
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

17

UML based Approach for System Reliability Assessment

Bhagat Singh Rajput
Department of CSE

Medi-Caps Institute of Technology & Management,
Indore, India

Vaishali Chourey
Associate Professor, Department of CSE

Medi-Caps Institute of Technology & Management,
Indore, India

ABSTRACT

Software Engineering is associated with development of

software products using well defined principles, techniques

and processes. The result of Software Engineering is an

effective and reliable product. The software products have

chances to fail during implementation and design phases. The

design time testing and reliability measurement can enhance

the process of development and their component management

to work more effectively for long time. Software Testing is

evaluation of the software product against system

requirements gathered from users and system specification.

That mainly comprises of validation and verification. The

reliability analysis concerned with analyzing the system and

their functions to get the amount of time when the system and

their components works reliably. In this paper, Reliability

Engineering based case study on software product

development is performed. The concept of Software

Engineering and the component based product development,

use the Unified Modeling Language (UML) diagrams and

create Reliability Block Diagram (RBD). RBDs are used to

evaluate entire software components and their sub

components to find their reliability according to the number of

usages and increasing time factor. Therefore, to analyze the

software system using RBD, UML to RBD conversion is

required. The UML diagram for online shopping is first

explored and then its sub use-case checkout is designed. The

sub-case is then re-organized according to the functionality

that can be similar to component diagram. The component

diagram is used further to convert the software system into the

RBD diagram. The result of RBD analysis defined in terms of

Block failure rate, Block unreliability Vs. Time, Block

Reliability vs. Time, System Reliability vs. Time and the

System Reliability statistics. The finding of the experiments

shows that the system can be improved through the RBD

analysis. Additionally the improvements during the design

phases can refine the productivity and reliability of the

system.

Keywords

Software Engineering, Reliability Engineering, System

Testing, UML, RBD, Blocksim, Case Study.

1. INTRODUCTION
Software Engineering comprises all activities, which help the

conversion of requirement into implementation via design [1].

In this proposed work the importance of reliability estimations

during design phase is investigated where a software

component is uniformly distributed and scheduled to perform

an assigned task reliably [2]. The primary benefits of software

analysis are to understand the application actually working

and the detection of errors earlier during the development

process [3] [4].The iterative and incremental development

processes allows us to a degree of parallelism between

development and testing [5] [6].That analysis further helps in

accelerating the development process, improving quality and

tuning for the maximum performance of the software. The

functional and non-functional requirements of software are:

 Functional Requirements: The functional

requirements specify system’s behavior or function.

Some typical functional requirements include

authentication, authorization levels, legal or

regulatory requirements, administrative functions,

business rules and external interfaces.

 Non-functional Requirements: The non-functional

requirements specify the system's quality

characteristics. Some typical non-functional

requirements are performance, scalability, capacity,

availability, reliability, security, recoverability,

maintainability and usability.

Reliability is an important factor of software quality. There

exist many reliability models to predict the reliability based

on software testing activities. There are many software

reliability growth models (SRGMs) developed to predict the

reliability but they have many unrealistic assumptions and

they are also environment dependent [7].In this paper an

ensemble technique called hybrid ARIMA (ARIMA+NN) is

used for reliability prediction. In this paper computational

intelligence techniques used for prediction of software

reliability are discussed [8]. The paper concludes that

Computational Intelligence approaches also gives better

results in prediction. Reliability of software depends not only

on intrinsic factors such as code properties, but also on

extrinsic factors, that is the properties of the environment it

operates in.In this paper author studied on 200,000 users, they

found that the reliability of system is depend on the users, the

more a system is used, the more likely it is to have negative

impact on his components [9]. As a consequence, software

testers must be careful to design a system according to his

load.

2. SYSTEM DESIGN USING UML AND

RBD
This section provides the detailed study on UML (Unified

Modelling Language) and RBD (Reliability Block Diagram).

UML is used to model software systems and also used to

model non software systems similar to procedure stream in an

industrialized component etc. [10]. RBD is used to show the

functional relationship between the items, and indicates which

ones must operate successfully for the system to accomplish

its intended function [11].

