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ABSTRACT 

This paper compares the basic contour detection algorithms. 

A contour detection algorithm which jointly tracks at two 

scales small pieces of edges called edgelets. This 

multiscaleedgelet structure naturally embeds semi-local 

information and is the basic element of the recursive Bayesian 

modeling. The underlying model is estimated using a 

sequential Monte Carlo approach, and the soft contour 

detection map is retrieved from the approximated trajectory 

distribution. The winding number constrained contour 

detection (WNCCD) is an energy minimization framework 

based on winding number constraints. In this framework, both 

region cues, such as color/texture homogeneity, and contour 

cues, such as local contrast and continuity, are represented in 

a joint objective function, which has both region and contour 

labels. This technique is based on the topological concept of 

winding number. Using a fast method for winding number 

computation, a small number of linear constraints are derived 

to ensure label consistency. Experiments conducted on the 

Berkeley Segmentation data sets show that the Multi Scale 

Particle Filter Contour Detector method performs a 

comparable result with the winding number constrained 

contour detection method. 

Keywords 

Particle filtering, sequential Monte Carlo methods, statistical 

model, multiscale contour detection, BSDS 

1. INTRODUCTION 
We ask that Detecting contours is a universal job in image 

processing, as it is often the basis of higher level applications, 

such as segmentation, recognition, tracking, etc. The intrinsic 

variability of natural images makes this task a proper 

challenge. In this paper, we describe a contour as a visually 

salient, well-defined chain of connected pixels. This definition 

may be understood in terms of the Gestalt Theory, which 

underlines the significance of perceptual grouping and 

continuation properties for human visual perception. Also, 

saliency is contextual, signifying that it conforms the 

Helmhotz principle, which discusses more importance to 

unusual geometric patterns. Properties of good continuation 

and saliency shall function as motivations of the 

proposedcontour detector. A connected pixel set is the atomic 

element of the proposed technique, and is named an edgelet. 

This term shall not be mistaken with the edgelet transform (an 

image representation method), however, our definition is 

similar to the ones in [1], [2]. The construction of an edgelet is 

learned offline by a shape database [3].  

This paper attempts a more general, yet efficient approach that 

tightly integrates both region nods and contour cues. We 

consider the contour extraction problem within an energy 

minimization framework. Our objective function is designed 

to encode various regions and contour cues by explicitly 

introducing both 2D region labels and 1D contour labels. 

Then we use novel constraints to ensure the consistency of 

region and contour labels. There are other ways to use both 

region/and contour cues [8]. For example, we could first 

segment the objects using region methods and then refine the 

segmentation results by contours. However, using contour 

cues for post processing can be sub-optimal in the sense that it 

can only refine the results. In contrast, our framework 

involves both contour cues and region cues in global 

optimization. In addition, this framework allows the flexibility 

in choosing energy functions. The key to this framework is 

the design of constraints with the following three properties. 

First of all, these constraints must ensure the topological 

correctness of solutions. For example, regions with different 

labels should be separated by contours, and object boundaries 

should not be fragmented. Second, these constraints should 

not be too preventive such that there is no viable solution. 

Recent work [8], [19] argued that in order to ensure the closed 

ness condition, exponentially many constraints are desired. 

Other particle filtering skills have been used in the context of 

vessels and arteries detection in 3D CT data [3], [5], [6]. Like 

the Jet Stream algorithm, these techniques have been mainly 

dedicated for semi-automatic and/or single detection tasks. 

Contrary to the aforementioned methods, our particle filtering 

framework is fully automatic, semi-local, and contextually-

dependent. Moreover, related to our initial model [7], the 

edgelets are defined at two scales, meaning that the algorithm 

locally tracks the edgelets along contours by sequentially 

operating the computations on each scale. This produces to 

our new Multi-Scale Particle Filter Contour Detector (MS-

PFCD). This paper is systematized as follows. Segment 2 

makes a study of previous works proposed in the contour 

detection literature. In Segment 3, we propose to learn the 

distributions that handle the multiscaleedgelets and define our 

Bayesian model.  The Bayesian model is defined by our 

proposed method to acquire the distributions that handle the 

multiscaleedgelets.. 

