
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

12

Reusability Types and Reuse Metrics: A Survey

Aditi Dubey

Department of CSE,
Lovely Professional Univers

144411, Punjab, India

Harleen Kaur
Department of CSE,

Lovely Professional Univers
144411, Punjab, India

ABSTRACT
This paper focuses on the reusability of software with types of

reuse and metrics of reusability. From the word itself “Software

Reuse”, it is easily understandable that we are reusing the

artifacts of software more than once. Software artifacts are

some components of the software system that are used in

software development life cycle. Implicit artifacts are – design,

code, test plans, documentation and some explicit artifacts –

component selections, measurement and maintenance costs. All

of these artifacts are reused in different systems but for reusing

any artifacts, we require knowledge of each and every domain.

Keywords
Reuse, Metrics

1. INTRODUCTION
In today's world we are surrounded by plenty of software, from

developing it to using it. Everyone wants the quality and

performance of the software to be the best, without any flaw.

For measuring the software's quality and its performance we

have software metrics.

The software’s productivity and quality can be improved by

software reusability. Software reuse is just a reapplication of

artifacts of same objects from one application to another. Every

Developer builds the software from the scratch, but at the time

of software crisis and due to the wastage of time by writing the

same code again and again, we reuse the same component.

Software Reuse is also the solution that avoids the repeated

labor in the software development.

At the time of software crisis, reusability became too expensive

and its development was not monitored by the managers, at that

time software reuse reduced the overload. Reuse is necessary as

the cost used in the development and maintenance of the

software is reduced and also improves the quality of the

software. We do evaluation and revisment of Software because

reusing the software again and again will improve the quality.

Reuse of components doesn’t mean that only reusing the code

from one application to another, it means reusing the design,

architecture and other components of the application as well

[4].This paper is divided into IV sections. Section II explains

the characteristics of software reuse, section III explains Types

of reuse, Section IV explains reuse metrics and last section V

tells the conclusion and future scope.

2. CHARACTERISTICS OF SOFTWARE

REUSE
Some useful characteristic that make software easily reusable or

characteristic that should be kept in mind before reusing the

software components in another application are[1]-

 Modularity- It refers to the breaking down of the

software into pieces. Small parts are always easier to

reuse than larger ones. Also each module can be

treated separately according to their specific

functionalities.

 Loose Coupling- It explains that dependencies

between the services should be less. Two modules
which are joined together to perform an action should

have low coupling (dependencies) between them so as

to reuse the modules [10].

 High cohesion- In software development we have

different modules. So keeping the same related

components together is known as high cohesion. We

can access the module later for reusability because it

has no dependency on other modules.

 Separation of Concern- This property explains how

computer programs are divided into distinct sections,

such that each section addresses a separate concern.

Why software reusability was not implemented across the

world?

This is because developers or project managers did not know

what to reuse and the way of reusing the components. Even

nowadays, in some parts of the world the development of a

software follows the Software Development Life Cycle where

System design is a major part but reusability is not. When

system reusability has some major benefits when included in

the development life cycle, developers should start considering

these aspects and implement it from the very beginning of the

development phase as it will be very helpful in the testing and

maintenance phase of the system components.

Reuse can be divided into many parts which covers almost all

Figure 1. Software development life cycle.

3. TYPES OF REUSE
 Development scope.

 Modification.

 Approach reuse.

 Domain scope.

 Management scope.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

13

1) Development Scope

Development scope tells us whether the reusable components

came from internal scope or External scope[5].

 Internal Scope Internal Source means to use the

components of the application in the same application

like, reusing of the code from one module of the

software into another module.

 External Scope-: External Source means when we

outsource any component, or when we reuse the code,

architecture, and design from other application into

our application.

2) Modification

Modification reuse tells us how much reusable assets need to be

changed for our own purpose. We have 2 types of modification

in Reuse

 Black Box-: In Black Box, we use the components in

another application or the same application without

any change in the code, design or architecture. This

approach guarantees higher quality, and reliability but

it is expensive to create black boxes. It just reduces

the exhaustive testing.

 White Box-: In White Box, sometimes customers are

not satisfied with the reuse components and it cannot

be used until properly modified according to

customer’s need. Study of Domain before reusing is

very important.

3) Approach Reuse

It tells different technical methods through which we can

implement reuse. We have 3 methods of approach reuse-

 In-the-small-: It means reuse of small pieces of

source code, such as- classes, subroutines and

packages.

Issues faced during reuse in-the-small are-

1. We have insufficient means to manage the whole

process of software life cycle because having the

knowledge of only source code is not enough for

reuse.