2.1 Unified Modeling Language (UML)
UML is a graphical language used to make software designs.

It allows people to develop several different types of visual

diagrams that represent various aspects of the system. So it is

clear that UML is used to create a system design which

consist components, activity, data flow, functioning and it’s

not a development language [12]. UML has many types of

diagrams which are divided into two main categories-

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

18

Structure Diagram and Behaviour Diagram is shown in Figure

2.

Fig 1: Unified Modelling Language Hierarchical Diagram

2.2 Use Case Diagram
To model a system the main aspect is to capture its dynamic

behavior. Dynamic behavior means the behavior of the system

at the time of processing. So only static behavior is not

enough to model a system somewhat dynamic behavior is also

important than static behavior [13]. The interior and exterior

representatives are known as actors. Major elements which

are used to create use case diagram are actor, use case and

relationships. A single use case diagram captures a particular

functionality of a system. Actor’s shows the behavior of

people and relationship shows the type of connection between

the use cases in a system. Generally two type of relationships

are used include and extend.

2.3 Component Diagram
Component diagram is a different type of diagram in UML. It

does not define the functionality of the system but it defines

the components used to make those functionalities. The

purpose of the component diagram is to visualize the

components of a system. A single component diagram cannot

represent the whole system but a collection of diagrams are

used to represent the entire system. In UML component

diagrams are used to get an idea of implementation [14]. It is

very essential from implementation point of view.

2.4 Reliability Block Diagram (RBD)
Before any reliability analysis of a system there must be

knowledge of the operational relationships of the various

elements comprising that system. The reliability of a system

cannot be improved or even evaluated unless there is an

understanding of functioning of elements and the system

operations affected by functions. The accurate representation of

these relationships is an integral part of this understanding and

is particularly important for meaningful predictions,

apportionments and assessments. A Reliability Block Diagram

(RBD) provides a method of representing this information in a

form, which is easy to comprehend because it is simple and has

visual impact. Generally system reliability prediction is done by

the help of components that make up the whole system or

product.

2.5 Component Configuration
To construct a RBD, the reliability-wise configuration of the

components essential to be determined. Thus, the analysis

method used for computing the reliability of a system is also

depend on the reliability-wise configuration of the components.

That components can be as simply arranged in series, parallel or

combination of both configurations.

 Series Configuration: In a series arrangement, a

failure of any component results in the failure of the

whole system. In most cases, when considering

complete systems at their basic subsystem level, it is

found that these are arranged reliability-wise in a

series configuration. These are reliability-wise in

series and a failure of any of these subsystems will

cause a system failure. In a series configuration, the

component with the least reliability has the biggest

effect on the system's reliability.

 Parallel Configuration: Redundancy is a very

important characteristic of system design and

reliability in that adding redundancy is one of several

methods of improvising system reliability. On the

other hand, the component with the highest reliability

in a parallel configuration has the biggest effect on

the system's reliability, because the most reliable

component is the one that is most likely failed last.

This property of parallel configuration is very

important in increasing the performance and

reliability of systems.

2.6 Building Reliability Block Diagram

Using BlockSim
It provide design space for RBDs to calculate performance and

reliability [15]. Simple drag-and-drop functionality allows you

to drag blocks from a Template into a Diagram Sheet or Fault

Tree Sheet and configure those blocks to create simple or

complex Reliability Block Diagrams (RBDs) or fault tree

diagrams. With the help of BlockSim, the system is configured

in series, parallel and k-out-of-n reliability-wise configurations,

as well as complex combinations. The BlockSim is also used to

create standby and load sharing redundancy configurations.

BlockSim also allows us to customize the size and shape of

component blocks, connecting lines, diagram background,

graphics and text.

3. PROPOSED METHODOLOGY
A use case typically consists of multiple scenarios. A scenario

represents a possible sequence of steps in the execution of use

case. The reliability of a scenario is depending on the

reliability of the components involved in its execution. Firstly,

gather the user requirements and according to his

requirements main use case diagram is designed. Use case

diagram is further explored and design its sub use cases. After

designing of sub use case diagram and their functional aspects

that required organizing the system components and making a

component diagram. Now for calculating the reliability of an

individual component of a system, Component Diagram to

RBD conversion is required. BlockSim tool is used to

simulate and analyzed the Reliability Block Diagrams as

shown in Figure 2.

