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ABSTRACT 

Block cipher is in vogue due to its requirement for integrity, 

confidentiality and authentication. Differential and Linear 

cryptanalysis are the basic techniques on block cipher and till 

today many cryptanalytic attacks are developed based on 

these. Each variant of these have different methods to find 

distinguisher and based on the distinguisher, the method to 

recover key. This paper illustrates the steps to find 

distinguisher and steps to recover key of all variants of 

differential and linear attacks developed till today. This is 

advantageous to cryptanalyst and cryptographer to apply 

various attacks simultaneously on any crypto algorithm. 
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1. INTRODUCTION 
Block cipher is one of the cryptographic techniques which are 

used for integrity, confidentiality and authentication 

mechanism. Designing a cipher which is secure and immune 

to all present day attacks is a challenging task. Cryptanalyst 

has to find statistical and algebraic technique based on 

mathematical weakness in design with the aim to recover the 

secret key. Cryptanalytic method consists of analyzing 

mathematical properties of encryption algorithms with the aim 

to find the distinguishers which distinguishes the output 

distribution of cryptographic algorithms from uniform 

distribution. Based on this property one finds the distinguisher 

which distinguishes it from randomness and exploits this to 

find the key. Attack is said to be theoretically successful if 

cryptanalyst breaks the cipher with less key complexity than 

exhaustive search. It may not be practically feasible to break 

with lesser key complexity than exhaustive search. But lesser 

key complexity than brute force attack shows that the cipher 

design has some flaws or weakness which can be exploited in 

future with advent of new attacks.  

There are various types of cryptanalytic attacks; based on the 

attackers access such as ciphertext only attack, known 

plaintext attack or attacker access to encryption system to 

generate chosen plaintext and its ciphertext or decryption 

process to generate plaintexts of chosen ciphertexts. The 

success of attack can be measured using number of plaintext-

ciphertext pairs or operations required to recover secret key or 

partial key. When for the attack the number of operations 
required is less than 2n where n is size of secret key, the cipher 

is said to be broken.  

Biham and Shamir [1] [2] proposed the basic differential 

cryptanalytic technique based on DES, which is probabilistic 

chosen plaintext attack. Many modifications and extensions 

have been proposed and analyzed to improve the attacks on 

various crypto algorithms. In 1993 Biham [3] proposed new 

types of cryptanalytic attacks using related key. In 1994, Lars 

Knudsen [4] proposed truncated differential which predicts 

only part of the difference in a pair of texts after each round of 

encryption. In same year he proposed higher order differential 

based on the concept of higher order derivatives. Knudsen and 

Wagner [5] in 1997 proposed integral cryptanalysis where 

some part of plaintext is kept constant and rest part is varied 

with all possibilities. In 1998 Eli Biham, Alex Biryukov, and 

Adi Shamir used impossible differential to break IDEA and 

Skipjack block ciphers [6] by exploiting differentials that 

never occurs. In 1999 Boomerang attack was developed by 

Wagner [7] which states, attack is possible even if no 

differentials with high or low probability is present for whole 

cipher. This attack was modified and named as Rectangle 

attack [8] in 2001. Related Key attack can be combined with 

other variants of differential cryptanalysis where knowledge 

of difference in keys may allow to attack more number of 

rounds [9]. 

Linear cryptanalysis was developed by Matsui [10] in 1993 to 

exploit linear approximation with high probability i.e. greater 

than 𝟏 𝟐 . Zero correlation is a variant of linear cryptanalysis 

developed by Bogdanov and Rijmen [11] which tries to 

construct atleast one non trivial linear hull with no linear trail 

i.e. with correlation 𝑪 exactly zero. This attack is 

countermeasure of impossible differential attack. 

To attack a cipher using integral, impossible or zero 

correlation attack details of S-Box is not required as it is 

independent of the choice of S-Box. Choosing another S-Box 

for a cipher will result in almost same cryptanalytic results. 

Fig. 1 illustrates the different types of attacks developed till 

today. 

 

Fig 1: Types of Cryptanalytic Attacks 
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Differential and Linear cryptanalysis or its variants have been 

applied on almost all the block ciphers developed till today. 

The fig. 2 shows various differential and linear based attacks 

which are developed and their combinations. Block cipher 

which is resistant to one attack can be attacked by its variants 

or some combinations of variants. To ease the process of 

applying these attacks to check resistance to present day 

cryptanalytic attacks, the simplified steps of each attack are 

described in next sections. 

Fig 2: Variants of Cryptanalysis 

2. DIFFERENTIAL CRYPTANALYSIS 
In differential cryptanalysis, one attacks by exploiting the fact 

that for some fixed plaintext difference ∆𝑷 =  𝑷  𝑷′, certain 

differences in the ciphertext ∆𝑪 =  𝑪  𝑪′  appear more often 

than one would expect for secured design and this high 

probability of occurrence is used to find secret key, where P 

and P’ are two plaintexts and C and C‟ are corresponding 

ciphertexts. To apply differential cryptanalysis, one needs to 

find the high probability of differentials in each S-Box used in 

block cipher based on Substitution Permutation Network 

(SPN) and then find products of high probabilities of 

differential of S-boxes which lead the given plaintext 

difference ∆𝑷 =  𝑷  𝑷′ to the ciphertext difference ∆𝑪 =
 𝐶  𝐶′. So in order to determine the differential 

characteristic, Difference distribution tables are constructed 

for each S-Box for input difference ∆𝑋 and output 

difference ∆𝑌. Due to the weakness in S-Box (𝑛𝑥𝑚), high 

probabilities of difference pair (∆𝑋,∆𝑌) may be obtained 

instead of 1
2𝑛  as in the case of ideal S-Box, which is not 

achievable. All difference pairs of  input X and output Y of an 

S-Box can be examined and the high probabilities of input 

output pairs (∆𝑋,∆𝑌) of each S-Boxes are traversed and 

combined from first round to second last round treating S-

Boxes as independent. Once the differential characteristic for 

second last round with a suitably large enough probability 

𝑝𝐷  is discovered, it is easy to attack cipher to recover some 

bits of last round subkey by ex-oring all the possible 

combinations of all influenced nonzero difference bits TPS 

(Target Partial Subkeys) entering last round with the 

ciphertext and running one round backwards through S-boxes. 