2. Building a big system by reusing the code only

leaves behind lots of work to be done in the whole

system, because reusing small codes do not make

a big system.

 In-the-large-: It means we reuse large grain

components such as- subsystem, reuse of the design,

architecture.

In this we have 3 major techniques [3]-

1. Reverse Engineering-: In this, we analyze the entire

system to identify all the components of the system

and their interrelationship so as to know which

components can be reused, the way of reusing them,

and to create a representation of the system in another

form or at higher level of abstraction.

2. Reengineering-> It aims at evolving old system or

building a new software system out of an existing

one by utilizing the information provided by the

reverse engineering.

3. Reuse supported forward engineering->In this

engineering, process goes from requirement to the

implementation process.

Reverse engineering and Reengineering are applied to

poorly designed and incomplete products without any

structure supporting the reusability. To avoid this process,

reusability of the components at a pervious stage of the

software development is the best solution.

Different ways to perform Reuse in-the-large are-:

1. In small reuse we only reuse the code but reuse of

information is more precious than code components

and the cost of design is also greater than that of code.

2. Reuse of any large grain component requires proper

knowledge. Design information is efficient only when

we have domain knowledge of that part.

3. Additional cost of building up a system from small

code components can be reused if software

architecture is reused.

4. Software Architecture is the basis of organizing both

code components and the design information.

 Compositional Reuse : Compositional reuse is the use of

existing components as building blocks for new system. It

is mode for software architecture which compose existed

architecture design resource to form larger architecture. It

includes well-established standard interface and library

system. It mainly focuses on source code reuse.

4) Domain Scope

Domain scope tells whether reuse occur with family of system

or between families of system and it is a process of identifying,

catching and organizing the reuse information of alike object

and operation inside the system in particular domain. Until and

unless we don’t have domain knowledge we can’t reuse that

part in another application. Some of the domain scopes [6] ->

 Vertical Reuse-: Vertical Reuse is the reuse done

within the same domain or application area. Its main

motive is to generate generic models (generalization

of conventional data models) for families of the

system that can be used as a template for assembling

new system. In this approach we mainly deal with

identification and development of domain.

 Horizontal Reuse-: In this, we create generic model

and here we use the parts of that generic models in

different application.

5) Management Reuse

Management is very major part when we are reusing any other

components because we have to pay proper attention to that

part. Degree to which reuse is done systematically comes under

this. To maintain proper reusability we divide it into 2 parts –

 Systematic Reuse- Systematic Reuse is the planned

reuse in which specific components are identified as a

reusable one at a specified location. In this we do

normal practice of reuse and procedures for reuse

have been defined [7].

 Ad-hoc Reuse- It is also called opportunistic reuse, in

this developers take the decision to find the reusable

elements, retrieve it and then reuse it. Procedures for

reuse doesn’t exist.

Diagrammatical explanation of how much reuse is necessary

and how it reduces our efforts.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

14

Figure 2 Efforts required in reuseSome important analyses

have been done on all the types of reuse to get a structured

idea on it.

Figure 3

From this histogram we see that management reuse is the most

important and it is more demanding. At this time because we

basically work on the systematic reuse. After that domain scope

come into play because reusability is done after seeing the

domain. Domain knowledge is very necessary for reusing its

parts. But all types of reuse has its own importance and

according to the scenario reusability is done.

4. REUSE METRIC
As an organization implements the software reuse program to

improve productivity and quality. Many times for complex IT

organizations and companies it is very difficult to measure the

software’s productivity and ensure the quality of the software.

So, we have software metrics to measure the application

specification to provide objective and any repeatable data for

making an improvement in the suitable areas.

 Types of metrics.
For making any software reusable, at the time of creation only

we have to think of the reusable assets so that design of that

software is suitable for major change in the requirements. Once

any change is made to any phase of that software then all the

phases of that software should adapt to that changes. This is

perfect system for the reuse [8].

We have 6 types of metrics to measure the quality-

 Reuse Cost- Benefits

 Maturity Assessment

 Amount of reuse

 Reuse Library metric

 Failure mode

 Reusability Assessment

1. Reuse Cost-Benefits

This technique involves adding up the benefits of the course of

action we perform and compare these with the cost associated

with it. One example- suppose we make a health application in

which we create some new modules and reuse some previous

modules. If the integrated application is cost efficient than the

normal application then we will use that application only. I

quote this example to explain u that if reusing any module gives

u benefit in monetary term then only we will reuse that part.

Cost of any reuse program depends upon small and large

application domain. If we have small application domain in

which only few components are reused then cost associated

with it is less and calculation of the cost is also easier [11].