ReliaSoft's BlockSim tool offers a flexible graphical interface

that supports an extensive array of Reliability Block Diagram

(RBD) configurations. This includes analysis of reliability,

maintainability, availability and resource allocation. For

reliability estimation of each and every block in RBD,

Weibull 2-P Distribution function is used. Weibull

distribution is widely used in reliability engineering and

elsewhere due to its versatility and relative simplicity [16].

The most general expression of the Weibull 2P probability

density function is expressed as follows:

f t =
β

η

t

η

β−1

e
−

t
η

β

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

19

Where:

f t ≥ 0, t ≥ 0

β > 0

η > 0

And:

η = Scale parameter, or characteristic life.

 β = Shape parameter (or slope).

The System reliability is nearly equal to the target reliability

that means system design is perfect and ready for

implementation phase otherwise on the basis of reliability

importance select the components which are failed very

earlier. The system reliability is increased with the help of

parallel configuration. In this manner the proposed

methodology provide system reliability early in the product

development stages from UML diagrams.

4. CASE STUDY
In this section, the proposed system demonstrates the usage of

approach to predict reliability of a system through a case

study.

4.1 System Description
The reliability is a very essential characteristic during

application or product development. This ensures that the

developed product how long effectively or reliably work

without any interruption. In order to understand the reliability

of a system, a system is developed for the online shopping.

The web customer of the online shopping use this system to

purchase item and make payment. A use case model of the

online shopping is shown in Figure 3.

4.2 Reliability Prediction Using Blocksim

Tool
It can be observed from the Figure 3 that there are four use

cases. The name of use cases are registration, login, view

items and checkout. Checkout sub use case diagram is shown

in Figure 4 with four payment option. The Rational Rose tool

is used to draw UML diagrams. Once the design metrics for

all the components are calculated these components are given

as an input to the BlockSim tool [17]. The component

diagram with four payment options is shown in Figure 5.

 Fig 2: Proposed Approach

 Fig 3: Use Case Model of Online Shopping

 Fig 4: Checkout Sub Use Case Diagram

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

20

Fig 5: Checkout Component Diagram

BlockSim Tool and Weibull 2P Distribution algorithm is used

to compute the reliabilities of components. Blocksim Tool is

used to analyze and simulate the RBD diagrams therefore

UML to RBD conversion is required. We have two scenarios

of checkout use case in which first scenario has two payment

options and second scenario has four payment options are

taken. RBD diagrams of first and second scenario are shown

in Figure 6 and 7 respectively.

 Fig 6: First Scenario

4.3 Predicted Component Reliabilities
Once the component diagram is converted into reliability

block diagram Weibull 2-P Distribution is used to predict the

component reliabilities of the system [18]. The predicted

reliabilities of Checkout components are shown in Table 1.

5. RESULT ANALYSIS
In this section the detailed discussion of the obtained results in

terms of different performance parameters are demonstrated

after successful simulation of both the scenarios.

 Fig 7: Second Scenario

Table 1: Predicted Component Reliabilities

Component Name Reliability

 Checkout 0.734223

Customer Authentication Service 0.848771

View/Update Cart 0.529059

Calculate Taxes and Shipping 0.682631

Payment 0.791329

Sign-In 0.664335

Remember Me 0.485101

Sign-Up 0.539042

Calculate Total 0.683342

Credit Card 0.601745

Shopping Successful 0.88248

PayPal 0.611855

Net Banking
0.628828

Wallet
0.622893

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

21

5.1 First Scenario
In first scenario, check out system of online shopping with

two payment options is simulated for 1000 simulations as

shown in Figure 8.

Fig 8: Simulation of First Scenario

5.2 Second Scenario
 In second scenario, check out system of online shopping with

four payment options is simulated for 1000 simulations as

shown in Figure 9.

Fig 9: Simulation of Second Scenario

5.3 Reliability Allocation
In order to estimate the reliability of the entire system, it is

required to initialize the reliability of each participating

components of the system. Table 2 and Table 3 shows the

reliability allocation of first and second scenario respectively.