The number of chosen plaintext-ciphertext pairs required for 

attack will be 1 𝑝𝐷 . 

Differential cryptanalysis is divided into two steps: i) Finding 

the Distinguisher and ii) Steps for Key Recovery. 

i)     Finding the Distinguisher 

1. Difference distribution table is constructed for each 

S-Box (𝑛 𝑥 𝑚) which contains the number of 

occurrences of corresponding output difference ∆𝑌 

for each given input difference ∆X. 

2. Find the probability of the each value of input 

output difference by dividing it by 2n (number of 

input bits). 

3. Mark S-box difference pairs from round to round so 

that the nonzero output difference bits from one 

round correspond to the nonzero input difference 

bits of the next round with highest probability. 

Therefore traversing the active S-Box (i.e. non-zero 

differential with high probability) difference pair 

from first round till second last round of the cipher. 

The highest probabilities of input output pairs of 

active S-boxes are multiplied, to get the differential 

probability 𝑝𝐷  till second last round of the cipher 

[10]. 

4. So the differential probability 𝑝𝐷  is the distinguisher 

During the cryptanalysis process, many pairs of plaintexts for 

which ∆P will be encrypted. With high probability, the 

differential characteristic ∆𝐶  will occur. Such pairs 

for (∆P, ∆C) are termed as right pairs. Plaintext difference 

pairs for which the characteristic does not occur are referred 

to as wrong pairs.  

ii)     Steps for Key Recovery 

1. Generate 𝑁 plaintext/ciphertext pairs with given P.  

2. If  𝑘𝑟  (TPS) is 𝑙 − 𝑏𝑖𝑡. There are 2𝑙  possibilities. For 

each TPS value ( say TPS*) do the following 

(i) Set count =0  

(ii) For each Ciphertext (i) for 𝑖 = 1 𝑡𝑜 𝑁 do the 

partial decryption  

a) Ciphertext (i) TPS*  

b) Run backward through S-boxes to 

obtain bits into the last round S-boxes 

c) Check the input difference to the final 

round determined by partial decryption 

is the same as expected from the 

differential characteristic 

d) If same, increment count. The partial 

subkey value with largest count is 

considered for each TPS*  

3 Obtain a table of partial subkey values and 

corresponding 𝑝𝑟𝑜𝑏 = 𝑐𝑜𝑢𝑛𝑡/𝑁. 

4 If probability (prob) as calculated in step 3 is equal 

to 𝑝𝐷  (as expected) Correct TPS is determined. 

For fast implementation, discard those wrong ciphertext pairs 

of which zeros do not appear in appropriate subblock of the 

ciphertext difference. 

3. VARIANTS OF DIFFERENTIAL 

CRYPTANALYSIS 
In this section variants of differential cryptanalysis are 

described by illustrating the steps to formulate the 

distinguisher and steps to recover key. 
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3.1 Truncated Differential Cryptanalysis 
In case of differential cryptanalysis, one exploits the 

probability of fixed plaintext difference of two plaintexts that 

produces the predicted Ciphertext difference of the respective 

ciphertexts, but in case of truncated differential, instead of 

getting the exact differential in plaintext and Ciphertext, one 

exploits the probability of subset of plaintext differences and 

subset of predicted Ciphertext differences [12]. Wherever the 

value in the difference is not as predicted in Differential 

cryptanalysis that are denoted by ‘? ’ (don‟t care), So the 

predicted probability of truncated differential increases the 

number of plaintext and Ciphertext pairs to be counted in the 

distinguisher, which in turn increases the probability of 

recovering the key [13]. The attack is as follows: 

i)     Finding the Distinguisher 

1. Let ∆𝑃𝛼  be the subset of non trivial difference ∆𝑃 of 

two inputs to encryption function 𝑓: 𝐺𝐹 2𝑛 →
𝐺𝐹(2𝑛) upto 𝑟 rounds, for which only fraction  of 

output difference ∆𝐶 i.e. ∆𝐶𝛿  occurs after 𝑟 rounds. 

The truncated differentials  ∆𝑃𝛼 → ∆𝐶𝛿  

2. Let 𝑇 be a table of size 2𝑛  which is initialized to 

zero for all entries. 

3. For all possible value of input 𝑥, 𝑥 ∈ 𝐺𝐹(2𝑛), 

compute the table 𝑇 by putting 1 at position 

𝑓 𝑥   𝑓 𝑥  ∆𝑃𝛼 , which gives truncated output 

∆𝐶𝛿  corresponding truncated input ∆𝑃𝛼 , i.e. 

𝑇[𝑓 𝑥 + 𝑓 𝑥 + ∆𝑃𝛼 ] = 1. Therefore all possible 

output differentials corresponding to the truncated 

differential are marked and known. 

ii)     Steps for Key Recovery 

In order to recover last round key 𝑘𝑟 , get truncated 

differentials and table 𝑇 values of function 𝑓 of 𝑟 round 

1. Generate N pair of plaintext 𝑃,𝑃′  and their 

corresponding ciphertext 𝐶,  𝐶 ′ respectively. 