But if we have large application domain which is too large and

complex and is not made or understood by single person it

requires a team in every module, then its components which are

reused are costly. Cost is checked in every phase of the

Software Development Cycle, 1st phase is to check the

Feasibility of the project whether it gives the appropriate

benefits or not.

Use of Cost Benefit Tool

1. Brainstorm costs and Benefits->In this we consider

the overall project requirements, its needs and the

resources e.g.-the labor required in the project, the

type of hardware and software required etc. we should

consider all the cost associated with the project and

the benefits that we achieved with that resources.

2. Assign a monetary value to Cost->This includes cost

of physical resources needed, as well as cost of

human effort that is involved in every phase of

project. Sometime if the technology is new or the

project is bigger than the training cost is also

considered.

3. Assign a monetary value to the Benefits->In this we

quantify in monetary terms the benefits arising out of

the projects.so that if the quantity is not according to

the cost we invested in the project then cost-benefit

analysis gives no benefit. In software world

identification and quantification of benefits is very

difficult and time consuming.

4. Compare Cost and Benefits->In this we compare the

value of our costs to the value of our benefits and then

use this analysis to decide our course of action.

Calculate the total costs and the total benefits and

then compare the two of them to determine whether

our benefits outweigh our costs or not. In many

projects we can’t see the benefits after the completion

of the project it takes time so to we use the term

Payback period- how long would it take to reach to

break point means the point at which benefits have

started repaying the cost.

This is a very good tool to decide whether to pursue a

project or not.

2. Maturity assessment

In this we have many programs from them we categorize the

reuse one and then see how advanced they are in implementing

the systematic reuse. It is a self-evaluation type tool in which it

0

10

20

30

40

50

60

70

Development
reuse

Modification
reuse

Approach resue

Domain scope

Management
reuse

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

15

checks where our project stands and where it needs to be so that

we can bring it to that level.

Measures through which we know the performance is

performance indicators, with 3 key area of assessments-

 Figure 4

From the 3 key area of assessment Assess is the important one.

In this, we have important parameters that need to be

considered while creating a project. We create a chart and

provide each parameter a score which defines the importance of

the parameter and also helps the leader of different team to see

the current state of the project through graphs. After that comes

another A-Analyze in this leader create score card and give it to

 head who analyzes the parameter.

What’s the need of analyzing the data? Because we have many

types of parameters, so we analyze some important parameter

on which we have to actually start working. 3rd A is-Address

while building up the software we came across some weakness

so leaders addresses the weakness and then start working on it.

How to improve weakness? Leaders announce loudly the

weakness to all the team mates and then all the teammate

discuss about that weakness and give solution to improve it.

The one which is cost-benefits and provide benefit on time is

applied.

3. Amount of reuse

It tells us how much or what percentage of data we have to

reuse to make our new system more efficient. When Line of

code is reused to another system or same system then we have

to check the complexity of that code also and also we see that

from 1000 LOC how many lines have been used. Some

important subcategories of amount of reuse are [9] –

a) Reuse level- A system or a program composed of

parts at different level of abstraction e.g. packages,

functions, Line of Code (LOC). One example to

explain this- let’s have 1 program to calculate the

attendance of students in college and another to make

a time table for students. So firstly programmer will

make program of making time table and when he/she

goes to next module that is to create program for

attendance he/she wants to calculate the hours per day

a lecture taken. So in this one item or only that hour

part will be fetched from the time table module. Not

whole module of time table is used, some level is only

reused.

b) Reuse percentage- to calculate how many lines of code

the program has reused from different module then we

use percent (%).

% reused = number of reused LOC

 total number of LOC

for e.g. In Asp.net when we do html coding then some

percent of code is reused in all pages of the website, it

means that some line of code is reused.

c) Reuse size- when we have to choose the lines of code

then not always the lines decide the size of the

program, mainly we have to know the complexity of

that program code. Sometime the code of 4 line have

highest complexity and lines of 20 code have less

complexity so it’s good to use code with less

complexity, to make the system effective.

4. Failure modes

It analyzes the failure modes, due to which the reuse in the

organization is not possible. That failure modes are used to

evaluate the quality of the system, and for the improvement

strategy of systematic reuse. There are many factors that affect

our reuse strategy to be successful. We have to know that which

reuse program we should use to recover that failure modes, but

for knowing this our organization must answer the question that

why reuse is not taking place in the organization?

5. Reusability Assessment

This module tells that whether the component or the artifact is

reusable or not. One important question come into my mind is-

Is there any measurable attribute that indicates its reusability? If

we know this then we can easily know that whether the

component is reusable or not. Components are used from

existing system to the new ones so they are more reliable than

the components that are made from the scratch. Before using

the components of one system to another are they tested? The

answer is yes because after testing only they are attached to new

system. After so many test we can’t reuse the component due to

lack of documentation, lack of experience for reuse.