Table 4 and Table 5 shows the system results after simulate

the scenarios. Both the tables shows the differences in results.

That difference is produced according to the increase in

number of parallel units connected together [19]. Therefore,

the reliability of the components is enhanced if the numbers of

parallel connections are increases.

Table 2: Allocation Analysis of First Scenario

System Results

Reliability (500)
Target Reliability

(500)
Units

0.638212 0.9 Hour

Table 3: Allocation Analysis of Second Scenario

RBD1

Block Name RI (500)
Reliabilit

y (500)

Target

Reliability

(500)

Equivalent

Parallel

Units *

Checkout 0.869235 0.734223 0.94869 2.241245

Customer

Authentication

Service

0.040549 0.848771 0.94869 1.572226

View/update

Cart
0.009962 0.529059 0.94869 3.943931

Calculate Taxes

and shipping
0.030643 0.682631 0.94869 2.587695

Payment 0.024839 0.791329 0.94869 1.89526

Sign-In 0.009085 0.664335 0.94869 2.72055

Remember Me 0.005923 0.485101 0.94869 4.47414

Sign-Up 0.006475 0.529059 0.94869 3.943931

Calculate Total 0.007934 0.664335 0.94869 2.72055

Credit Card 0.009024 0.601745 0.94869 3.225795

Shopping

Successful
0.723203 0.88248 0.94869 1.387044

PayPal 0.00926 0.611855 0.94869 3.138152

Table 4: System Result First Scenario

RBD1_1

Block Name
RI

(500)

Reliability

(500)

Target

Reliability

(500)

Equivalent

Parallel

Units *

Checkout
0.87344

5
0.734223 0.94869 2.24124

Customer

Authentication

Service

0.02766

1
0.848771 0.94869 1.572222

View/update

Cart

0.00679

6
0.529059 0.94869 3.943923

Calculate Taxes

and shipping

0.02090

3
0.682631 0.94869 2.587695

Payment
0.02874

5
0.805276 0.94869 1.643728

Wallet
0.00133

4
0.622893 0.94869 3.045303

Net Banking
0.00135

5
0.628828 0.94869 2.996567

Sign-In
0.00619

7
0.664335 0.94869 2.720545

Remember Me 0.00404 0.485101 0.94869 4.474131

Sign-Up
0.00441

7
0.529059 0.94869 3.943923

Calculate Total
0.00541

2
0.664335 0.94869 2.720545

Credit Card
0.00126

3
0.601745 0.94869 3.225789

Shopping

Successful

0.72670

6
0.88248 0.94869 1.387041

PayPal
0.00129

6
0.611855 0.94869 3.138146

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

22

Table 5: System Result Second Scenario

System Results

Reliability

(500)

Target Reliability

(500)
Units

0.641303 0.9 Hour

5.4 Reliability
According to the definition of the reliability is the ability of a

system or component to perform its desired functions under

the predefined conditions for a specified period of time or

defined periods of execution is known as the reliability of the

system [20]. The Reliability comparison between both the

scenarios is shown in Figure 10.

Fig 10: Reliability

5.5 Rate of Failure
Failure rate is the amount of time of a system or its

component took to fail. It is denoted by λ and it is important

in reliability measurement. The failure rate of system depends

on time, with varying rate over the life cycle of system. The

Rate of Failure of both the scenarios is shown in Figure 11.

Fig 11: Rate of Failure

5.6 Reliable Life
During a system or components life cycle the amount of time

when the system reliably works is known as the reliable life.

The comparative reliable life of both the scenarios is shown in

Figure 12.

Fig 12: Reliable Life

5.7 Mean Life
The average life in which the components of the system are

expected to operate before failure is known as the "mean time

to failure" (MTTF) or "mean time before failure" (MTBF) or

Mean Life. The life of both the scenarios after 1000

simulations are shown in Figure 13. According to the

Figure13 the mean life of the second scenario is much

effective as compared to first scenario.

Fig 13: Mean Life

5.8 Probability of Failure
During a system execution the probability to fail a system or

component is termed as the probability of failure. The

comparative probabilities of failure for both the implemented

scenarios are shown in Figure 14. According to the obtained

results the probability of failure is minimized in the second

scenario.

