
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.4, December2015

21

A Systematic Method to Evaluate the Software

Engineering Practices for Minimizing Technical Debt

Vinay Krishna
SolutionsIQ India Consulting Services Pvt Ltd

14th Cross, 10th Main, Malleswaram
Bangalore, India

 Anirban Basu, PhD
APS College of Engineering

Somanahalli, Kanakpura Road
Bangalore, India

ABSTRACT

Often we find it difficult to incorporate any changes in a

software project during later phases of its development, or

during post-delivery maintenance. Primary reason for this is

inflexibility in design and code which makes it difficult for

changes to be incorporated. This inflexibility substantially

increases the cost of making changes and this metaphor has

been termed as Technical Debt [1].

While Technical Debt cannot be eliminated completely, its

burden needs to be reduced. Many practitioners, especially

from agile community, have suggested some practices to

avoid or eliminate Technical Debt. This paper discusses on a

systematic method to evaluate the six software engineering

practices that a developer can follow to minimize Technical

Debt. These practices have been used and found to be

effective when implemented in projects as discussed here.

General Terms

Technical Debt, Code improvement, Refactoring

Keywords

Technical Credit, Living Budget

1. INTRODUCTION
One major technical challenge in most of today’s software

projects is introduction of unnecessary complexity in design

and code, knowingly or unknowingly [1] [2]. System

requirements mature with time, business requirements change

with market dynamics and evolution of technology requires

developing the requirements again. Incorporating desired

changes at a late stage of software development require

modification to the design and code. As change is inevitable,

developers make quick and dirty changes in design and code

to meet customer’s expectations without any disruption in the

schedule. Such unplanned changes done by the developers

add complexity to the code. There are also situations when

developers unknowingly make the code messy by not abiding

to the prescribed coding standards, by incorporating changes

in a hurry and by making over commitments without

understanding the ramifications. Whether it is inadvertent or

deliberate, such changes cause “stiffness” in code and

gradually a situation is reached when making further changes

in the code become extremely difficult. This state in the code

leads to a situation termed as Technical Debt [1]. Many times

reason is over use of Technical Credit which involves adding

features in design and code to incorporate over-anticipated

changes. A balance is required between essential and

accidental complexity in design as well as in code and

optimizing the design and the code is the biggest challenge

facing software architects.

Although, IT community understand the ill effects of

Technical Debt little has been done to minimize it. Software

engineers, who are the key stakeholders in software

development, can play an important role in minimizing it.

This paper prescribes robust software engineering practices

for reducing Technical Debt. Implementing the practices

proposed in this paper require discipline and strict adherence

to defined practices. The prescribed practices were

implemented in real life software projects and initial results

have been presented in [3]. Since then the techniques have

been implemented in more projects and data collected shows

that the proposed techniques can substantially reduce the

Technical Debt.

2. BACKGROUND
According to James Higgs [4], “All projects incur Technical

Debt, and that’s not a bad thing”. He has explained different

grades of Technical Debt and how we can overcome it.

Practitioners from the software development community have

suggested many good practices to reduce Technical Debt [2]

[4] [5] [6]. As described in Table 1 these practices can be

classified into 3 groups: Practices to Identify, Practices to

Classify and Practices to Reduce.

Table 1. Classification of practices to reduce Technical

Debt

Category Description
Practices

Identification

[2][4][6]

Contains

practices to

identify

Poor code quality

Insufficient code coverage

Inadequate documentation

Classification

[2][4][5][6]

Contains

practices to

Classify

Knowingly/Unknowingly

Short term/Long Term

Prudent and Reckless Debt

Strategic/Non-strategic

4 grades of debt

Reduction

[2][6]

Contains

practices to

Reduce by

Refactoring

Test Driven Development

Code reviews/ Audit

Pair programming

Continuous Integration

Best Practices/ Coding

Standard

Evolutionary design

Practices related to Identification provide the developer ways

to identify Technical Debt in the code whereas the practices in

the Classification category help in understanding the reason.

Reduction practices have been prescribed to minimize the

debt identified. However, we find that although the practices

suggested to identify, classify and reduce Technical Debt are

effective to some extent, adoption of these practices in real

life software projects are always a challenge and it requires

mindset change at developer level. This paper proposes

software engineering practices along with evaluation process

which have been found to be more effective in practical

situations and help a lot in adoption of above reduction

techniques.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.4, December2015

22

3. SOFTWARE ENGINEERING

PRACTICES FOR REDUCING

TECHNICAL DEBT
Although the benefits of Test Driven Development and other

good practices [7] are well established, developers feel that

effective methods [8] are still missing to reduce Technical

Debt. With experience on working on several projects, we

were able to identify six software engineering practices

discussed below that can be used to reduce the Technical

Debt. These practices are discussed along with situations

where it can be applied.