2. For all possible value of the last round key 𝑘𝑟 , do 

the following: 

(i) Decrypt one round backwards 𝐶,  𝐶 ′  

using 𝑘𝑟 , and obtain the intermediate 

ciphertexts 𝑀,  𝑀′   

3. For all possible value of the second last round key, 

 𝑘𝑟−1 do the following: 

(i) Calculate 𝑡1 = 𝑓 𝑀 + 𝑘𝑟−1 , 𝑡2 = 𝑓( 𝑀′ +
𝑘𝑟−1) 

(ii) If  𝑇[𝑡1 + 𝑡2 + 𝑀 +  𝑀′ ] > 0 , then pair of 

keys  𝑘𝑟−1 and  𝑘𝑟  are right keys. Here, 

measuring is done if the truncated 

differential was seen. 

4. By repeating the attack N number of times only one 

unique pair of keys  𝑘𝑟−1 and  𝑘𝑟 , the right key will 

be suggested. Then output the values of  𝑘𝑟−1  

and  𝑘𝑟 .  

5. Output the subkeys for last and second last round 𝒌𝒓 

and 𝒌𝒓−𝟏respectively. 

3.2 Impossible Differential Cryptanalysis 
Biham et.al. in 1998 developed variant of a truncated 

differential cryptanalysis called  impossible differential 

cryptanalysis [14] [15] [16] by formulating distinguisher 

based on the fact that certain differentials never occur (i.e. the 

differentials with zero probability). It can be applied to the 

cipher, whose non-linear round function is bijective. To apply 

impossible differential attack, there is a need to find 

impossible differential pair (𝛼 ↛ δ) which can be used as 

distinguisher the differential α can be ∆𝑃 the difference of two 

plaintext 𝑃 and 𝑃′  or it can be the difference of two inputs 

𝑁 and 𝑁 ′  after encryption of 𝑥 rounds of 𝑃 and 𝑃′ and the 

differential δ can be ∆𝐶  the difference of two ciphertext 𝐶 

and 𝐶 ′  or it can be the difference of two outputs 

𝑀 and 𝑀′  after decryption of 𝑦 rounds of  𝐶 and 𝐶 ′ . The 

difference α  after r1 + 𝑟2 rounds produces the output 

difference  δ. An impossible differential with miss in middle 

technique works as a distinguisher to rule out the incorrect 

keys, where miss in middle technique uses combination of 

two differentials both of which hold with probability one and 

do not meet in middle i.e. for 𝑟1 rounds of partial encryption 

𝛼 becomes 𝛽 and for partial decryption of  𝑟2 rounds 𝛿 

becomes 𝛾 (see Fig 3). If   𝛽 ≠ 𝛾 the difference 𝛼 ↛ 𝛿 after  

𝑟1 + 𝑟2 rounds of encryption is impossible because 𝛼 → 𝛽 ≠
𝛾 ← 𝛿 and (𝛼,𝛿) is called impossible differential pair. Keys 

are eliminated or discarded for which impossible differential 

characteristic 𝛽 ≠ 𝛾 holds for the subkey of that key.  

 

Fig 3: Miss in middle 

i)     Finding the Distinguisher 

To obtain impossible differentials  𝜶 ↛ 𝛅   

1. Obtain the input differential 𝛼 = 𝑁   𝑁 ′  , encrypt 

𝑁,𝑁 ′   by 𝑟1 rounds to obtain differential 𝛽 of the 

outputs i.e. 𝑃𝑟 𝛼 → 𝛽 = 1 

2. For the differential 𝛿 = 𝑀   𝑀′  , decrypt 𝑀,𝑀′   by 

𝑟2 rounds to obtain values with differential 𝛾 

i.e.𝑃𝑟(𝛿 → 𝛾) = 1  

3. If 𝛽 ≠ 𝛾 then 𝛼 ↛ 𝛿 is impossible  

4. Repeat above 4 steps for different values (𝛼, 𝛿) to 

obtain a set ID i.e.  

𝐼𝐷 =  𝛼1, 𝛿1 ,  𝛼2, 𝛿2 … .  𝛼𝑛 , 𝛿𝑛 . 

ii)    Filtering and Key Elimination 

For each key, obtain subkey after 𝑥 rounds and 𝑦 rounds. Do 

the following to rule out the invalid subkeys. 
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1. For input-output pairs (𝑁,𝑀) and (𝑁 ′ ,𝑀′ ). Check 

𝑁 𝑁 ′  = 𝛼   and 𝑀 𝑀′ = 𝛿 i.e.  𝛼, 𝛿 ∈ 𝐼𝐷 

2. Find the differential 𝛽 of the values after encrypting 

𝑁 and  𝑁 ′  by 𝑟1 round 

3. Find differential 𝛾 of the value after decrypting 

𝑀,𝑀′   by 𝑟2 rounds 

4. Check  𝛽 ≠ 𝛾  then subkey is invalid. 

5. Rejecting the invalid keys, the total key space is 

reduced. 

3.3 Integral Cryptanalysis 
In 1997, Daemen, Knudsen and Rijmen published new block 

cipher called SQUARE, and later discovered an attack on it 

and named as Square Attack which could not be able to attack 

large number of rounds. This attack was later on named as 

Saturation Attack. Finally in 2002, Knudsen and Wagner 

came up with many improvements and modifications by 

combining different techniques and named it as Integral 

Cryptanalysis [17]. Block ciphers which uses bijective 

components are prone to integral cryptanalysis. 

The integral is defined as  𝑅 =  𝐵𝐵∈𝑅 , where 𝐵 =
{𝑏1,𝑏2 … . 𝑏𝑛} is a state vector where each 𝑏𝑖 ∈ 𝐺𝐹(2𝑛). 𝑅 is a 

multiset of state vectors. In integral ‘𝑛’ represents the number 

of words in the plaintext and ciphertext, for example in AES 

the state vector is of 16 words each of 8 bits. In this attack, 

attacker tries to predict the values in the integral after certain 

number of rounds of encryption. The following properties can 

be observed in output of cipher rounds which play an 

important role to construct basic model of integral 

distinguisher to distinguish several rounds of block cipher 

from random permutation. 

