
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

16

Implementation of a Single-Channel HDLC Controller on

FPGA

Hichem Semira
Department of Electronics,

BadjiMokhtar
University,Annaba- B.P.12,

Algeria.

Mohamed Benouaret
 Department of Electronics,

BadjiMokhtar
University,Annaba- B.P.12,

Algeria.

Saliha Harize
Department of Electronics,

BadjiMokhtar
University,Annaba- B.P.12,

Algeria.

ABSTRACT

HDLC are the high level data link control procedures

established by ISO, They are widely used in digital

communication and are the bases of many other data link

control protocols. The objective of this paper is to implement

a Single-Channel HDLC Controller on an Altera FPGA. All

the modules such as the transmitter and the receiver are

designed and implemented using VHDL programming

language and illustrated with a detailed schema. The software

tools used in this work include Altera Quartus II 8.1 and

ModelSim Altera 6.1g. The target circuit is the Cyclone II

EP2C35F672C6.

Keywords

HDLC, Data Link Control Layer, Altera FPGA, bit

stuffing/unstuffing, CRC-16, CRC-32, Flag.

1. INTRODUCTION
To successfully transmit data over any network, a protocol is

required to manage the flow of the transmitted data. HDLC

(High Level Data Link Control) protocol is one of the most

widely used protocol in the field of communication. HDLC is

a classical bit-oriented protocol whose variants have been in

use for decades in many applications. The HDLC is defined as

International Standardization Organization‟s

recommendations ISO/IEC 13239:2002 [1]. It provides a

variety of options that the two communicating stations may be

able to negotiate before data exchange. The main goal of the

HDLC protocol is to achieve a reliable and efficient

communication between two adjacent machines at the data

link layer.

HDLC procedures are commonly performed by ASIC

(Application Specific Integrated Circuit) devices or software

programming. ASIC devices are simple, but they lack the

flexibility in different applications and it is difficult for ASIC

devices to meet all the requirements of various versions of the

HDLC protocol. Software programming of HDLC procedures

is flexible and can be used in many different HDLC

applications by simple modification. However, the programs

are heavy consumer of the processor resources and time when

running. As the programmable logic devices are widely in

use, HDLC procedures can be implemented in FPGA. By

adopting hardware processing technology FPGA devices can

be programmed repeatedly. So, using FPGA to replace ASIC

devices for HDLC implementation is a proper choice.

Therefore, for faster implementation, several researchers have

designed and developed HDLC controllers according to the

requirements of the basic communication system using FPGA

[2-13].

This paper presents the design of a FPGA-based HDLC

protocol controller The VHDL modeling of a single-channel

HDLC protocol transmitter/ receiver and its implementation

using ALTERA FPGA Cyclone II EP2C35F672C6 as the

target technology are discussed.In the design process the

description of the controller as indicated in [14] with some

modifications is followed.Across the paper, HDLC controller

components are described with detailed block diagrams to

assist in understanding the concepts of their modeling in

VHDL.

2. THE PRINCIPLE OF HDLC

PROTOCOL
HDLC uses the term "frame" to indicate an entity of data (or a

protocol data unit) transmitted. Figure 1 below is a graphical

representation of an HDLC frame with an information field

[15].

Figure1: HDLC Frame structure

1) Flag: An HDLC frame is composed of the flag and

the serial transmission data. This figure does not

include the bits inserted for transparency.

Transparency (Zero stuffing) is performed on the

HDLC packets whenever five contiguous « 1 » bits

are transmitted. The fields are transmitted from left

to right, least significant bit first. Each frame starts

and ends with a flag sequence “01111110”

(0x7E) used for frame. Synchronization, interframe

time filling shall be accomplished by transmitting

contiguous flags between frames. In the case of a

continuous transmission, the two consecutive

frames may share the same flag. The closing flag of

the first frame is used as the opening flag of the

second one.

2) Insertion and deletion of "0": In order to make the

flag unique to the whole bit stream, a zero insertion

and deletion technique is applied to the no flag

fields. For data transmission, whenever there are

five consecutive 1's being transmitted, an additional

redundant zero bit will be inserted immediately after

the five 1's. This is called “zero insertion” or “zero

stuffing”. When receiving data, whenever there are

five consecutive 1's followed by a zero, the zero will

be ignored. This is called “zero deletion” or “zero

unstuffing”.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

17

3) Address: Address field is used to identify the

addresses of the receivers.