2.  LEARNING THE BAYESIAN MODEL 
Before giving the motivations of the proposed section and 

further, the sequential Bayesian framework, we introduce 

some notations. The basic element of the framework is a two-

scales set of connected points. Let E = (E1, … … , EME ) ∈

ҐE ⊂ ΩE
ME be a set of ME  four-connected points defined at the 

coarse scale. Each point Ei is defined. 

The proposed contour detection method is based on a spatial 

tracking approach. This means that we want to define an 

edgelet at a certain step, or time, of the tracking procedure. 

3. LEARNING THE BAYESIAN MODEL 
The vectors e and e are small pieces of a contour, integrating 

more information than a classical pixel-wise formulation. 

Nevertheless, they remain semi-local, in order to be applied 

generally to most of the contours [3]. By learning their prior 

distributions, we avoid imposing mathematical constraints 
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that may decrease the detection efficiency of an algorithm, 

since it is impractical to define a mathematical model that 

captures every possible contour singularity.  

Algorithm 1: collecting the multiscaleedgelets 

Input: A shape database 

Output: Couple the edgelet sets  𝐵 𝐸 , 𝐵 𝑒  
Begin 

 For s=1 . . . 𝑆𝑝  do 

 Get an image I and a segmentation H at random 

Extract a multiscaleedgelet 𝐸 𝑠 , 𝑒 𝑠  from  𝐼, 𝐻  at 

random 

 Center 𝐸 (𝑠) with respect to 𝐸 1.(𝑠) 

Return 𝐸 (1), . . . , 𝐸 (𝑆𝑝 ) ,  𝑒(1), . . . , 𝑒 (𝑆𝑝 )  

 

4.  OFFLINE LEARNING: TRANSITION 

MODELS 
We defined in the previous section a way to initialize edge-

lets. Next, to randomly extract full contours with our tracking 

algorithm, we need to create a candidate multi-scale edge-let 

at a certain time t given the previous one at t − 1. This is what 

the transition distributions p Et ∨ Et−1, et−1   and  p(et ∨
Et,et−1 ) are designed to do. Both distributions areconditioned 

by et−1in order to assurance convexity from one time to 

another. Finally, in order to learn the distribution  

p(et ∨ Et,et−1 ), we define Be
−E s 

 the set of the distinct 

elements of Be that are potential predecessors of  E s . Using 

the same shape data set as in Section 3.1, the approximation 

procedures of these two distributions are given in Algorithms 

2 and 3. 3.3 

Algorithm 1: Approximation of the transition distribution of 

an edgelet at the coarse scale 

Input: Prior distribution, a shape database 

Output: Approximation of p Et|Et−1, et−1  

begin 

 

 

Fig. 1. The learning procedure is divided into two steps. 

The offline step estimates the prior and the transition 

distributions, which are used to generate samples in the 

contour tracking procedure. The online step is performed 

on the image to be tracked, and aims at learning: the 

feature distributions, in order to recognize the meaningful 

contours in the image; and the initialization distribution, 

in order to (re-)initialize the tracking in the contour 

detection procedure. (i) denotes a sample in the offline 

procedure, (k) denotes a sample in the online procedure. 

for each  E(s), e(r,s) ∈ BE × Be
E(s)

   do 

repeat 

 Get an image I and a segmentation H at random 

Extract a multiscaleedgelet from  I, H  such that 

 Et−1, et−1 =  E(s), e(r,s)   and let Et =  E(u) ∈ BE  be 

its successor at the coarse scale  

Increment by 1/St  the probability  p(Et = E u |Et−1 =

E s , et−1 = e r,s ) 

Until St  times 

 Center E (s) with respect to  E(s), e(r,s)  and let  

return,  p  Et
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 Et−1
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5.  ONLINE LEARNING: 

OBSERVATION MODEL 
In this section, we define the observation model p(Y,y|Et , 

etwhich measures the adequation between the data (x,y) and 

1.actully, the prior distribution at the reference scale is 

p(e, m|E)  = p(e|E, m) p(m|E), with m ∈ N the r.v. which 

denotes the length of the edgelet at the reference scale, 

p(e|E, m)  ≜  p(e = (e1 , . . . , em )|E),and p(m|E) a 

probability proportional to the number of edge lets at the 

reference scale of length m included in E . p(e|E)  ≜
  p(e|E, m) with e belonging to the set of all the possible 

edgelets of different lengths, the probability p(m|E) is 

implicitly totalled , and m can thus be omitted. a multi-scale 

edgelet at a time t,(Et ,et): 

P(Y, y|Et  , Et  )  =  p(Y|Et , ) p(y|et),  (1) 

where independence hypotheses have been assumed to 

simplify the estimation. Also, we consider a particular case in 

which the likelihoods p(Y|Et) and p(y|et) are similarly defined 

[3]. Then, in order to lighten the content of the following 

section, we will only define the likelihood p(y|et)  and its 

associated features. The definitions at the coarse scale can 

simply be obtained by swapping et for et, the subscripts of e 

for e, and y for y. 