 

 

Fig 4: Integral Attack 

a) All 𝑖𝑡ℎ  words are equal i.e. 𝑏𝑖 = 𝑐  for  all  𝐵 ∈ 𝑅,  

denoted by symbol ′𝐶′ Where 𝑐 ∈ 𝐺𝐹(2𝑛),  are some 

fixed values (constants) 

b) All 𝑖𝑡ℎ  words are different {𝑏𝑖 : 𝐵 ∈  𝑅} = 𝐺𝐹(2𝑛), 

denoted by symbol ′𝐴′. 

c) All 𝑖𝑡ℎ  words sum to certain value predicted in 

advance ⊕𝐵 ∈ 𝑅 𝑏𝑖 = 𝑐′ , denoted by symbol ′𝑆′ 
(balanced) Where  𝑐′ ∈ 𝐺𝐹(2𝑛),  are some fixed values 

(constants) 

d) The sum of words that cannot be predicted i.e. no 

information can be derived are denoted by symbol „?‟ 

i)     Finding the Distinguisher 

1. Choose an input multiset R which consists of 2𝑛  

chosen plaintexts which have above property such 

that plaintext with some certain words being A and 

rest of the words being C. e.g. 𝑃 = (CCCC; CCCC), 

𝑃′     = (ACCC; CCCC). 

2. Encrypt the multiset, after a few rounds 𝑟1 of 

encryption check if all the sum (usually exclusive-

or) at some word is zero (balanced) i.e. some bytes 

of output will have state ′𝑆′ (balanced) with 

probability one which works as a distinguisher that 

can distinguish few rounds of cipher from random 

permutation, see fig. 4. 

3. Thus by changing the position of  ′𝐴′ in chosen 

plaintext, different distinguisher can be obtained.  

ii)     Steps for Key Recovery 

1. Obtain all the possible combination of subkey 𝑘𝑟  

(TPS). 

2. Do the partial decryptions (for 𝑟2 rounds) upto the 

output of integral distinguisher. 

3. If decryption gives exclusive-or sum of the states as 

zero i.e. balanced, store that subkey. Otherwise, 

repeat the steps for other possible subkeys. 

4. Repeat step 1-3 number of times for all multiset, 

subkey with maximum count is the correct subkey. 

3.4 Higher Order Differential 

Cryptanalysis 
Knudsen introduced higher order differential cryptanalysis 

based on the concept of higher order derivative proposed by 

Lai [18] that are applicable to those ciphers that can be 

expressed by multivariable Boolean functions with low degree 

[19].  

The derivative of function 𝑓: 𝐺𝐹 2𝑛 →  𝐺𝐹(2𝑚) at the point 

𝑎 is ∆𝑎  𝑓  𝑥 = 𝑓  𝑥 +  𝑎 −  𝑓 (𝑥) where 𝑎 ∈ 𝐺𝐹(2𝑛). For 

𝑖𝑡ℎ  derivative of 𝑓 at the point {𝑎1,𝑎2,..,𝑎𝑖}∈ 𝐺𝐹(2𝑛) is 

defined as ∆𝑎1  ,...,𝑎𝑖  
 𝑖 𝑓 𝑥 = ∆𝑎𝑖

 ∆𝑎1  ,...,𝑎𝑖−1

 𝑖−1  𝑓(𝑥), where 

∆𝑎1 ,…,𝑎𝑖−1

 𝑖−1 𝑓(𝑥) is the (𝑖 − 1)𝑡ℎ  derivative of 𝑓 at 

{𝑎1 , 𝑎2,… . .𝑎𝑖−1}, the 0𝑡ℎ  derivative of 𝑓 is defined to be 

𝑓(𝑥) itself, also deg ∆𝑎𝑓 𝑥  ≤ deg 𝑓 𝑥  − 1. For 

any 𝑥 ∈ 𝐺𝐹(2𝑛), let 𝐿[𝑎1,… , 𝑎𝑖] be the list of all 2𝑖  possible 

combinations of 𝑎1,… , 𝑎𝑖  [20]. Then 

∆𝑎1 ,…,𝑎𝑖  
 𝑖 𝑓 𝑥 =

⊕
𝑣 ∈ 𝐿[𝑎1,… , . 𝑎𝑖]

 𝑓(𝑥 𝑣 ) 

If 𝑎𝑖  is linearly independent of  𝑎1,… . ,𝑎𝑖−1, then. 

∆𝑎1 ,…,𝑎𝑖  
 𝑖 𝑓 𝑥 = 0. In iterated block cipher of block size n and 

r rounds, Attack is possible, when it is known that the total 

degree deg(𝑓) of the output of the (𝑟 − 1)𝑡ℎ  round. To attack 
 𝑟 − 1  rounds of cipher, find the order of  𝑟 − 1  rounds for 

which derivative  ∆𝑎1 ,𝑎2,…,,𝑎𝑟−1
𝑓  𝑥 = 𝑐  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ∀ 𝑥 ∈

𝐺𝐹(2𝑛) i.e. independent of round keys 𝑘1 , 𝑘2,… , 𝑘𝑟−1. The 

steps to find the order are given in [21]. The attack is based on 

the property that the 𝑑𝑡ℎ  derivative of a multivariate 

polynomials f with degree d is a constant and (𝑑 +
1)𝑡ℎ  derivative is zero. 
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i)     Finding the Distinguisher 

1. Randomly choose a plaintext 𝑃 ∈  𝐺𝐹(2𝑛)  

2. Encrypt plaintexts 𝑃 ⊕ 𝑣 ,∀ 𝑣 ∈ 𝐿 𝑎1,… , . 𝑎𝑖   to 

obtain their corresponding ciphertexts  𝑐𝑣 . 