4) The control field indicates the type of commands or

responses, and contains sequence numbers, where

appropriate. The control field shall be used:

a) To convey a command to the addressed data station(s)

to perform a particular operation, or

b) To communicate a response to such a command from

the addressed data station.

5) Information (variable length): Information may be

any sequence of bits.

6) Frame Check Sequence (FCS): The FCS is

calculated according to the CRC error detecting

scheme from the serial bit stream of the address,

control, and information fields excluding the

opening flag. It is usually a 16-bit or 32-bit pattern

used for checking the frame data integrity. The

length of the designated portion of the frame being

protected by the FCS checking mechanism is

determined by negotiation or known by a priori

knowledge. The most commonly CRC polynomials

are:

 CRC-16= 𝑥16 + 𝑥15 + 𝑥2 + 1

 CRC-CCITT = 𝑥16 + 𝑥12 + 𝑥5 + 1

CRC-32 = 𝑥32 + 𝑥26 + 𝑥23 + 𝑥22 + 𝑥16 + 𝑥12 + 𝑥11 +
𝑥10 + 𝑥8 + 𝑥7 + 𝑥5 + 𝑥4 + 𝑥2 + 𝑥 + 1

In some cases when there is a priority issue or a problem on

the data link, the transmitter may want to abandon the

transmission of the current HDLC frame before it is fully

transmitted. At anytime, the transmission of a frame can be

aborted by sending the Abort flag, which is (01111111). The

receipt of seven contiguous "1" bits shall be interpreted as an

abort flag and the receiving data station shall ignore the

frame. A data link channel is in an idle state when a

continuous "1" state is detected that has persisted for at least 8

bit times. Detection of the idle state at the data link layer shall

be considered to indicate that the remote data station has

relinquished its right to continue transmission.

3. THE DESIGN AND

IMPLEMENTATION OF HDLC
The focus of the HDLC controller development is on full-

duplex communication application. The design of HDLC

communication module is implemented using the VHDL

language. It is divided into two main blocks which are the

HDLC transmitter and the HDLC receiver.

3.1 The transmitter module
Before the transmission starts, the data needs to be stored in

advance in an external memory such as FIFOs. The

transmitter module includes a parallel-to-serial conversion

unit to convert the data issued from a memory, a FCS

generation unit for CRC check implemented in parallel [16], a

“0” inserting unit; a flag generation unit and a Tx_control

unit which is responsible for generating all the necessary

internal control signals required by the different units. All

units work synchronously on the rising edges of the Txclk

clock.

As shown in Figure 2, the initial state of the state machine is

TxReady where the Txreset signal is high. In this state all the

Flip-Flops are initialized and the transmitter module sends an

idle sequence. If the FIFO is not empty, which means there is

data to be sent, the host processor asserts the TxStart signal

for one Txclk clock and the state machine jumps into the

Txsynchro state to send the FLAG as explained in Figure 3.

Note that this module functions as a multiplexer to generate

the sequences Idle, Flag and Abort based on shift registers,

and it is controlled by the FLAGGEN bus signal.

The Tx_control module is notified by the Start_FLAG signal

generated by the Flag generator module to load the data from

FIFO. This signal is used to trigger a counter to manage and

maintain synchronization between the signals Txload,

Load_Data and FLAGGEN.

Figure 2: Tx_Control (Finite State Machine (FSM)) Model

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

18

Data to be transmitted is loaded into the buffer on the rising

edge of Txclk when the Txload signal is asserted for one

Txclk clock. To latch the data bus from the buffer (Reg_in)

into the Latch_Buffer as indicated in Figure 4, the Tx_control

module uses the Load_Data signal until the data is

transmitted. At the same time, the CRC generator calculates

the CRC codes for the latched data in parallel for one

TxCLKclock.Before the first byte is completely shifted out

through the output line, the second Tx_load will be asserted to

get the second byte and so on. Figure 4 clearly shows the

different registers and counters used for parallel-to-serial

conversion and CRC computing.

Figure 3: Idle, Flag and Abort sequences generator Module

Figure4: Parallel-to-serial conversion and FCS generation module

The different logic circuits used to ensure a sequential binary

lossless transmission are also shown. As long as the FIFO is

not empty the CPU keeps the signal TxEndOfile not asserted.