6.  LOCAL GRADIENT 
This classical feature uses the 2 × 2 gradient norm  ∆Ie . The 

gradient feature f1 e is totaled along the edgelets  eτ: 

fe
1 et , Ie = ∅ (∇Ie(et

i )|)1≤i≤M  

The tractability comes from the combination operator  Φ. One 

can set Φ = min, Φ = max, or a weighted mean 

Φ v1, … … , vM =  W i vi ,M
i=1  with W:  1, … … , M →  0,1  

a weighting function. Note that since the image Ie  is 

multidimensional, we proceeds on each point the maximum 

gradient value among the different channels 

7. TEXTURAL GRADIENT 
The textural gradient feature goals at getting low reply values 

on texture locations, while getting high ones on object 

contours. For a point et
i  of an edgeletet , we consider its 

normal segment. The two sides of the normal segment of three 

consecutive points et
i−1; et

i ; et
i+1are noted n   et

i−1 and  n   et
i  . 

In a texture, the intuition is that pixel values along the first 

segment should not really differ from the ones of the second 

segment. Let hT[a] f  hT
r [a] r=1

R 1 be the histogram of a set of 

pixels a, where r is the bin index of a histogram of length R. 

In the case of color images, the length R equalsRT  × RT ×
RT , with RT  the number of bins by channel. Distances 

between pairs of histograms along normals of the curve are 

combined to form the textural gradient feature: 

fe
2 et , Ie =  (dB (hT n   et

i  , hT n   et
i   )2≤i≤M−1  

with the fusion operator, and dB the Bhattacharyya distance 

between two histograms, i.e., dB ( h a , h b ) is the square 

root of 1 −   hr a , hr b n
r=1 .  In order to reduce the spread 

of the histogram values, the widths of the bins are defined by 

the RT −quantiles of each independent channel. 

8.  CONTOUR DETECTION BY 

TRACKING BASED ON PARTICLE 

FILTER 
We defined in Section 3 several distributions that manipulate 

the edgeletsEtand et . In this section, we define the framework 

that handles these distributions by integrating them in a 

sequential Monte Carlo approach. Our goal is to estimate the 

distribution of the jointedgeletsX0:t = (E0:t , e0:t) conditioned 

by a set of jointobservations z = (Y, y). Hence, at a time t, e0:t  

defines a contour map at the reference scale of t + 1 edgelet 

elements. The estimation of the so-called trajectory 

distribution p x0:t z  is thus completed using a particle 

filtering technique that we present now. 

Algorithm 5: Approximation of the initialization distribution 

at the coarse scale 

Input: Prior and feature distribution, an image IE  Output: 

Output Approximation of p E0|v  

Begin   

fors = 1, … , SiE
   do 

- Generate a string point E0
1,(s)

~U E  

- Generate the edgelet shape E0
2:M, s 

approaching to its 

prior distributionE0
2:M, s 

|E0
1, s 

~p(E0
1, s 

|E1 

- Compute the joint likelihood w  E0
 s 

 : w  E0
 s 

 ∝

 exp  E
j

P  μE
j

> fE
j
 E0

 s 
IE    s. t.

J
j=1  w  E0

 r 
 

S iE

r=1 =

1 

return 
1

S iE

 w(E0
 s 

)
S iE

s=1 δ
E0

 s 

E0  

9. ESTIMATING THE MULTI-OBJECT 

TRAJECTORY DISTRIBUTION 
In this section, we study a special case of the Bayesian 

recursion, in which the observations are not indexed by time. 

