithm Based Fault-

Tolerant Scheduler) for fault tolerant scheduling of aperiodic

and hard real-time tasks on multiprocessor systems using

genetic algorithm (GA). The primary-backup (PB) is one of

the conventional methods for scheduling of fault tolerant

which is used to ensure the real-time tasks meet their deadline

but also it is not without fault. In studied paper, an optimal

scheduling algorithm is proposed based on GA and is

combined with information about the scheduling of real-time

tasks to provide fault tolerance in multiprocessor

environments. It uses PBFTS (Primary Backup Fault Tolerant

Scheduling) with novel form GA. GFTS acts better than

previous methods for fault tolerant scheduling with the

primary-backup in terms of system efficiency and

performance. In PBFTS systems, two same copies of a task

are scheduled on distinct processors, without time overlapping

and the backup copy is executed only while the primary copy

of task be failed (detecting through acceptance test). Dynamic

scheduling can classified to centralized and distributed.

In [13] is used the task model which is presented by Ghosh et

al. [14]. It is assumed the multiprocessor system based on

hard real-time tasks consists of m same processors that are

connected through a shared medium. Also, the tasks are

considered as aperiodic and non-preemptive. Each task Ti

is

shown as ‹ai, ri, ci, Di› where ai is the arrival time of ith task,

ir its ready time, ci its worst case computation time and Di
its

relative deadline. The scheduler is designed as centralized for

real-time tasks in multiprocessor systems environment. All the

tasks arrive at the queue of central processor namely

scheduler. Then, dispatcher distributes them to other

processors to execute. The processors have equal computing

capability and are connected via a shared memory. The

communication between scheduler and processors accomplish

with dispatch queues. Every processor contains a distinct

dispatch queue. The scheduler and other processes are

executed in parallel.

Mottaghi and Zarandi [15] presented the dynamic scheduling

algorithm called DFTS (Dynamic Fault Tolerant Scheduling)

for real-time tasks in multi-core processors by considering the

tolerance for transient faults of single and multiple. So, the

tasks are scheduled according to three issues; First released

tasks at present, Second available cores at present, and Third

number of faults and their incidence.

In DFTS scheme, released tasks are classified as critical or

non-critical in terms of threshold value θ. For this purpose, is

proposed a parameter namely “task criticality” that determines

the task type according to task utilization and the time at

which resources are allocated the tasks by scheduler. Then,

according to task utilization be dynamically choose an

appropriate recovery method to tolerate the most number of

multiple faults. In addition to, scheduling is performed for two

important goals following: increasing scheduling possibility

and reducing the runtime of the total tasks. Non-critical tasks

are scheduled only on a single core and use the checkpointing

method with rollback recovery. While critical tasks are

repeated on separate cores to increase the finish probability of

the tasks before their deadline expire despite the presence of

fault. In DFTS, the task set T={τ1, τ2, …, τn} be composed of n

independent real-time tasks which are sporadic and non-

preemptive. Every task i is represented by a tuple (Ci, Ti, Di)

where Ci is WCET of task in a no fault condition, Ti

is the

period and Di is the relative deadline of the ith task. Also,

multi-core platform is assumed as a set of M homogeneous

cores in the form of P={P1, P2, …, PM} so that, each of the

tasks can be executed on every core of processor. Next

parameter is task utilization, Ui (0 ≤ Ui ≤ 1)

which is defined

as
i

i
i

D

C
U  . Therefore, total utilization for an application is

shown with notation U that is equal to sum of the all tasks

utilization in application, namely 




n

i

iUU

1

. DFTS is a

hybrid approach based on hardware and time redundancies.

Then, scheduler in terms of above mentioned three factors

chooses an appropriate method to tolerate faults that include:

available hardware resources, task utilization and the number

of expected faults.

Wiese and et al. [16] proposed a partitioned EDF scheduling

approach on the unrelated multiprocessor platforms. PTAS

(polynomial-time approximation scheme) is an algorithm to

solve the certain types of optimization problems. For

partitioning is assumed a set of n implicit deadline sporadic

task must be partitioned on m unrelated processors in

multiprocessor system containing κ different types of

processors. For this purpose, first, task system be converted to

other system that its partitioning is easier. Then, big and small

tasks are separated and the patterns of big tasks indicate the

feasible partitioning of a task system on the considered

platform. Since, there are many different patterns for big tasks

that their complexity is only polynomial, so it is possible a

part of the polynomial time be expended to testing each of

patterns. The feasible partitioning using differential solution

obtained as follows: first a bipartite graph is created from

fractional solution, next a differential matching is defined on

the mentioned graph that is corresponds to tasks differential

allocation on the identical processors. Then, using Brikhoff

algorithm determine the matching kind that is integer or

fractional. Finally, the partitioning of task system is specified

by an integer matching.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

46

Table 1: Schedulability analysis of basic hard RTS algorithms

Optimal Complexity Response time Analysis Utilization bound test Condition Priority