3.1 Practice 1: Determine one’s living

budget
Description: Minimal output (complete or part of feature

implementation in terms of code) that needs to be produced in

a day to meet the deadlines is defined here as “living budget”.

Every developer must know his/her living budget and needs to

be introduced in Work Management Plan. The concept of

“Living Budget” is as follows:

When one plans his/her development work, one must estimate

and plan for code review by self and by refactoring. So if one

plans for z hours of work in a day (normally z=8) one should

plan to spend some portion say x hours for development and y

hours for review and for refactoring the code. The value of x

and y should be determined by the developer.

1 day = z hrs

1 day development = x hrs development + y hrs review and

refactoring

 Living Budget

where x hrs + y hrs = z hrs

Recommendation: One should include time for code review

and refactoring in work plan. Sprint planning practice of

Scrum have been found to be useful as team availability and

daily hours available of each team member is known in

advance. Besides, we suggest following approaches:

i) Efficiently utilize extra/free time

In some projects we get extra time either due to early

completion of assigned tasks or due to some other reasons. In

such situations, this time should be used effectively for

Technical Debt reduction. This additional time should be in

addition to the time budgeted in Practice 1.

ii) Be Self-organizing

One must be able to manage his living budget, and keep track

of all time and delivery commitments. We should update code

regularly and keep monitoring so that undesirable practices do

not recur. Team members should be empowered to do task

selection, estimation etc. There are many Scrum practices

such as Daily standup and retrospective which help to achieve

these.

3.2 Practice 2: Smell one’s own code
Description: Code should be reviewed to find out areas

where defects are likely to occur and there is possibility of

having redundant code. Steps should be taken to

reduce/remove unwanted code in these areas, even if it means

removing certain portions introduced due to over anticipation.

Although this is well understood and easy to do, it is hard to

follow. Normally developer finds very less time or no time to

review/smell one’s own code since he/ she is always

struggling to meet the deadlines. Following Practice 1, i.e.,

“Determining one’s living budget”, helps to plan for this

activity.

Recommendation: For following this practice, first define

coding standards and best practices and make the team aware

of these. A check list should be created and developer should

use it to make sure that defined coding standard and best

practices are adhered to. A manual process is hard to follow

and it is beneficial to use some static code analysis tool that

can be used to find out deviation from standards and best

practices. However we still need to apply manual effort to

review the code in order to refactor it.

3.3 Practice 3: Make optimal use of

Technical Credit
Description: Introducing complexity for anticipated

requirement in design and code is termed here as Technical

Credit. This adds complexity to design and code which may

not be required eventually. This is very important aspect in

coding and unless one is sure about future needs, one should

not introduce flexibility due to anticipation.

If one introduces additional complexity in the code to cover

some un-practical scenarios, it is necessary to deal with these

and get to the causes. Introducing unnecessary complexity

makes the code more complex and rigid and increases

Technical Debt. It is better to remove such additional

complexity as early as possible.

Recommendation: We need to encourage all members in the

development team to discuss all issues in order to avoid

guessing customer requirements and over anticipation. The

following approach is recommended:

i) Start Refactoring the Technical Credit portions

The portions of the code having Technical Credit are to be

found. Refactoring to improve the code should start after that.

More attention should be given to the portions where

additional code has been written due to anticipation. These are

portions with Technical Credit. We should refactor only one

portion at a time until it is improved and look for reduction in

Technical Debt. Refactoring on one portion (section) of the

code is better than refactoring on several parts of the code at

the same time.

ii) Take help from others in design and coding related

obstacles

We have found that frequently we spend time on issues which

have already been solved by someone else or can be done

quickly by a person with the necessary expertise. But we

avoid seeking help from them. Pair programming is the best

option to avoid such situation. However if we cannot practice

pair programming, we need to encourage open

communication.

iii) Stop Keeping up with Joneses

Avoid blindly following others’ designs, patterns, codes and

libraries unless one really needs them. Ask suggestions from

all but accept the best one suitable.

3.4 Practice 4: Follow Best Practices and

Coding Standards
Description: Use recommended Coding

Standards/Guidelines. This is the best way to get code back

on track. If one portion of the code e does not adhere to the

standards/guidelines, one needs to modify it. Adhering to

same coding standard and best practices makes the design and

code more readable, maintainable and it’s easy to understand

other’s design and code.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.4, December2015

23

Recommendation: Define the best practices and Coding

Standards and share them with the team. Check if any static

code analysis tool can be used for review and to quickly find

out deviations or shortcuts.

3.5 Practice 5: Increase productivity with

Quality in mind
Description: Always focus on quality and not on speed.