4.1.1 valuing the Trajectory Distribution Letxt ∈ χ be the 

hidden state of a stochastic procedure at time t and z ∈ Ζ be 

the measurement state. Under the Markovian hypothesis of 

the hidden states and the conditional independence hypothesis 

of the observations given the states, the trajectory distribution 

p x0:t z  is given by [4]: 

p x0:t z ∝ p x0:t−1 z p z xt p xt xt−1                   (2)  

whose normalizing term is independent from x0:t .  

10. PARTITIONED SAMPLING 
Estimating the posterior distribution p x0:t z  with the multi-

scale nature of the state x0:t = (E0:t , e0:t) may increase a 

problem. In fact, as described in Section 4.1.1, the particle 

filter makes use of an significance sampling procedure which 

involves the simulation and the weighting of the particles. 

This technique suffers from a expletive of the dimensionality: 

it has been shown in [15] that N2 particles are necessary to 

reach the same level of estimation performance as when 

estimating a single scale with N particles. To alleviate this 

problem, MacCormick et al. proposed the Partitioned 

Sampling algorithm which decomposes the vector state by 

partitioning the state space, and then by handling one 

component, i.e., scale, at a time [15], [16]. We present here a 

basic version of this algorithm, adapted to our purpose.  

First, we introduce the weighted resampling procedure. This 

transforms a particle set {X0:t
(n)

,wt
(n)

}n=1
N  into another one 

{X 0:t
(n)

,wt
(n)

/g(X0:t
(n)

)}n=1
N  while keeping the distribution intact 

[27].The weighting function g is strictly positive and defined 

such that   g(Xn=1
(n)N

n=1 ) =1. The new particle set is obtained 

by simulating according to the empirical distribution defined 

by the weights {g(x0:t
(n)

)}n=1
N . We describe now the Partitioned 
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Sampling algorithm. From Section 3, we know that the 

edgelet propagations can be executed sequentially and that the 

possibility factorization permits to deal with each scale 

independently, hence each vector observation is related to one 

edgelet scale. By allowing for the state et first, the Partitioned 

Sampling algorithm consist in 

1) Propagating the particles using the marginal importance 

function of et; 

2) computing the weighting function such that g(X0:t
(n)

) ∝

 P(Y|Et
(n)

)P(Et
(n)

|Et−1
(n)

 ,et−1
(n)

 )/q(Et
(n)

|E0:t−1
(n)

 ,et−1
(n)

 ,Y); 

3) Performing a weighted resampling procedure on the 

particle set {(E0:t
(n)

,e0:t−1
(n)

),wt
(n)

}n=1
N  , 

4) Propagating the particles using the marginal importance 

function of et; and 

5) Computing the particle weights  wt
(n)

∝ P (y|et
(n)

) 

P(et
(n)

|Et
(n)

,et−1
(n)

) /q(et
(n)

|Et
(n)

 ,et−1
(n)

 ,y. 

Defining the weighting function g in that way enables the 

generation of more samples for higher values of the marginal 

likelihood of et  and greatly simplifies the computation in the 

last step of the Partitioned Sampling technique since the g 

term is present both at the numerator and denominator of the 

final particle weight computation. 

11.  PARTICLE FILTER CONTOUR 

DETECTION ALGORITHM 
In this section, we describe our particle filter process devoted 

to the contour detection task. We present ct ∈  0,1  a binary 

random variable of jump: if  ct = 0, the tracking of contour at 

time t goes on, else, i.e., if ct = 1, the edgelet is initialized to 

a new contour. This is useful when the tracking of the current 

contour is lost or finished. The unseen state xt  is then 

composed of an edgelet et at the coarse scale, an edgelet et at 

the reference scale, and a jump variable ct , yielding to 

xt = (Et , et , ct). A particle filter requires the definition of four 

distributions: a prior p(x0), to initialize particles; an 

importance function q xt x0:t−1, z , to predict a particle at 

time t given the past states and observations; a trajectory 

prediction p xt x0:t−1 , to describe the prior evolution of a 

particle at time t given the past states; and a likelihood 

p z xt , to weight the particles using the last known measure. 

While the prior and the probability are learned in Section 3, 

the importance function and the transition want to be defined. 

The tracking way is summarized in Fig. 2. 

12.  TRANSITION 
First, we express the trajectory transition p xt xt−1 such that 

the edgelet distribution rest on  the jump variable. Also,we 

consider the edgelet transition at the coarse scale first, and 

make the edgelet transition at the reference scale dependent 

from the coarse scale edgelet, as proposed in Section 3: 

P(Xt  |Xt−1) = p(Et |Et−1 ,et−1,ct) p(et |Et ,et−1,ct) p(ct) (3) 

The jump variable ct  is assumed independent from ct−1 by 

simplicity. This way, it is related to the length of a contour. 