Yes)(lognO

ii

i

j

j
j

i
ii

TRif

C
T

R
CR

















 





1

1

ii TD 

Fixed

RM

No Pseudo-

Polynomial

ii TD 

Yes

Pseudo-

Polynomial

)(nNO

ii

i

j

j
j

i
ii

DRif

C
T

R
CR

















 





1

1

ii TD 

Fixed

DM

Yes

)(nO

ii

i

j

j
j

i
ii

DRif

C
T

R
CR

















 





1

1

ii TD 

Dynamic

EDF

Pseudo-

Polynomial

is more complicated

if

ii TD 

For hard real-time scheduling on multi-core platforms, [17]

has proposed a memory-centric approach to improve hard

real-time utilization in which firstly, core isolation is

performed via the coarse-grained (high-level) and memory

schedules with Time Division Multiple Access (TDMA), and

secondly, when memory access is scheduled by high level, the

scheduling policy of every core will increase the priority of

memory computations compared with the computations that

are performed only by CPU. For memory-centric real-time

scheduling using PREM (PRedictable Execution Model), is

assumed the hard real-time system is scheduled on partitioned

multi-core platform which tasks are statically allocated to the

fixed priority cores. Every task is periodically activated with

limited deadline. There are no shared sources between cores,

except main memory that is used by each deadline. Memory-

centric technique schedules the simultaneous accesses to main

memory from various sources. The used approach for this

purpose is based on high level TDMA [18]. An iteration of the

coarse-grained memory scheduling is made offline so that

slots with fixed size allocated to cores of processor. Each core

of processor, exclusively accesses to main memory during the

slot is given to its TDMA memory.

In memory-centric scheduling based on PREM model, the

every task has a code which is divided into a collection of

scheduling intervals, so that they are sequentially run at

execution time. Scheduling intervals are categorized to the

compatible and predictable intervals. In order to schedule

under PREM is needed to the predictable intervals be

compiled. Therefore, this kind interval (predictable) is divided

into two phases including memory phase and execution phase.

At the initial of memory phase, to accomplish a collection of

fetch and replacement operations of cache line, CPU should

be accessed to main memory. All of the cache lines at the end

of this phase should be accessible in cache of last level. So in

execution phase, the task accomplishes the effective

computations without missing the cache of last level.

5. EVALUATION AND COMPARISON
In this section of paper, implementation details of RTS

scheduling algorithms in different approaches are investigated

and the results of analysis are described in two subsections.

5.1 Basic Scheduling Algorithms
In first subsection, a number of the basic scheduling

algorithms such as RM, DM and EDF have been analyzed.

They are used for scheduling of periodic tasks in hard real-

time environment. The schedulability of these algorithms be

checked by utilization bound test (sufficient test) or response

time analysis (precise test). Therefore, they have been

compared from different aspects. The obtained results of their

analysis have been shown in Table 1.

As mentioned in Sec. 2.2, is assumed the task set T={τ1, τ2,

…, τn} is composed of n periodic tasks. The task τi

is

represented as (Ti, Ci, Di) where its parameters determine the

period, execution time and relative deadline respectively.

Moreover, Ri is the worst-case response time of task

τi, Ui is

the task utilization and N is the number of iterations in the

inner loop.

5.2 Specific Scheduling Algorithms
In [12] runtime complexity of energy aware and EDF based

scheduling algorithm is O(n log n) if a task is ready for

execution. For the implementation of this method PEARL90

[19] has been used which has the most advanced real-time

capabilities. The experimental results shown it can guarantee

the constraints of hard RTSs as well.






n

i

n

i

i n
T

C
U

1

1
)12(

)12(
1

1




n

n

i i

i n
D

C
U

1

1




n

i i

i

T

C
U

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

47

Table 2: QoSs analysis and platform comparison for some hard RTS specific applications

Platform QoS1 QoS2 QoS3 QoS4

Energy-Aware

[12]

Uniprocessor Timeliness

guarantee

Decreasing

energy

consumption

Improving

performance

Dynamic

Periodic tasks

GFTS

[13]

Multiprocessor Fault tolerance Improving

schedulability

Improving

performance

(even under

fault condition)

Decreasing

rejection ratio
Dynamic

Aperiodic tasks

Non-preemptive

DFTS

[15]

Multi-core

homogenous

Fault tolerance Improving

schedulability

Reducing time

overhead

hardware &

timing

constraints

meet Dynamic

Sporadic tasks

Non-preemptive

Partitioned

EDF

[16]