3. Compute ⊕𝑣 ∈𝐿[𝑎1 ,…,.𝑎𝑖] 𝑓(𝑥 𝑣 )  

4. If ⊕𝑣 ∈𝐿[𝑎1 ,…,.𝑎𝑖] 𝑓(𝑥 𝑣 ) = 𝑐 (constant) ∀ 𝑥 ∈

 𝐺𝐹 2𝑛 ,  for  𝑟 − 1  round with any round 

keys  𝑘1, 𝑘2,… , 𝑘𝑟−1.This will work as a 

distinguisher to recover the key. 

ii)     Steps for Key Recovery 

1. Generate N plaintext randomly. For each plaintext 

P, do the following 

2. For all the possible combination of last round 

influenced bits 𝑘𝑟  (TPS), if 𝑘𝑟  is 𝑙 − 𝑏𝑖𝑡𝑠, there are 

2𝑙  possibilities for each 𝑘𝑟  value, for each value of 

TPS (say TPS*) Do the following  

(i) Decrypt all ciphertexts  𝑐𝑣  one round 

backwards using TPS*  

(ii) The value of TPS* for which 

⊕𝑣 ∈𝐿[𝑎1 ,…,.𝑎𝑖] 𝑓𝑘𝑟

−1  𝑐𝑣   becomes 

constant ∀ 𝑣 ∈ 𝐿 𝑎1,… , .𝑎𝑖 , store that TPS* 

value in a table 𝑇 and reject TPS* if 

⊕𝑣 ∈𝐿[𝑎1 ,…,.𝑎𝑖] 𝑓𝑘𝑟

−1  𝑐𝑣 , ∀ 𝑣 ∈ 𝐿 𝑎1,… , . 𝑎𝑖  is 

not constant. 

2. Repeat the step 2 for 𝑁 plaintexts and the key in the 

table 𝑇 with highest probability is the correct last 

round key. Output that key 𝑘𝑟 . 

Higher order cryptanalysis can be applied to maximum 5 

feistel rounds of cipher i.e. cannot defeat ciphers with large or 

more than 6 rounds. 

3.5 Boomerang Cryptanalysis 
In 1999, Boomerang was developed by Wagner [7] which 

states that even if there is no differential with either high or 

low probability for whole cipher, it may still be vulnerable to 

Boomerang attack. It is an adaptive chosen 

plaintext/Ciphertext attack in which attacker finds two short 

differentials with high probabilities instead of one whole 

differential with low probability.   

The block cipher encryption 𝐸: {0,1}𝑛  𝑋{0,1}𝑘 = {0,1}𝑛  is 

decomposed into two halves 𝐸 = 𝐸0 𝑜 𝐸1 where 𝐸0 represents 

first half and 𝐸1 represents second half. Differential 

characteristic for E0 is 𝛼 → 𝛽 with probability p and for 𝐸1
−1  

the differential characteristic is 𝛿 → 𝛾 with probability q [7]. 

In boomerang attack, to find all plaintexts sharing a desired 

difference that depends on the choice of the differential is the 

distinguisher [22]. 

i)     Finding the Distinguisher 

1. The attacker randomly chooses two plaintexts 

𝑃,𝑃′  and computes 𝛼 = 𝑃′    𝑃   

2. Encrypt 𝑃 and 𝑃
′   by 𝐸0 to obtain middle ciphertext 

𝑀 = 𝐸0(𝑃) and 𝑀′  = 𝐸0(𝑃′  ) and further encrypt 

for 𝐸1 to obtain ciphertext 𝐶 = 𝐸1(𝑀) ,𝐶 ′  =
𝐸1(𝑀′  ).  

3. Obtain new ciphertexts 𝐷, 𝐷′  from ciphertexts 

𝐶,  𝐶  ′  with difference 𝛿 i.e. 𝐷 = 𝐶  𝛿  and 𝐷′  =

𝐶 ′   𝛿 such that by decrypting 𝐶, 𝐶 ′   by 

𝐸1
−1and 𝐷,𝐷′  by 𝐸1

−1 the difference 𝛾 is obtained 

i.e. 𝐸1
−1 𝐶  𝐸1

−1 𝐷 = 𝐸1
−1 𝐶 ′    𝐸1

−1  𝐷′   = 𝛾 

4. Decrypt these Ciphertext 𝐷 and 𝐷′   for 𝐸1
−1 

partially to get 𝑁, 𝑁 ′   and further decrypt it for 𝐸0
−1  

to get 𝑂 and 𝑂′  i.e. 𝑂 = 𝐸0
−1 (𝑁) and 𝑂′  =

𝐸0
−1  𝑁 ′ .   

5. Finally for each pair (𝑂, 𝑂′  ) check whether 𝑂 and 

𝑂′   differ by same differential 𝛼 i.e. 𝑂 𝑂′  = 𝛼. If 

this condition is satisfied, it means it has formed a 

right quartet (𝑃 ,𝑃
′  ,𝑂, 𝑂′  ). If so, store the quartet. 

6. Repeat these steps with other set of plaintext to find 

other pairs that form right quartets and store it in a 

table (Boomerang distinguisher). 

 

Fig 5: Structure of Boomerang Attack 

ii)     Steps of Key Recovery 

1. From set of boomerang distinguisher, for each 

obtained right quartets (𝑃,𝑃′  ,𝑂,  𝑂′  )  

2. Find all possible values for nonzero influenced 

difference bits entering last round (TPS).  

(i) For all the possible values TPS (𝑘𝑟) i.e. if 𝑘𝑟  

is 𝑙 − 𝑏𝑖𝑡𝑠, there are 2𝑙  possibilities for each 𝑘𝑟  

value, Do the following Set count =0. 

(ii) Encrypt (𝑃,𝑃′  ,𝑂, 𝑂′  ) and obtain the 

corresponding ciphertext quartet (𝐶 ,𝐶
′  ,𝐷, 𝐷′  ) 

respectively. 