The latched data will be shifted bit by bit through the Zero

insertion module and the FLAG Generation module to the

TxData output. The Zero insertion module is shown in Figure

5. The aim is to introduce a 0 after five consecutive 1

detected. Moreover the module generates a stop_reading

signal to stop the treatments in all the other modules in order

to avoid losing data during the insertion of a zero. This task is

successfully completed using simple shift registers.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

19

Figure 5: Zero insertion module

When loading the Data bus, the signal TxEndOfile will be

examined as well. If it is asserted with the signal fcs_to_send

(see Figure 4) which is used to ensure the transmission of the

last bit of data, the state machine switches to the Send_CRC

state and the byte being loaded into the buffer will be

considered as the last one of the current transmission frame.

After this last byte has been loaded into the latch_buffer and

shifted out, the signal EOF(Crc_send signal from the

Tx_module) is examined. If it is asserted, the FCS will be

shifted out bit by bit through the Zero insertion to the

TxDataoutputTheTx_control module is informed by the end

of the transmission of the FCSv by activating the signal

fcs_sent to jump into the TxSychro state to generate a flag and

the cycle repeats for a new frame. The assertion of the signal

Fcs_sent depends on the choice of the size of CRC by

examination of the value of crc_sel which is 0 for CRC-16 or

1 for CRC-32.

If a Tx_Abort command is received, the state machine jumps

into the Abort state and cancels the current frame sending by

asserting an Abort sequence 0xFE. Once the abort sequence

has been transmitted, the FLAG Generation module asserts

the signal End_Abort to switch to the TxReady state. In this

case the Transmitter module keeps sending an idle sequence

until the assertion of the signal TxStart.

The simulation results using ModelSim Altera 6.lg of the

functional timing waveforms of the transmitter module are

shown in Figure 6. The transmission simulation has been

carried out using an arbitrary sequence: "FE02". It is clear in

this figure that the output of this module is a binary sequence

delimited by two FLAGs.

Figure6: The simulation waveforms of the transmitter module

It is clear in this figure that the output of this module is a

binary sequence delimited by two FLAGs.

Using QUARTUS II software package provided by Altera,

VHDL modules were written for each entity. Figure 7 shows

the top-level schematic design for the implemented

transmitter on Cyclone II EP2C35F672C6 FPGA after

successful compilation. The resources used by the units of the

transmitter module are listed in table1.

Figure 7: Top-level design of the implemented transmitter

Table 1. Resources used by the units of the transmitter

module.

Module LogicCell

s

Dedicated

LogicReg

isters

Pins LUT

-

Only

LCs

Tx_control: U1 90 37 0 53

Tx_buffer_and_

CRC_

computation: U2

241 85 0 154

Zero_insert:U3 3 6 0 3

Flag_gen: U4 10 19 0 2

Transmitter

Module (Total)

344 147 16 212

Utilization 1%(/3321

6)

< 1%

(/33216)

3%

(/475)

-

Total thermal

power

Dissipation(mw)

111.73

The single channel HDLC transmitter is found to be running

at a frequency of 41.61MHz (24.03ns) with a total equivalent

cell count of 344.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

20

3.2 TheReceive Module
The receivermodules complete the frame synchronization byte

"7E” identification and Abort detection, bits unstuffing, serial-

parallel conversion, and CRC checking and comparing. In the

receiving module, as shown in Figure 8, the received data

RX_Data is shifted at the clock edge of receiving RXCLK and

placed in an 8-bit register (Reg_buffer) to check the presence

of an eventual flag or an abort sequence.

The detection of the special sequences and the identification

of data are controlled by a finite state machine as illustrated in

figure 9.

The Receiver module is in RX_Idle state when the system is

reset, and moves into RX_synchro state when the frame

synchronization byte "7E” is identified.In this state, if a byte

not equal to "7E” has been detected, then the last flag is

recognized as an opening flag and the receive state machine

enters the RX_receiving_Data state. The receiver begins to

collect the incoming frame, but continues to monitor for a

closing flag or an eventual aborting and proceeds to the

following tasks:

 Assert the length_packet signal to enable the „0‟

removing, the CRC computation and the bit counter to

check for if the frame length is not equal to a multiple of

bytes. The Bit counting and the CRC checking are used

for error detection in the received HDLC frame.

 Once the length_packet is enabled, the zero removing unit

will keep track of the incoming bit stream and removes

the 0 bit after five consecutive 1 bits (remove redundant

"0"). Figure 8 clearly shows the mechanism used to

remove the inserted zero. This mechanism is based on a

modulo 5 counter and a comparator.