1. Reuse Library metric Library is a repository which is

used to store data and to have effective search because

once data is in correct order the searching process get

effective. Reuse Library means where we keep our

reusable assets with proper management. In reuse library

we can search our component which is needed for

reusability and in library every item is arranged according

to their properties so search becomes effective and time

saving. From where did we get the reusable assets? It can

come from the existing system through reengineering or

we can purchase them or sometime many programmers

create the code for reusability means the design of that

component is reusable itself. These reusable assets are then

certified because to keep any product in the library we

should know its property to classify them properly.

Figure.5 Types of reuse library metric

64%

25%

11%0%

Assess Analyze Address

Efficiency

Reuse Library metric

Cost

Support of
Understanding Search Effectiveness

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

16

1. Cost- Indexing cost is included in classification like how

to classify the elements into reusable parts, cost require for

maintaining that part and then for updating it, because

new elements keep on adding so updation is very

necessary. Human effort is required to maintain the

process.

2. Search Effectiveness – After classifying the components,

how easily and the user is able to get its components. This

method saves our time because we can easily assess our

assets.

3. Support of Understanding- To get the component easily

is not what the engineer wants they should properly

understand the meaning of that reusable component, so

that they can use them more effectively.

4. Efficiency- While storing the data how much memory has

been used tells the library efficiency and how to calculate

the memory usage? It can be measured by the number of

bytes that are used to store the data. Efficiency also

depends on how faster the data has been retrieved and it is

calculated by the time it takes to search a particular query

from a database.

5. CONCLUSION AND FUTURE SCOPE
In this paper, we presented a survey of reusability and types of

reuse that reduces the development time and effort and the most

important cost of the application, because we don’t have to

make all the parts of that application from the scratch. Some

parts are reused. A reuse program should be always be planned,

done carefully and should be in systematic manner to give the

higher payoff. Software reuse strategies are implemented in an

organization to improve the quality and productivity of the

software. To measure the quality and the productivity of the

software metrics are used. Metrics is a quantitative indicator of

an attribute.For reusability, domain knowledge is very

important. Without proper knowledge of what to use and where

to use the application cannot give us qualitative product with

efficient time. So Domain engineering plays an important role

in reusability. Domain knowledge is the key concept of

systematic reuse.

6. REFERENCES
[1] T.Karthikeyan, J.Geetha, “A Study and Crtical Survey

on Service Reusability Metrics”,I.J. Information

Technology and Computer science”,2012,5,25-31.

[2] Arun Sharma, Rajesh Kumar & P.S Grover. “A Critical

Survey of Reusability Aspects for Component Based

Systems”, World Academy for Science, Engineering and

Technology 33, 2007.

[3] Haikuan Li and Jan van Katwijk. “Issues Concerning

Software Reuse-in-t he-Large”, Delft University of

Technology Faculty of Mathematics and Computer

ScienceJulianalaan 132, Delft, The Netherlands.

[4] Yong-liu, Aiguang-yang, “Research and Application of

Software-reuse”, College of Information Science and

Technology, Qingdao University of Science and

Technology, Qingdao, Shandong, China.

[5] William Frakes Carol Terry, “Software Reuse and

Reusability Metrics and Models”, Virginia TechComputer

Science Department2990 Telestar Ct. and Applied

Expertise, Inc.1925 N. Lynn St. Suite 802Arlington, VA

22209.

[6] Swati Thakral, Shraddha Sagar and Vinay, “Reusability in

Component Based Software Development - A Review”,

Galgotias University, Gr. Noida, India.

[7] James M.Bieman, “Deriving Measures of software reuse in

Object Oriented System”, Department of Computer

Science Colorado State University.

[8] Jeffrey S. Poulin, “Measuring Software Reusability”, Loral

Federal Systems–Owego.

[9] Jorge Cláudio Cordeiro Pires Mascena, “A Comparative

Study on Software Reuse Metrics and Economic Models

from a Traceability Perspective”, Eduardo Santana de

Almeida, Silvio Romero de Lemos Meira Federal

University of Pernambuco.

[10] Suchita Yadav, Dr. Pradeep Tomar, Sachin Kumar, “

Metrics Suite for Accessing the Reusability of Component-

Based Software”, School of ICT Gautam Buddha

University, Greater Noida, India.

[11] William, B. F. and K. Kyo (2005). "Software Reuse

Research: Status and Future." IEEE Trans. Softw. Eng.

31(7): 529-536.

IJCATM : www.ijcaonline.org