0.5

0.505

0.51

0.515

500 Hour

R
e

lia
b

lit
y

Scenario 1 Scenario 2

0.00202

0.00204

0.00206

0.00208

0.0021

0.00212

0.00214

500 Hour

Fa
ilu

re
 R

at
e

scenario 1 scenario 2

215.8

216

216.2

216.4

216.6

216.8

500 Hour

R
e

lia
b

le
 L

if
e

 in
 H

o
u

r

Scenario 1 Scenario 2

612
613
614
615
616
617
618
619
620

500 Hour

M
e

an
 L

if
e

 In
 H

o
u

r

Scenario 1 Scenario 2

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

23

Fig 14: Probability of Failure

5.9 Static Reliability Importance
Figure 15 and 16 shows the static reliability importance of

first and second scenario respectively. According to the

obtained results the importance of those blocks are higher,

they are functioning individually to complete the entire

process. Thus from the figures it is cleared that if parallel

choices are provided for processing then reliability

importance is decreases of that particular block or also

decreases of other blocks which are connected along with the

block.

Fig 15: Static Reliability Importance of First Scenario

 Fig 16: Static Reliability Importance of Second Scenario

6. ACKNOWLEDGEMENTS
I express my professional gratitude with a great pleasure to

Mrs. Vaishali Chourey, Associate Professor, Department of

Computer Science & Engineering, Medi-Caps Institute of

Technology and Management, Indore whose constant

encouragement enabled me to work enthusiastically, working

under her guidance, has been a fruitful and an unforgettable

experience & special thanks to IJCA Organization who

provokes me to write quality of research paper.

7. CONCLUSION & FUTURE WORK
The regular use of a system without any issues needs a hard

work during the design and implementation. But how reliably

a system functions work that depends on the component

usages in a system and failure of a sub-component affect the

overall performance and reliability of system. The reliability

engineering is a subject of analyzing the system and their

functions to get the amount of time when the system and their

components works reliably and where the maintenance

required or replacement required to perform regular

functioning during utilization of the system. After comparison

of different terminologies to quantifying a system, the second

scenario is more reliable and efficient as compare to first

scenario as shown in Table 14.

Table 6: Scenario Results (After 500 Hrs.)

Terminologies First

Scenario

Second

Scenario

Reliability 63.8% 64.2%

Probability of Failure 36.2% 35.8%

Number of Failures 37.8% 33.2%

Mean Life 614.573 Hrs. 618.732 Hrs.

Reliable Life 242.772 Hrs. 304.919 Hrs.

Mean Time to Failure 1151.56 Hrs. 1313.79 Hrs.

In near future more complicated use case will be required to

analyze which are going to be implemented with new

conditions. Additionally more literature will collected to find

more accurate and effective modelling of newly appeared

systems. This can be applied to various software development

trends including component based development and cloud.

This can also be used to estimate performance and reliability

of complex system build and deployed like ERP & web

portals.

8. REFERENCES
[1] Podgurski, Andy, Wassim Masri, Yolanda McCleese,

Francis G. Wolff, and Charles Yang. "Estimation of

software reliability by stratified sampling." ACM

Transactions on Software Engineering and Methodology

8, no. 3, pp. 263-283, 1999.

[2] Mohanta, Sirsendu, Gopika Vinod, A. K. Ghosh, and

Rajib Mall. "An approach for early prediction of

software reliability." ACM Sigsoft Software Engineering

Notes 35, no. 6, pp. 1-9, 2010.

[3] Jalote, Pankaj, Brendan Murphy, and Vibhu Saujanya

Sharma. "Post-release reliability growth in software

0.484

0.486

0.488

0.49

0.492

0.494

0.496

500 Hour

P
ro

b
ab

ili
ty

 O
f

Fa
ilu

re

Scenario 1 Scenario 2

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.2, December2015

24

products." ACM Transactions on Software Engineering

and Methodology 17, no. 4, pp. 17, 2008.

[4] Peng, Rui, Y. F. Li, W. J. Zhang, and Q. P. Hu. "Testing

effort dependent software reliability model for imperfect

debugging process considering both detection and

correction." Reliability Engineering & System Safety

126, pp. 37-43, 2014.