Figure 8: Idle, Flag and Abort sequences detector and bits unstuffing Module

 The serial data received is shifted into the R_buffer to

remove the padded zero as shown in figure 10. Once the

shift register is full, the CRC code is generated and the

available 8-bit data is placed on the RX_data_out bus.

 Then the receiver will inform the host processor to store

the 8-bit data in an external receive buffer by asserting the

RX_Data_valid signal for one RXCLK clock. If this 8-bit

data is the first byte captured the receiver informs the user

that the current received data is the first byte (start of

frame) by enabling the SOPacket signal pulse for one

Rxclk clock. To assure the assertion of the SOPacket

signal in the heading of the frame , a driver signal named

Start has been used as illustrated in figure 10.

Figure 9: Flag and Abort detection FSM

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

21

Figure 10: CRC checking and error frame detection Module

Once the closing Flag has been captured the

RX_receiving_Data state is changed to the RX_synchro state

and another operation for finding the flag is initiated. In this

state the receiver performs the following actions:

 The length_packet signal is disabled to stop the CRC

computation and bit counting.

 The receiver generates an active high pulse denoted by

EOPacket to inform the user that this byte is the last one.

Like the SOPacket signal the EOPacket is controlled by

the verrou signal.

 After eight RXCLK clock, the receiver will present the

status byte to the RX_data_out bus. The RX_status_valid

will be asserted to inform the host processor that the value

of the RX_data_out bus is the status and not the data.

Note that the assertion of RX_status_valid coincides with

that of RX_Data_valid signal.To ensure its validation after

8 Rxclk clock at the end of the frame an ending signal is

used.This status byte will be reported after the entire

HDLC frame has been received or the abort has been

detected and is presented as follows [14]:

Bit7-Bit3 Bit2 Bit1 Bit0

 Bit7-Bit3: Reserved

 Bit2: Abort Detected

 Bit1: Octet Error

 Bit0: CRC Error

Note that during the detection of the abort sequence

RX_receiving_Data state directly switches to RX_Abort state.

The receiver will then inform the user that an error has

occurred by asserting the status byte and move to the RX_idle

state to look for another valid frame.

Figure 11 shows the simulation waveforms of the Receiver

Module component for an example of transmitted data. For

depiction purposes, the transmitted data TXdata output of the

Transmitter Module is connected to the RXdata input and

both the TXCLK and the RXCLK are running at the same

clock. It is clear in this figure that the output data bus of this

entity is similar to the data transmitted.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

22

Figure 11: The simulation waveforms of the Receive Module

The three last bytes represent CRC 2_bytes and the status

Octet. The status byte " 0x00" indicates an intact

transmission (no errors). Other detailed waveform results, like

the presence of the abort sequence, using CRC 32 bits, CRC

error and octet error are beyond the scope of this paper and

can be requested from the authors.

As with the transmitter module, figure 12 shows the top-level

schematic design for the implemented receiver on Cyclone II

FPGA board EP2C35F672C6 after successful compilation.

TABLE 2 shows the resources taken by the receiver module

units.

Figure 12.Top-level design of the implemented Receiver

Table 2. Resources taken by the units of the receiver

module

Module LogicCe

lls

Dedicated

LogicRegist

ers

Pins LUT-

Only

LCs

F_A_detect:

U1

95 49 0 46

Z_unstuff_cr

c: U2

223 135 0 88

Receiver

Module

(Total)

318 184 16 134

Utilization <1%

(/33216)

< 1%

(/33216)

3%

(/475)

-

Total

thermal

power

Dissipation(

mw)

111.79

The single channel HDLC receiver is found to be running at a

frequency of 199.12 MHz (5.022ns) with a total equivalent

cell count of 318.

4. CONCLUSION
A Single-Channel HDLC Controller was successfully

designed using VHDL codes, tested and verified functionally

using Modelsim and Quartus II softwares. The whole system

is based on a modular design, and can therefore be easily

extended and upgraded. The HDLC controller has the

following features: bit stuffing/unstuffing, Flag

sending/detection, CRC computation/verification, octet

error/abort detection and converting serial/parallel bits into

parallel/serial data. Along the paper, the focus is to clearly

show the operation of the modules using quite detailed

diagrams. The simulation results show that the module is

reliable. The design has been synthesized using ALTERA

FPGA Technology.

5. REFERENCES
[1] Information technology -- Telecommunications and

information exchange between systems -- High-level

data link control (HDLC) procedures, ISO/IEC

13239:2002, www.iso.org.