Let p ct = 1 = β be the probability of jump. The edgelet 

transition of the coarse scale is a mixture of the prior and the 

transition distributions learned in Sections 3.1 and 3.2, 

respectively. It depends on the value of the switching variable 

ct in such a way that if it designates a jump, then the prior 

distribution is considered. Otherwise, it consists in a 

transition: 

P (Et |Et−1 ,et−1 ,ct) = ct  p (Et
2:M |Et

1)p(Et
1)+(1-ct) p(Et  |Et−1 

,et−1), (4) 

13.  IMPORTANCE FUNCTION 
We now consider the importance function. Its role is to 

generate the particles. It is possible to setq xt x0:t−1  in order 

to propagate the particles using the previoustransition. 

However, a more sophisticated design can drastically improve 

the estimation efficiency by reducing the variance of the 

particle weights [14], [17].  

14. STOPPING CRITERION 
Although it is popular to perform tracking tasks, the particle 

filter does not embed a natural stopping procedure. In most of 

the cases, defining it is clearly not obvious. Here, we can take 

benefit of the feature tail distributions, which provide robust 

statistics of the data to be retrieved. We define the stopping 

criterion such that it depends on the meaningfulness of the last 

extracted contours. To this end, the probability of jump using 

the meaningfulness of an edgelet, and this probability grows 

with time. Hence, we stop the detection when the proportion 

of jumps reaches a fixed threshold: 

1

KN
  ct−k+1

(n)N
n=1

K
k=1 ≥ Y.   (5) 

Since it relies on the number of jump operated in the K last 

steps, this criterion also depends on the length of the retrieved 

contours, meaning that the repetition of small contour 

detections likely indicates that the detection is over. 

15. DIVERSITY 
The resampling technique does not alter the posterior 

distribution but impacts on the diversity of the particles, 

especially for the past states. In practice, this means that most 

of the particles share the same trajectory, which may degrade 

the quality of the estimator. To alleviate this effect, we 

propose to divide the N particles into L independent particle 

filters, leading to the following final posterior distribution: 

P(X0:t |Y,y) = 
1

L
 pL

l=1  (X0:t,l |Y,y).  (6) 

Each particle filter approximates the trajectory distribution 

using NL = N/L particles. More elaborated techniques [28] 

aim at reducing the particle impoverishment effect, and at the 

cost of an increase of the algorithm computational 

complexity, might also be functional to our model. 

16.  CONTOUR DETECTOR 
We consider here the contour detector at the reference scale, 

but the definition at the coarse scale can be equally obtained. 

The soft contour detector is an image O: Ωe →  0,1  with O(z) 

the confidence value that the pixel z belongs to a contour. 

This is computed by an average of the estimations given by 

the L particle filters: 

∀z  Ωe , O(z) = 
1

L
 max  wtl ,l

(n)L
l=1  1 e0:tl ,l

(n)
 (z), 

 (7) 

withtl the last step performed by the lth particle filter. An 

optional non-maximum suppression step may then be 

employed to produce thin contours [9], [18].  

For interactive segmentation, [26] uses local constraints to 

achieve boundary-region consistency, In contrast, the winding 

number constraints used through our approach are global 

constraints. The winding number model not only leads to a 

smaller number of constraints but also delivers a clearer 

understanding about region contour interface. Winding 

numbers have recently been used for extracting volume 

representations [22]. Winding number is one of basic concepts 

in topology [21], [25]. Unfortunately, it is often confused with 
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another topological concept, rotation index, which is defined 

as the total rotation angle of tangent if one travels along a 

curve [27]. Rotation index is often called rotation number, 

even winding number in the literature [24]. In computer vision 

field, rotation index has been used for confirming contour 

topology in [20]. To the best of our knowledge, winding 

number has not been applied in perceptual grouping contexts. 