(iii) Then do the one round partial decryption 𝑑𝑘  

under key 𝑘𝑟  
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a) 𝐶 = 𝑑𝑘𝑟
 𝐶 , 𝐶 ′ = 𝑑𝑘𝑟

 𝐶 ′   and 𝐷 =

𝑑𝑘𝑟
 𝐷 , 𝐷 ′ = 𝑑𝑘𝑟

 𝐷′   

b) Check the difference by partial 

decryption 𝐶    𝐶 ′   and 𝐷    𝐷 ′  is the 

same as expected from the differential 

characteristic. 

c) If difference is same in both the pairs then 

increment the count 

3. Value of TPS which has maximum count for right 

quartet is correct TPS and output that value. 

3.6 Rectangle Cryptanalysis 
Boomerang uses adaptive chosen plaintext/ciphertext due to 

which many of the ciphers that were developed through the 

years cannot be attacked by boomerang distinguishers and key 

recovery attack cannot be applied [8], which led to the 

development of its chosen plaintext variant called amplified 

attack [23]. This was later modified and named as rectangle 

attack. 

The Rectangle attack is divided into two steps: 1) Finding the 

distinguisher 2) Key Recovery (same as Boomerang) [24] 

i)     Finding the Distinguisher 

1. The attacker randomly chooses two plaintext pairs 

(𝑃,𝑃′ ), (𝑂,𝑂′ )  with same difference 𝛼 such that 

𝛼 = 𝑃′    𝑃   and   𝛼 = 𝑂′   𝑂 . 

2. Encrypt (𝑃,𝑃′ ) and (𝑂,𝑂′ ) to obtain middle 

ciphertexts i.e. 𝑀 = 𝐸0(𝑃) and 𝑀′ = 𝐸0(𝑃′ ) and 

𝑁 = 𝐸0(𝑂) and 𝑁 ′ = 𝐸0(𝑂′ ), we are interested in 

the cases where 𝑀 𝑀′ = 𝛽, 𝑁 𝑁 ′ = 𝛽 

and 𝑀 𝑁 = 𝛾, which leads to  𝑀′  𝑁 ′ =
 𝑀 𝛽    𝑁 𝛽 = 𝛾. 

3. Two pairs (𝑀 𝑁 and 𝑀′  𝑁 ′ ) each with the 

difference  𝛾 are received. When encrypting 

(𝑀,𝑀′ ),  𝑁,𝑁 ′   by  𝐸1, i.e. 𝐶 = 𝐸1 𝑀 ,𝐶 ′ =

𝐸1(𝑀′ ) and 𝐷 = 𝐸1(𝑁), 𝐷′ = 𝐸1(𝑁 ′ ) then in some 

of the cases 𝛾 becomes 𝛿. And look for those cases 

where both difference become 𝐶 𝐷 = 𝛿 and 

𝐶 ′  𝐷′ = 𝛿 after𝐸1. The quartet satisfying these 

differential requirements forms a right quartet.  

4. Repeat these steps to find the pairs that form right 

quartets   𝑃,𝑃′  ,𝑂,𝑂′    and save it in a table 

(distinguisher). 

ii)     Steps of Key Recovery 

1. From set of distinguisher, for each obtained right 

quartet (𝑃,𝑃′ ,𝑂,𝑂′  ) . 

2. Find all possible values for nonzero influenced 

difference bits entering last round (TPS).  

3. For all the possible values TPS (𝑘𝑟) i.e. if 𝑘𝑟  

is 𝑙 − 𝑏𝑖𝑡𝑠, there are 2𝑙  possibilities for each 𝑘𝑟  

value, Do the following for each right quartet. 

(i) Set count =0  

(ii) Do the partial decryption by one round. 

(iii) Check the input difference by partial decryption is 

the same as expected from the differential 

characteristic. 

(iv) If same, increment count for that TPS. 

4. TPS which has maximum count value for right 

quartet that is correct and output that value. 

3.7 Related Key Cryptanalysis 
In key schedule algorithm of block cipher, if the 
relations between pairs of keys in different rounds exist then 

all the subkeys can be shifted one round backward and a new 

set of subkeys can be obtained, these key relations can be used 

to attack the block ciphers. The attack where keys are 

unknown, but relation is known to the attacker is called 

chosen key attacks. The attacks are not dependent on number 

of rounds of a cipher [25]. 

The Chosen Key Attacks 

Several plaintexts are encrypted by these related keys. After 

encryption the corresponding ciphertexts are obtained under 

these related keys which have some relation between them, 

this relation is used by attacker to find both the keys. Chosen 

Key attack can be further divided into 

 Chosen Key Known Plaintext Attack 

 Chosen Key Chosen Plaintext Attack 

In chosen key known plaintext attack, attacker exploits only 

relation between the keys and in chosen key chosen plaintext 

attack, the relation between keys and plaintext are exploited 

by the attacker. The process of recovering the keys is almost 

same in both cases. 

i)     Steps for Key Recovery 

1. The attacker chooses such a plaintext pair 𝑃 and 𝑃∗ 

such that right half of 𝑃 equals the left of 𝑃∗ i.e. 

𝑃𝑅 = 𝑃𝐿
∗ .  

2. 𝑃 is encrypted with key 𝐾 and result of encryption 

of 𝑃 is obtained before next round which may be the 

same as 𝑃∗ encrypted with key 𝐾∗ after first round.  

3. For plaintexts 𝑃 and 𝑃∗ corresponding ciphertext 𝐶 

and 𝐶∗ is obtained after encryption after all rounds 

and if these ciphertexts satisfies the relation 𝐶𝐿 =
𝐶𝑅
∗, then it has high probability to find expected pair 

(by birthday paradox). 

4. If attacker find such pairs then 

𝑃,𝑃∗,𝐶,𝐶∗ and 𝐾,𝐾∗ can be used to recover secret 

key bits with less trails than brute force attack. 