[2] Yuanlin Lu; Zhigong Wang; LufengQiao; Bin Huang,

"Design and implementation of multi-channel high speed

HDLC data processor," in Communications, Circuits and

Systems and West Sino Expositions, IEEE 2002

International Conference on , vol.2, no., pp.1471-1475

vol.2, 29 June-1 July 2002

[3] S. M. Qasim, and S. A. Abbasi, “FPGA implementation

of a single-channel HDLC layer-2 protocol transmitter

using VHDL,” Proc. 15th Int. Conf. on Microelectronics

ICM, Cairo, Egypt, December 2003, pp. 265–268

[4] S. M. Qasim, and S. A. Abbasi, “ Hardware Realization

of Single-Channel HDLC Protocol Transmitter using

FPGA,” Global Signal Processing Expo &

Conference‟2004, Santa Clara, California USA Sept.27-

30

[5] Gao Zhen-Bin; Liu Jian-fei, "FPGA implementation of a

multi-channel HDLC protocol transceiver," in

Communications, Circuits and Systems,

2005.Proceedings. 2005 International Conference on ,

vol.2, no., pp.1302, 27-30 May 2005

[6] Arshak, K.; Jafer, E.; McDonagh, D.; Ibala, C.S.,

"Modelling and simulation of wireless sensor system for

health monitoring using HDL and Simulink mixed

environment," in Computers & Digital Techniques, IET ,

vol.1, no.5, pp.508-518, Sept. 2007

RxData

Rxclk

Rxreset

Abort_det

length_of_packet

RX_buffer[7..0]

Abort_det

Rxclk

Rxreset

crc_sel

length_packet

RXentree[7..0]

EOPackect

RX_Data_valid

RX_status_valid

SOPacket

RXsortie[7..0]

Rxclk

Rxreset

RxData

crc_sel

RX_Data_valid

RX_status_valid

SOPacket

EOPackect

RX_Data_out[7..0]

F_A_detect:u1 Z_unstuff_crc:u2

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.3, December2015

23

[7] J. Wang; W. Zhang; Y. Zhang; W. Wu; W. Chang,

“Design and implementation of HDLC procedures based

on FPGA," Anti-counterfeiting, Security, and

Identification in Communication, 2009. ASID 2009. 3rd

International Conference on , vol., no., pp. 336, 339, 20-

22 Aug. 2009.

[8] G. Li; N. Tan; “Design and Implementation of HDLC

Protocol and Manchester Encoding Based on FPGA in

Train Communication Network,” Information and

Computing (ICIC), 2010 Third International Conference

on. Vol.1, pp. 105-108, 2010.

[9] Hong Luo; Cheng Chang; Yan Sun, "Advanced sensor

gateway based on FPGA for wireless multimedia sensor

networks," in Electric Information and Control

Engineering (ICEICE), 2011 International Conference

on , vol., no., pp.1141-1146, 15-17 April 2011

[10] Chen Zhifeng, Chen He, “Implementation and

Application of HDLC Protocol Based on FPGA in Radar

Processing System”, School of information and

electronics, Electronics, Communications and Control

(ICECC), 2011 International Conference; Sept. 2011.

[11] W. Lie; Y. Ming, “Design of HDLC controller based on

Xilinx FPGA,” Computer Science and Network

Technology (ICCSNT), 2011 International Conference

on , vol.3, no., pp.1362,1366, 24-26 Dec. 2011.

[12] M.Sridevi, P.S. Reddy “ Design And Implementation Of

Hdlc Protocol On Fpga,” International Journal of

Engineering Research and Applications (IJERA), Vol. 2,

Issue 5, September- October 2012, pp.2217-2219

[13] G. Chandil, P. Mishra “ Design and Implementation of

HDLC Controller by Using Crc-16,” International

Journal of Modern Engineering Research (IJMER), Vol.

3, Issue. 1, Jan.-Feb. 2013 pp-12-18.

[14] “ HDLC Controller Implemented in ispMACH 4000ZE

and CPLD Families,” Reference Design RD1009, July

2009 .www.latticesemi.com

[15] A.Aftab , « Data Communication Principles: For Fixed

and Wireless Networks », Kluwer Academic Publishers,

2003.

[16] “ Parallel Cyclic Redundancy Check (CRC) for

HOTLink ,” Document No. 001-27960 Rev. *A, March

11,1999, http://www.cypress.com/?docID=31573

IJCATM : www.ijcaonline.org