The winding number of a loop abouta point is demarcated as 

the number oftimes 

the loop travels around the point in counter-clockwise 

direction. Here, the loop does necessity to be simple, i.e. it is 

allowed to intersect with itself. As shown in [21], any 

connected component of the plane has a constant and integral 

winding number. Therefore, we can assign a single winding 

number to a connected region. We further extend the winding 

number concept to a plane with a finite number of curves. The 

 
Fig. 2. Winding numbers induced by closed contours [8]. 

winding number of a region is defined as the sum of the 

winding numbers of all loops. Fig. 1 shows the winding 

numbers of different regions induced by two closed curves. 

Take the region labeled with a winding number 2 for example; 

both two curves travel around this region in counter-clockwise 

direction, and each curve induce a winding number 1. 

17. REGION-BOUNDARY CONSISTENT 

CONTOUR EXTRACTION 
An image can have many edges caused by various factors 

such as light, texture or color change. This paper focuses  

 

Fig. 3.Examples of region and edge hypotheses. The left 

shows two triangular regions and their edges. The right 

shows the edge and region hypotheses extracted from an 

image. Two circles denote two region variables; an arrow 

denotes an edge variable [8] 

on detecting salient ones which bound objects in the scene. 

Psychophysical experiments show that human can effectively 

differentiate them from texture edges [23]. It is important to 

note that our winding number formulation is not restricted to 

the superpixel setup, but applies to general boundary-region 

graphs as well. An illustration of this setup is shown in Fig. 4. 

These two triangles give rise to two atomregions and eight 

directed edges.  Let the variable x =  {xi  |i =  1 . . . Nr  } 

denote the labels of Nr atom regions, and y =  {yj  | j =

 1 . . . Ne } denote the binary labels of Ne edges. The edge label 

space is denoted as Y =  {0, 1}Ne . The label space of all 

region variables is denoted as X. Although the winding 

number concept is potentially applicable for multiple-label 

segmentation problems, our work focuses on the binary-label 

figure/ground segmentation problem. In other words, we let 

X =  {0, 1}Nr . 

The energy function E(x, y) represents various cues, such as 

figure-background contrast and contour smoothness, 

depending on applications. Our main contribution is 

constraints which ensure the topological correctness 

ofsolutions. Together, the basic energy minimization problem 

has the following form:  

minx,y E(x, y)   (8) 

s. t.  ∅W x, y = 0   (9) 

∅C x, y = 0   (10) 

x ∈ , y ∈    (11) 

 

Fig. 4. The left image shows a consistent region and edge 

configuration. The middle figure is not consistent because 

two regions separated by a contour have the same label. 

The right figure is not consistent because two adjacent 

regions with different labels are not separated by any 

contour. 

In order to guarantee the topological validity of labels, two 

sets of constraints are set up. The constraint set ∅c is the edge 

continuity constraints, as follows: 

 yii=jin
=  yii=jout

, ∀j∈ V,  (12) 

where j is from the vertex index set V ; jin and jout  denote 

edges indices heading into and moving out of the vertex j , 

respectively. These constraints say that the net flow at every 

vertex is zero. For a flow network without source and sink, all 

the flows can be decomposed into a set of cycles. Therefore, 

our method aims to extract a set of closed curves as contours. 

The constraints ∅w  represent the winding number constraints 

which confirm the consistency of region and contour labels 

[8]. The specific consistency condition used in this paper is 

that: 

If an edge is active, its adjacent (i.e. incident) regions must 

have different region labels; if two adjacent regions have 

different labels, one of the edge elements in-between must be 

active. This condition guarantees that every edge must be part 

of a region boundary, and every region is enclosed by 

contours. Fig. 5 shows one correct labeling and two incorrect 

cases that violate the condition. At first glance, this condition 

does not have anything to do with winding numbers. Instead, 

it can be formulated as follows:  

 ym − yn = 1 xi − xj = 0 , ∀ i, j G, 

where xi and x j denote the labels of two adjacent regions, and 

G denotes the set of indices of adjacent regions. Variables ym  

and yn  denote two conjugate edges separating these two 

regions. The function 1(・ ) equals one if its argument is true, 

and equals zero otherwise. Although constraints (8) are 

sufficient for the consistency condition, they are expensive to 

implement due to their non-linearity. Even if the energy 

function E is convex, the whole energy minimization problem 

will generally turn out to be non-convex with these nonlinear 

constraints. Next section will show that this condition is 

guaranteed by linear constraints based on winding numbers. 