For chosen plaintext attack 2𝑛/4Chosen plaintexts are 

required and for known plaintext attack 2𝑛/2 known plaintexts 

are required. 

4. LINEAR CRYPTANALYSIS 
Matsui in 1993 developed linear attack to attack DES by 

exploiting linear approximation with high probability of input 

and second last round output of DES cipher by known 

plaintext approach. In this attack linear expression of u bits of 

input and v bits of output which holds high or low probability 

is exploited to find the key. The bias probability (  = |𝑝𝐿 −
1

2 |) is amount it deviates from probability 1 2   where 𝑝𝐿 is 

the probability of holding the linear expression. The higher 

the magnitude of the bias |𝑝𝐿 −
1

2 |, poorer the 

randomization ability of the 0 cipher and weak is the system, 

so with fewer known plaintext this attack can be applied. If 

𝑃𝐿 > 1
2  expression 

𝑋𝑖1
⨁𝑋𝑖2

⨁𝑋𝑖3
…⨁𝑋𝑖𝑢⨁𝑌𝑖1

⨁𝑌𝑖2
⨁𝑌𝑖3

…⨁𝑌𝑣 = 0 between 𝑢 

input bits and 𝑣 output bits of second last round is called 

linear approximation and if 𝑝𝐿 < 1
2  it is called affine 
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approximation. Distinguisher for the attack is the bias 

probability of holding the linear attack of plaintext bits and 

the second last round of cipher; following are the steps to find 

distinguisher of SPN cipher with 𝒓 rounds. 

i)  Finding the Distinguisher 

1. Generate the linear approximation table of order 

2𝑛  𝑥2𝑚  for each S-Box of size 𝑛𝑥𝑚 by 

(i) Form a table for each 𝑛𝑥𝑚 S-Box where the 

elements of the table represent the number coincides 

between linear 

relation 𝑎. 𝑥 = 𝑎1𝑥1⨁𝑎2𝑥2⨁…  𝑎𝑛𝑥𝑛  of input and 

the linear relation 𝑏. 𝑦 = 𝑏1𝑦1⨁𝑏2𝑦2⨁…  𝑏𝑚𝑦𝑚  of 

the output  where 𝑎, 𝑏 represents 𝑛 and 𝑚 bit 

numbers respectively for 0 ≤ 𝑎 ≤ 2𝑛 − 1 and 

0 ≤ 𝑏 ≤ 2𝑚 − 1. In a table the binary value of 

𝑎1𝑎2𝑎3 …𝑎𝑛  (𝑎1 the MSB) represents row no, the 

binary value of 𝑏1𝑏2𝑏3 …𝑏𝑚  (𝑏1 the MSB) 

represents column no. 

(ii) Calculate the coincidence probability 𝑝𝐿 by dividing 

the elements of linear approximation table by 

2𝑛  (number of input bits). 

(iii) Calculate the bias probability  for each high 

coincidence probability 𝑝𝐿 of each S-Box for each 

round by using formula  = |𝑝𝐿 −
1

2 |. 

2. Mark the linear trail for the whole cipher by 

considering those elements of S-Boxes with highest 

bias probability  in each round till second last 

round. 

3. Calculate the expected bias probability 𝑝𝐷  of 

holding the linear expression between input and the 

last round cipher by using pilling up lemma, 

considering all S-Boxes as independent. For each 

round function the linear expression which hold 

with high coincidence probability and calculate bias 

probability by subtracting from ½ and combine this 

linear expression with next round linear expression  

with highest coincidence probability and go on 

calculating i for each round and at last probability 

of  

𝑝𝐷 𝑥1  𝑥2  …   𝑥𝑛 = 0 

= 1
2 + 2𝑘−1  i

𝑖=1 𝑡𝑜  𝑘

  

where 1,2…k = 2𝑘−1  𝑖=1 𝑡𝑜  𝑘 . 

ii)  Steps to Recover Key 

1. Generate 𝑁 plaintext / ciphertext  pairs 

2. If TPS is 𝑙-bit. There are 2𝑙  possibilities 

3. For each TPS value ( say TPS*) do the following 

(i) Set 𝑐𝑜𝑢𝑛𝑡 = 0 

(ii) For each ciphertext( i ) for  i=1 to N do the 

partial decryption  

(a) ciphertext (i)  TPS*  

(b) Run backward through S-boxes to obtain bits into 

the last round S-boxes 

(c) XOR the Bits of plaintext (i) with XOR of the bits 

obtained in step (b) 

(d) If expression in (c) is zero 

(e) Increment count 

 (iii) |𝐵𝑖𝑎𝑠|  =  |𝑐𝑜𝑢𝑛𝑡 –  𝑁/2| 

4. Obtain a Table of partial subkey values and 

corresponding |𝐵𝑖𝑎𝑠| 

5. If |𝐵𝑖𝑎𝑠|  =  0  Incorrect TPS 

If  𝐵𝑖𝑎𝑠  𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒  Correct TPS 

5. VARIANTS OF DIFFERENTIAL 

CRYPTANALYSIS 

5.1 Zero Correlation Cryptanalysis 
Zero correlation linear cryptanalysis was proposed by 

Bogdanov and Rijmen [11] for an iterative block cipher is a 

counterpart of impossible differential cryptanalysis. This 

attack exploits the linear approximation 𝑎 → 𝑏 of the 

cryptographic function 𝑓 of the cipher of 𝑟 rounds where 𝑎 

and 𝑏 are input sum and output sum selection pattern. The 

probability 𝑝 =
Pr
x

{𝑎𝑥 = 𝑏𝑓 𝑥 } for linear approximation 

𝑎 → 𝑏 over all input 𝑥 is exactly  1
2  which amounts to 

correlation 𝐶 zero because 𝐶 = 2𝑝 − 1 with 𝑎 ≠ 0, 𝑏 ≠ 0. 