Unrelated

multiprocessor
Polynomial –

time

Highly

intractable

Good

performance

Sporadic tasks

Memory-

centric

[17]

Multi-core
Reducing time

overhead

Improving

schedulability

Improving core

utilization

Improving

utilization of

memory

source Preemptive

In order to simulate of [13] is used the computing systems

based on Intel core i5 processor)2.3@650(GHz and Matlab

platform. Simulation accomplished by generating the random

task sets with different sizes on different numbers of

processors and also producing random fault data for every

task set containing failed processors and time that processor

failed. GFTS algorithm is executed with task set of size 10 on

4 processors as input and initial population size is 100 random

individuals which task set in both cases under no fault

condition and fault condition is scheduled. The time

complexity of proposed method in [13] is equal to T(n) = P

×N2×M2×T in which notations of P, N, M and T indicate the

population size, number of tasks, number of processors and

latest deadline respectively. In regard to simulation results,

GFTS improved the rejection ratio over 50% and at around

25% fitness value of GA in comparison with TFTS method.

DFTS method in [15] has been simulated by using a simulator

of task scheduler in C++. In the multi-core processors, the

inputs of simulator contain the number of cores, the rate of

fault-arrival, checkpoint cost parameters and checkpoint

recovery of tasks which are simulator’s input. During every

execution round, application is scheduled on a multi-core

processor as a collection of non-scheduled tasks. In order to

increase the fault tolerance in [15], was used the approach that

is a combination of two traditional fault tolerant methods

called task replication for hardware redundancy and also

checkpointing with rollback recovery for time-based

redundancy. Experiments are accomplished using Intel® core

™ i7-2670QM processor with 4 GB RAM. For evaluate the

DFTS feasibility rate is considered the parameters such as the

checkpoint savings rate (φ), checkpoint recovery cost (μ) with

fixed fault rate (λ = 0.01).

 [17] was simulated based on the benchmarks of EEMBC

(Embedded Microprocessor Benchmark Consortium). The

experiments of memory-centric scheduling performed on Intel

Q6700 processor. In order to configure the system as

embedded, CPU frequency set to 1GHz to memory bandwidth

reached 1.8 Gbytes/s. The Q6700 processor is composed of

four processing cores, so that each pair of cores is shared with

a second level cache. In [18] two scheduling frameworks of

memory-centric and connection-based is considered, their

performance under different configurations are compared.

Simulation performed on a system with 8 cores, 10 tasks for

per core and fixed interval length i.e. 1ms. Results show the

task length in connection-based is 20% shorter than the

memory-centric, because contention-based does not need to

use the compiled tasks in terms of PREM. In contrast,

utilization of a core in memory-centric scheduling has an

improvement at around 20% compared with connection-

based. This means the memory-centric technique increases the

schedulability ratio sharply.

Here according to all of the above, the QoSs and

characteristics of scheduling methods in some RTS specific

applications have been determined which including the energy

consumption, fault tolerance and utilization of memory

resource. The summary of their analysis and also

schedulability capability have been expressed in Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.17, December2015

48

As can be seen, energy-aware scheduling algorithm based on

EDF using DVFS technique decrease the processor idle time

and improves the performance. GFTS is a fault tolerant

scheduling algorithm in multiprocessor environment which

combines GA with the information of tasks scheduling. In

partitioned EDF was shown the sporadic tasks with implicit

deadline should be partitioned in PTAS scheme. The feasible

partitioning obtained using differential solution and so

performance increase. Finally, the last case has proposed a

new approach to schedule the multi-core platform in which,

system modeled in two phase of memory and execution that

does not detects the read and write operations from each other

in main memory.

6. CONCLUSION
This paper provides the analysis summary of schedulability

and QoS factors for hard RTSs scheduling approaches.

Achieved results have been compared and have been shown

as tables. First part investigates the basic and well-known

scheduling algorithms. They under conditions are optimal

techniques to guarantee the tasks meet their deadlines. Then,

in next part, has been surveyed the several scheduling

approaches used in some hard RTS applications and their

QoSs are analyzed.

The energy-aware scheduling algorithm based on EDF uses

DVFS technique to save the energy consumption and

decreasing the processor idle time improves the performance.

GFTS method improves the task rejection ratio and average

fitness value of schedule in comparison with traditional

schemes TFTS and other GAs algorithms. Another dynamic

approach called DFTS increase the tolerance of multi-core

systems for multiple faults in which is used the proper

technique of hardware or time redundancy. In partitioned EDF

has been proposed the algorithm for unrelated processors to

provide the solution possibility of the NP-Hard optimization

problems that put in PTAS class with polynomial-time

approximation. Moreover, it was shown the sporadic tasks

with implicit deadline should be partitioned in PTAS scheme.