We realize that the winding number concept, from topological 

study, provides an elegant and effective means to 



International Journal of Computer Applications (0975 – 8887) 

Volume 131 – No.17, December2015 

22 

parameterize the region-contour consistency condition for 

image segmentation. We have reached the following key step 

called winding numbertechnique: The label of a region can be 

identified by its winding number induced by contours. 

The winding number constraints guarantee the consistency 

between region labels and contour labels. The benefit of such 

winding number scheme also lies in that: it leads to a small 

number of linear constraints. This can be made evident by 

examining the fast computation procedure of winding number 

computation in Eq (10). To adapt it to our problem, we 

assume that every image is enclosed by a rectangular border, 

any region outside of the image has a label zero. Therefore, 

the winding number of region i is:  

xi =  yααϵP i
−  yββϵN i

, ∀i  (13) 

where Pi and Ni are the edges crossing from right to left, and 

edges crossing from left to right, respectively. Eq (15) for all 

atom regions together can be represented as the following 

winding number constraint, denoted as ∅w  in Eq (12):  

x =  My,    (14) 

where M is a matrix whose entries are 0, 1, or −1. Take the i-

th row of M for example, M(i, α) = 1, ∀ α ∈  Pi ;M(i, β)  =
 −1, ∀β ∈  Ni ; and the rest of entries are zero. The number of 

these constraints is the similar as the number of atom regions.  

Proposition 1: For any segmentation in which region labels 

can only be zero or one, there always exists a set of oriented 

boundaries such that the regional labels equal the winding 

numbers induced by these boundaries. 

Proof: First of all, we assume that edges do not intersect with 

each other and each edge is only adjacent to two regions. 

 

Fig.5. The left shows an image in BSDS dataset. The right 

shows paths by which the winding number of the 

superpixels (red dots) are calculated [8]. 

If this assumption is not valid, the edges can be divided into 

smaller segments to satisfy the guess. Then, for an atom 

region whose label is one, we set a cycle of its adjacent edges 

in counter clockwise direction to be active. This cycle of 

edges will bring a winding number one to this region, and a 

winding number zero to other regions. Since edges are not 

shared by more than two regions, this operation can be done 

to every atom region without conflict. Consequently, every 

atom region in the foreground has a winding number one. 

Last, conjugate edges which are both active can be removed 

without affecting winding numbers of any region. Therefore, 

the final contour map is consistent with the given 

segmentation. 

 

 

 

Fig. 6. Sample images from the Weizmann horse dataset. 

The horse images are in the first and third columns, and 

the corresponding ground truth contours are in the second 

and forth columns. 

18. EXPERIMENTS 
Full results present three measures. The optimal image scale 

(OIS) is the F-Measure score obtained using the optimal 

threshold on each image. The last measure is the average 

precision (AP) and corresponds to the area under the 

precision-recall curves of Fig.   

 

 

Fig. 7.Experimental results. Starting points are colored in 

purple. (Left) Forbidden points region tool. The contour 

detector runs without any interaction, unless the 

algorithm goes wrong, in which case forbidden points 

regions are drawn (in red). (Middle) Control points region 

tool. 

The user manually defines a rough contour and the algorithm 

aims at extracting an accurate contour path from it. First, all 

the pixels that do not belong to the rough contour are 

considered forbidden. Then, taking advantage of the user 

interaction, we consider that the rough contour path is ordered 

and follows the true contour. Thus, intermediate control points 

regions are automatically spread at regular intervals within the 

rough contour. Using the rough contour tool has several 

advantages. First, the extraction process is efficient since the 

space problem is constrained. Second, it is certainly more 

convenient for the user since, unlike the first two tools that 

often result in a trial-and-error procedure; this one only needs 

one simple fast interaction.  

19. CONCLUSIONS 
The multiscale particle filters method to track contours in 

complex natural images. The basic division of this model is a 

pair of edgelets, i.e., sets of linked pixels demarcated at two 
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scales, which naturally embed semi-local information. While 

the winding number based method combining the regions and 

contour representations efficiently. This ideal is simple and 

interesting, as it only contains a compact set of linear controls 

to ensure the consistency of both representations. As an 

application of this method, region similarity cues and region-

based user interface are added into our ratio-based contour 

detection context, and lead to improved results. In upcoming, 

the more refined design of region/contour cues could benefit 

to extract contours of complex objects. 
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