Never measure productivity in terms of quantity but in terms

of quality and importance. If quality of design and code is not

taken care always by the team, then the productivity of team

starts decreasing. In the lack of adequate level of quality, both

design and code gradually becomes messy. Over time mess

becomes so big, deep and tall that it’s very hard to clean.

Eventually productivity reaches to zero [10].

Recommendation: Test driven development is one of best

practices to increase the code quality. Maintaining product

backlog with proper order is also a good practice to get

important items done first. Continuous integration is another

good practice, as we make changes in our code apart from unit

testing. Always do an integration testing to make sure it did

not break others code.

3.6 Practice 6: Learn continuously
Description: Learn techniques continuously and apply it to

improve code. Plenty of resources are available to enhance

one’s knowledge.

Recommendation: Impart proper training to the team on code

refactoring and share good resources with them. Encourage

continuous learning and experience sharing within the team.

There is always scope for improvement and continuous

learning helps. Never give up on learning emerging coding

standards, best practices, refactoring techniques etc.

Discuss with the team technical updates, any new special

defect or fix that has been encountered or used by anyone and

keep the meetings less formal and encourage team member to

share his/her experience and learning.

4. APPLICATION ON PROJECTS
Although SQALE method [9] has been proposed,

measurement of Technical Debt is not easy.

We have used some questionnaires for analyzing the impact

of practices used to reduce the Technical Debt. The responses

given to a set of questions are collected before and after

applying the six practices. This helped us to find out the

effectiveness of the practices in minimizing Technical Debt.

We chose three different projects in banking domain for

studying the effectiveness of the practices. Below are the

questions with respective scores used to assess the project

teams. The desirable values of the each question are 1 or 2.

Table 2. List of questions along with score to analyze the

impact of six practices used

Q. # Questions Score

1

Does anyone

review the

deliverables?

Who reviews

it?

+2: yes by peer

+1 : yes, by tech lead or senior

BA

-1 : yes, by expert

-2 : yes, by management. Or no

control.

Q. # Questions Score

2

How does the

build

managed and

integrated?

+2 : Multiple commits on a

main branch (or short-lived

feature branches) + multiple

integrations per day

+1 : Daily commit per branch +

weekly integration

0 : All sources are under

version control, integrated once

per release

-1 : All applications source

files except SQL are under

version control , integrated once

per release

-2 : Some application source

files are not under version

control , integrated once per

release

3

Is there any

coding

standard or

best practice

exists for the

team

+2 : Everyone uses and edit it

and it's enforced with some

commit hooks

+1 : Everyone uses the standard

and applies it

0 : Exists and applied a little

-1 : Exists but not applied

-2 : No coding standards

4

How does the

decision

being made

within the

team

+2 : Constructive disagreement

 +1 : Consensus

 -1 : By majority

 -2 : The team manager makes

the decision

5

Who

estimates the

effort and

assign the

tasks within

the team?

+2: whole team

+1: team experts

-1: (Project) Manager + team

experts

-2 : (Project) Manager alone

6

How do you

insure that

new

functionalities

can be easily

added

(technically)

to the

product, all

along the

product life?

+2 : All team members refactor

continuously

+1 : The tech lead refactors

continuously

0 : We clean some code

monthly

-1 : We clean some code a few

time per year

-2 : We never refactor anything

7

How do you

test a feature?

+2 : Automated tests written

before the development

regarding feature behavior.

+1 : Automated tests written

before the development

regarding technical behavior.

0 : Automated testing regarding

the expected behavior.

-1 : Manual testing of the

expected behavior

-2 : Manual testing of the

technical impacts

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.4, December2015

24

Q. # Questions Score

8

What is the

level of non-

expected

behaviors in

test

environment?

+2 : Close to zero (We discover

everything in development

environment because we use

BDD or TDD)

+1 : Less than 1 defect per

feature. Good collaboration

between BA, Dev and Biz

-1 : More than 1 defect per

feature. Regressions are seldom

-2 : More than 1 defect per

feature. Regressions are not

seldom

9

Are your non

production

environments

representative

from the

production

environment?

Are

deployment

procedures

the same?

+2 : Mostly identical, non

discriminent adjustments

(minimal variable adjustments,

less amount of nodes in a

cluster, less IOs bandwidth...)

+1 : Quite representative with

few, well known and controlled

adjustments (single node

compared to server farm or

cluster)

-1 : Few convergence, major or

uncontrolled differences

remains

-2 : Completely different

architectures/technos/procedure

s

10

How is the

knowledge

flow inside

the team?