[5] Dimov, Aleksandar, Senthil Kumar Chandran, and

Sasikumar Punnekkat. "How do we collect data for

software reliability estimation?" In Proceedings of the

11th International Conference on Computer Systems and

Technologies and Workshop for PhD Students in

Computing on International Conference on Computer

Systems and Technologies, pp. 155-160. ACM, 2010.

[6] Fujii, Toshiya, Tadashi Dohi, and Takaji Fujiwara.

"Towards quantitative software reliability assessment in

incremental development processes." In Proceedings of

the 33rd International Conference on Software

Engineering, pp. 41-50. ACM, 2011.

[7] Pati, Jayadeep, and K. K. Shukla. "A Hybrid Technique

for Software Reliability Prediction." In Proceedings of

the 8th India Software Engineering Conference, pp. 139-

146. ACM, 2015.

[8] Bhuyan, Manmath Kumar, Durga Prasad Mohapatra, and

Srinivas Sethi. "A survey of computational intelligence

approaches for software reliability prediction." ACM

Sigsoft Software Engineering Notes 39, no. 2, pp. 1-10,

2014.

[9] Bird, Christian, Venkatesh-Prasad Ranganath, Thomas

Zimmermann, Nachiappan Nagappan, and Andreas

Zeller. "Extrinsic influence factors in software reliability:

A study of 200,000 windows machines." In Companion

Proceedings of the 36th International Conference on

Software Engineering, pp. 205-214. ACM, 2014.

[10] Liu, Chang, Yuan Liu, Zhanyong Ren, and Haifeng Li.

"Software Reliability Modelling Considering both

Testing Effort and Testing Coverage." In 2015

International Symposium on Computers & Informatics.

Atlantis Press, 2015.

[11] Buhnova, Barbora, Stanislav Chren, and Lucie

Fabriková. "Failure data collection for reliability

prediction models: a survey." In Proceedings of the 10th

international ACM Sigsoft conference on Quality of

software architectures, pp. 83-92. ACM, 2014.

[12] Bernardi, Simona, José Merseguer, and Dorina C. Petriu.

"Dependability modeling and analysis of software

systems specified with UML." ACM Computing Surveys

(CSUR) 45, no. 1, pp. 2, 2012.

[13] Distefano, Salvatore, Antonio Puliafito, and Kishor S.

Trivedi. "Dynamic aspects and behaviors of complex

systems in performance and reliability assessment."

ACM Sigmetrics Performance Evaluation Review 39, no.

4, pp. 71-78, 2012.

[14] Ubal, Rafael, Dana Schaa, Perhaad Mistry, Xiang Gong,

Yash Ukidave, Zhongliang Chen, Gunar Schirner, and

David Kaeli. "Exploring the heterogeneous design space

for both performance and reliability." In Design

Automation Conference, 2014 51st ACM/EDAC/IEEE,

pp. 1-6. IEEE, 2014.

[15] Sagar, B. B., R. K. Saket, and Col Gurmit Singh.

"Exponentiated Weibull distribution approach based

inflection S-shaped software reliability growth model."

Ain Shams Engineering Journal 2015.

[16] Tyagi, Kirti, and Arun Sharma. "Reliability of

component based systems: a critical survey." ACM

Sigsoft Software Engineering Notes 36, no. 6, pp. 1-6,

2011.

[17] Singh, Lalit Kumar, Gopika Vinod, and A. K. Tripathi.

"Impact of change in component reliabilities on system

reliability estimation." ACM Sigsoft Software

Engineering Notes 39, no. 3, pp. 1-6, 2014.

[18] Hu, Hai, Chang-Hai Jiang, Kai-Yuan Cai, W. Eric Wong,

and Aditya P. Mathur. "Enhancing software reliability

estimates using modified adaptive testing." Information

and Software Technology 55, no. 2, pp. 288-300, 2013.

[19] Allen M. Johnson Jr., Miroslaw Malek, “Survey of

Software Tools for Evaluating Reliability, Availability,

and Serviceability”, ACM Computing Surveys, Vol. 20,

no. 4, December 1988.

IJCATM : www.ijcaonline.org