The linear approximation 𝑎 → 𝑏 for an iterative block cipher 

from fixed input 𝑎 to fixed output 𝑏 is called a Linear Hull 

which contains all possible sequences of linear approximation. 

These set of sequences are called Linear Trails [26]. See fig 5, 

where 𝑓𝑖  is the function of ith round and 𝑢𝑖 ′𝑠 are intermediate 

values.  

 

Fig 6: Linear Trail 

According to pilling up lemma, the total correlation 

contribution 𝑪𝑼  over a cipher of a linear trail 𝑼 is a computed 

by identifying strong linear approximation trail by 

concatenating approximations from round to round and 

calculated by doing product of these correlation for all rounds 

and is defined as 

𝐶𝑈 =  𝐶𝑢 𝑖−1 ,𝑢 𝑖

𝑓𝑖𝑟
𝑖=1  , where 𝐶𝑢 𝑖−1 ,𝑢 𝑖

𝑓𝑖  is correlation for each 

intermediate value 𝑢𝑖−1 →  𝑢𝑖  

For a linear hull 𝑎 → 𝑏, total correlation over a cipher is 

computed by summing the correlation contribution 𝐶𝑈  of all 

its possible linear trails U. 

𝐶 =  𝐶𝑈
𝑈=𝑢0=𝛼 ,𝑢1 ,𝑢2 ,…𝑢𝑟=𝑏

 

To construct zero correlation (𝐶 = 0) linear hull, input 𝑎 and 

output 𝑏 is selected in such a way that no linear trail exists 

with non-zero correlation contribution 𝐶𝑈  i.e. if correlation 

contribution 𝐶𝑈 = 0 for each linear trail, then correlation over 

the entire iterative cipher is exactly zero, 𝐶 = 0 and it is 

denoted by 𝑎 ↛ 𝑏 . For correlation contribution to be 

zero 𝐶𝑈 = 0 for each trail, construct each trail with at least 

one intermediate 𝐶𝑢 𝑖−1 ,𝑢 𝑖

𝑓𝑖  linear approximation 𝑢𝑖−1 →  𝑢𝑖  over 

the rounds to be zero since the product of all correlation 

values with intermediate zero correlation value will result in 

zero correlation 𝐶 = 0 for this linear hull.  If 𝐶𝑢 𝑖−1 ,𝑢 𝑖

𝑓𝑖 = 0 for 

a linear trail 𝑈, the pair of selection pattern 𝑢𝑖−1 and 𝑢𝑖  for a 
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trail is called incompatible. If even one zero correlation linear 

hull (distinguisher) exists, the cipher can be attacked.  

The basic steps for constructing an attack on ciphers are 

i) Finding the Distinguisher 

1. Choose plaintext and ciphertext pairs with fixed 

unknown key K. 

2. Construct linear distinguisher with correlation 

zero 𝐶 𝑎 ↛ 𝑏 = 0 by using miss in middle 

technique. This can be done by encrypting fixed 

input 𝑎 to obtain output  𝛽 for 𝑟1 rounds of cipher, 

decrypting fixed output 𝑏 to obtain 𝛾 for 𝑟2 rounds 

of cipher. 

3. Obtain the partial trails with non zero correlation 

contribution. If both the partial trails do not match 

in middle 𝛽 ≠ 𝛾, this contradiction ensures the 

correlation zero therefore 𝑟1 + 𝑟2 rounds must be a 

zero-correlation linear hull i.e.𝐶 = 0. Thus 

correlation of linear hull is exactly zero and linear 

distinguisher (𝑎, 𝑏) is obtained.  

 

Fig 7: Zero correlation Linear Cryptanalysis 

Structure 

ii) Steps to Recover Key 

1. Obtain all the possible combination of subkey 𝑘𝑟  

(TPS) to compute encryption and decryption.   

2. For each possible subkey, partially encrypt each 

plaintext (for 𝑟1 rounds) and partial decrypt each 

ciphertext (for 𝑟2 rounds) upto the input and output 

boundaries of the distinguisher (zero correlation linear 

approximation boundaries) 

3. Evaluate the correlation for partial encryption 

decryption of all linear approximations for each 

possible subkey by counting number of times 

𝑎𝑥 𝑏𝑓 𝑥 = 0 

4. If the correlation 𝐶 is 0, the subkey guess is correct 

The correlations for distinct linear hulls were evaluated to 

reduce the error probability. 

6. CONCLUSION 
Cryptographers as well as cryptanalysts all over the world 

have been applying the latest attacks to already published or 

newly designed crypto algorithm. To design a highly secure 

block ciphers which are immune to the present day attacks, 

one needs to analyze the possibility of any weakness in the 

design which can be exploited by all the variants of 

differential and linear attacks. The steps described in this 

paper, to find the distinguisher and to recover the key of each 

cryptanalytic attack will be of great help to cryptanalyst. With 

the advent of HPC and Distributed computing, these attacks 

will make cryptanalysis efficient. All the attacks described in 

this paper can be applied on SPN, feistel and generalized 

feistel structure with the additional condition that the round 

function should be bijective for impossible, integral and zero 

correlation. The following Table 1 consolidates the ciphers 

which have been attacked by variants of linear and differential 

cryptanalysis till today. 

The proposed work, helps to apply simultaneously all the 

variants of differential attacks to a block ciphers. These steps 

of finding distinguisher and steps to recover key eases the task 

of cryptanalysts to apply the attack on cipher simultaneously.  

 

Table 1: List of Attacks and ciphers 

The steps of key recovery described in this paper on the latest 

zero correlation attack which is a variant of linear 

cryptanalysis will also help to check the weakness in the 

design. Future work will be to apply these attacks on various 

algorithms and to do comparison on basis of time and data 

complexity. 
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