+2 : Flawless circulation of the

knowledge between team

members

+1 : Knowledge circulation is

quite flawless except for a few

domains

0 : Some domains are carried by

an expert, for other domains,

knowledge circulation is

flawless between team members

-1 : Each domain is carried by

an expert

-2 : Only one expert in the

team, he answers most (if not

all) of the questions

11

What is a

bus/truck

factor in the

team

+2 : Nothing, business as usual

with throughput slowness at

worse

0 : Some domains can't be

maintained anymore

-2 : Our clients complains when

a senior/key team members not

available in the team

12

How

transparent

am I when I

made a

mistake?

+2, I feel comfortable with the

team enough to be transparent

and

 tell when I made a mistake.

The same mistake never occurs

twice

-2 : I try avoiding talking about

my mistakes because of the

consequences it may have

Above questions are used to find out the effectiveness of the

proposed practices and evaluate them. The same set of

questions are used in three different projects and scored are

captured before and after applying the proposed practices.

Table 3 gives the scores captured before and after adopting

the six practices in three different projects. It is evidently

established that when team has not adopted the six practices

then they scored poorly and when they adopted six practices

they scored much better. Eventually with the questions and

respective scores, it demonstrates clearly that team was able to

minimize the technical debt efficiently by adopting the

proposed six practices.

Table 3. Score captured before and after adopting the six

practices

Practi

ce

Q.

Project 1 Project 2 Project 3

Befor

e

Afte

r

Befor

e

Afte

r

Befo

re

Af

te

r

Practi

ce 1,

3, 6

1 -1 2 1 2 -2 2

Practi

ce 5

2 0 2 -1 2 1 2

Practi

ce 2, 4

3 0 2 0 2 -1 2

Practi

ce 3, 6

4 -2 1 -1 1 0 2

Practi

ce 1

5 -1 2 1 2 -1 2

Practi

ce 3, 5

6 -1 2 0 2 1 2

Practi

ce 5

7 -1 2 -1 2 -1 2

Practi

ce 5

8 -1 2 -2 1 -2 1

Practi

ce 4

9 1 2 -1 2 -1 2

Practi

ce 1,

3, 6

10 0 2 -1 2 -2 1

Practi

ce 1,

3, 6

11 -1 2 -2 1 0 1

Practi

ce 3, 6

12 -1 2 -2 2 -2 2

Besides minimizing Technical Debt, we also observed

significant improvement in number of defects found during

UAT after applying these practices effectively as shown

below in Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.4, December2015

25

Figure 1: No. of defects found before and after applying the six practices

5. CONCLUSION
While it is difficult to eliminate Technical Debt completely, it

is abundantly clear that large amount of debt can lead to

failure or substantial loss in terms of extra effort and rework

needed to make changes to meet customer expectations. As a

developer we should minimize Technical Debt as much as

possible. This paper suggests software engineering practices

to reduce Technical Debt. The practices have been found to be

effective based on the authors’ practical experience on

application on real life projects. The six software engineering

practices proposed in this paper are being applied on more

projects of different categories and sizes to check their

robustness.

6. ACKNOWLEDGMENTS
Our thanks to the teams and experts who have contributed

towards development of the template.

7. REFERENCES
[1] W. Cunningham, The WyCash Portfolio Management

System, OOPSLA,

1992;http://c2.com/doc/oopsla92.html

[2] S. McConnell, Technical Debt, 2007;

http://blogs.construx.com/blogs/stevemcc/archive/2007/1

1/01/technical-debt-2.aspx

[3] V. Krishna and A. Basu, “Minimizing Technical Debt:

Developer’s Viewpoint”, in Proc ICSEMA 2012,

Chennai, Dec 2012

[4] J. Higgs, The Four Grades of Technical Debt, 2011;

http://madebymany.com/blog/the-four-grades-of-

technical-debt

[5] M. Fowler, Technical Debt Quadrant, 2009;

http://www.martinfowler.com/bliki/TechnicalDebtQuadr

ant.html

[6] T. Theodoropoulos, Technical Debt Part1-4, 2012;

http://blog.acrowire.com/technical-debt/technical-debt-

part-1-definition

[7] V. Krishna, My Experiments with TDD, ScrumAlliance,

2010; http://www.scrumalliance.org/articles/357-my-

experiments-with-tdd

[8] D. Laribee, Using Agile Techniques to Pay Back

Technical Debt, MSDN Magazine, December 2009;

http://msdn.microsoft.com/en-

us/magazine/ee819135.aspx

[9] J. Letouzey, The SQALE Method, January 2012;

http://www.sqale.org/wp-

content/uploads/2010/08/SQALE-Method-EN-V1-0.pdf

[10] R. C. Martin, Clean Code: A Handbook of Agile

Software Craftsmanship, Aug 2008, Prentice Hill, page 4

0

10

20

30

40

50

Project 1 Project 2 Project 3

Before

After

IJCATM : www.ijcaonline.org