Finally, memory-centric scheduling method considers the

main memory as most important shared resource. Using

TDMA model, the tasks are scheduled in terms of their access

to memory. As a result, the utilization of memory source,

cores and hard real-time tasks improved.

7. REFERENCES
[1] Buttazzo. G. C, “Hard Real-Time Computing Systems

Predictable Scheduling Algorithms and Applications”,

Springer Publications 3rd Edition, 2011.

[2] Robert. I, Davis, R and Burns A, “A Review of Fixed

Priority and EDF Scheduling for Hard Real-Time

Uniprocessor Systems”, EWiLi’13, August 26–27, 2013,

Toulouse, FRANCE.

[3] Lindh. F, Otnes. T, Wennerström. J, “Scheduling

Algorithms for Real-Time Systems”.

[4] Davis, R. I. and Burns. A, “A Survey of Hard Real-Time

Scheduling for Multiprocessor Systems”, ACM

Computer Survey, Vol. 43, No.4, Article 35, 44 pages,

2011.

[5] Shamim Shiravi and Mostafa E. Salehi, “Fault Tolerant

Task Scheduling Algorithm for Multicore Systems”, The

22nd Iranian Conference on Electrical Engineering (ICEE

2014), 2014, Shahid Beheshti University.

[6] Sha L., Rajkumar R. and Lehoczky J. P., "Priority

Inheritance Protocols: An Approach to Real Time

Synchronisation", IEEE Transactions on Computers

39(9), pp. 1175-1185, September 1990.

[7] G. E. Moore, "Cramming more components onto

integrated circuits", Electronics, Vol. 38, No. 8,

McGraw-Hill, 1965.

[8] F. Kong, W. Yi, and Q. Deng, "Energy-efficient

scheduling of real-time tasks on cluster-based

multicores" in Design, Automation & Test in Europe

Conference & Exhibition (DATE), pp. 1-6, 2011.

[9] W. Y. Lee, "Energy-efficient scheduling of periodic real-

time tasks on lightly loaded multicore processors",

Parallel and Distributed Systems, IEEE Transactions on,

vol. 23, pp. 530-537, 2012.

[10] J.-J. Chen and T.-W. Kuo, "Energy-efficient scheduling

of periodic real-time tasks over homogeneous

multiprocessors", in the 2nd international workshop on

power-aware real-time computing, pp. 30-35, 2005.

[11] K. Manudhane, A. Wadhe, “QoS-Aware Approaches to

Real-Time task scheduling on Heterogeneous Clusters”,

international Journal of Advanced Research in

Computer Science and Software Engineering, Volume 3,

Issue 4, pp. 174−180, 2013.

[12] K. Houben and A. Halan, “An Energy-Aware Dynamic

Scheduling Algorithm for Hard Real-Time Systems”, 3rd

Mediterranean Conference on Embedded Computing,

MECO – 2014, ACM, PP. 14-17.

[13] Abhaya K. Samal , R. Mall and C. Tripathy, “Fault

tolerant scheduling of hard real-time tasks on

multiprocessor system using a hybrid genetic algorithm”,

Elsevier. Swarm and Evolutionary Computation, 2014.

[14] S. Ghosh, R. Melhem, D. Mossé, “Fault-tolerance

through scheduling of aperiodic tasks in hard real-time

multiprocessor systems”, IEEE Trans. Parallel Distrib.

Syst. 8 (3), pp. 272-284, 1997.

[15] Mohammad H. Mottaghi and Hamid R. Zarandi, “DFTS:

A dynamic fault-tolerant scheduling for real-time tasks in

multicore processors”, Elsevier.Microprocessors and

Microsystems, Vol. 38, pp:88–97, 2014.

[16] A. Wiese, V. Bonifaci and S. Baruah, “Partitioned EDF

scheduling on a few types of unrelated multiprocessors”,

Springer, Real-Time Syst, vol. 49, pp:219–238, 2013.

[17] G. Yao, R. Pellizzoni, S. Bak, E. Betti and M. Caccamo,

“Memory-centric scheduling for multicore hard real-time

systems”, Springer, Real-Time Syst, vol. 48, pp:681–

715, 2012.

[18] J. Rosen, P. Eles, A. Andrei, Z. Peng, “Bus access

optimization for predictable implementation of realtime

applications on multiprocessor systems-on-chip”, In:

Proceedings of the 28th IEEE real-time system

symposium, 2007.

[19] German standard DIN 66243-2, “Programmiersparche

PEARL90”, Beuth, 1998.

IJCATM : www.ijcaonline.org

