
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.5, December2015

41

Testing from UML Design using Activity Diagram: A

Comparison of Techniques

Muhammad Touseef
Ikram

Department of CS
Capital University of

Science & Technology,
Islamabad, Pakistan

Naveed Anwer Butt
Department of CS

University of Gujrat,
Gujrat, Pakistan

Altaf Hussain
Department of CS

Capital University of
Science & Technology,

Islamabad, Pakistan

Aamer Nadeem
Department of CS

Capital University of
Science & Technology,

Islamabad, Pakistan

ABSTRACT

UML diagrams present the graphical representation of the

system. Model-driven testing not only helps in early

identification of faults but also results in reducing the testing

effort at the later stages of SDLC. This paper intends to

identify and make a critical review of different techniques for

test case generation using UML activity diagrams (UAD).

System activity diagram is used to depict the different

dynamic aspects of the system. UAD not only presents the

sequential or concurrent activities but also presents the

conditional and parallel activities. For this literature survey

different aspects like test case generation, test automation, and

test case prioritization & minimization using UAD has been

explored. The analysis of the literature portrays that extensive

literature exists regarding automation of the testing using

various aspects of activity diagrams. Similarly, test cases

prioritization has also been explored using the activity

diagrams incorporating manual, automated and semi-

automated techniques.

Keywords

Test Case Generation, UML Activity Diagram, Software

Testing, Test Cases, Test Automation

1. INTRODUCTION
Unified Modeling Language (UML) is a standard language for

modeling software and to model business processes and has

emerged as a common standard for modeling the object-

oriented paradigms [1] [9]. One of the most common reasons

of software failure is the presence of errors in the analysis and

design phase which makes them more important than code

[3]. If the design artifact of software is used for the test case

generation; it will not only result in early planning for test

cases but also facilitate in eliminating most of the UML

design errors and their propagation in later phases [6]. UML

sequence diagram, activity diagram, class diagram, and state

chart diagram are most commonly used as an artifact for test

case generation [1]. This paper review is primarily focused on

the analyzing the test case generation process from UML

design using only the activity diagram.

However, the extraction of test information from activity

diagram is not a simple task due to the following reasons:

 Concepts in the activity diagram are represented at

higher level of abstraction as compared to other

diagrams &

 The presence of concurrent activities and loop

structure in the activity diagrams also results in the

path explosion.

A number of studies have explored in which authors have

considered the UML activity diagrams and have generated

different types of graphs from it considering different

coverage criterion like path coverage, basic path coverage or

simple path coverage. UML activity diagrams have been

utilized by a number of studies covering different aspects of

software testing. Some of the studies have used the activity

diagrams for the test case generation and prioritization using

the gray box, black box, and model-based testing paradigm.

Some studies are focused on the test case minimization for the

optimal test coverage with least effort. Some have talked

about the automation of the testing technique utilizing the

activity diagrams. A few of the studies have explored the

aspect of test sequence generation which is an important

activity in testing.

Following are a few of the hypothesis which have been kept

in mind while conducting an exploratory survey of existing

literature:

1. Are there any techniques (automated or semi-

automated) for the test cases generation by using

UML activity diagrams?

2. What Coverage criterion has been incorporated for

the extraction of test cases from UAD?

3. What types of techniques & approaches used for test

case prioritization and reduction?

2. UML ACTIVITY DIAGRAM
UML activity diagrams are behavioral diagrams which depict

the internal behavior of different operations of a program with

the help of nodes and edges [2]. UML activity diagrams have

been used in different domains for work-flow representation

[6]. Activity diagrams have extracted their core conception

from Petri-nets, flow charts and state transition diagrams with

the difference that it supports concurrent activities, loops and

event-driven behavior [6][2]. A UAD (UML Activity

Diagram) is used to represent different activities, sub-

activities, transitions, decision points, guard conditions,

concurrent activities, branch, merge, swim lanes, join forks

and etc. [11][7]. An activity diagram starts with one start

activity and ends at one final activity [5]. The table below

shows the description of different artifacts of UAD:

Table 1: Basic symbols used to model Activity Diagram

Name Symbols Description

Initial

Node
Initial node is represented by

filled circle.

Activity

Activities are represented by

the rounded rectangle.

Edge Transitions are drawn as

directed arrows to show the

control flow among activities.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.5, December2015

42

Decision

Node

A decision node is presented

with a diamond usually having

an inward stream and two

outward streams.

Join

Join is represented with a line

also called the synchronization

bar receiving multiple inward

and one outward flow.

Fork

The fork is also represented

with a synchronization bar

which receives one inward and

multiple outward flows.

Merge

Merge operation is denoted by

a diamond shape box with

multiple inward flows.

Swim

Lanes

Describes the concurrent flow

of activities and by whom these

are performed.

Final Node

Final node is represented by

filled circle with an outline.

3. EVALUATION CRITERIA
Since numerous methods have been suggested and proposed

for generation of test cases from UML activity diagram and

these techniques have their own benefits and drawbacks.

Therefore, it is necessary that some evaluation criteria must be

set for the evaluation of these techniques. Following are a few

of the parameters which are identified in evaluating the

techniques. All the techniques to generate test cases from

UADs are evaluated on these parameters:

Intermediate Representation: Usually the information

extracted from the UAD is converted into some intermediated

transformation so that it can be cleaned and further utilized for

the test case generation. This parameter helps in evaluating

that what are different representation forms that are being

used in generation of test cases from UADs.

Coverage Criteria: Different coverage criterions are used for

the evaluation of the testing techniques. This aspect highlights

the most commonly used coverage criterions in test case

generation.

Automation: Another challenging task in generation of test

cases from UADs is to automate the technique for the

identification, prioritization and minimization of test cases

generated. This evaluation criterion highlights the automation

level of the analyzed technique.

Tool Support: In test case generation tool support is regarded

as a promising feature for the success of the proposed

technique. This aspect in our evaluation criteria depicts the

availability of different tools for the automated extraction of

test cases from the UAD.

Case Study: This aspect depicts the practicability of the

studied techniques in some domain and possible evaluate a

technique as “Yes” and “No”.

4. LITERATURE REVIEW
In this literature survey we have classified the literature

according to different aspects of testing from UML design

using activity diagram:

4.1 Automated Test Case Generation

Techniques using Activity Diagrams
In [4] Mingsong et al. presents a technique for test cases

generation specifically for the programs written in JAVA and

UADs as design specifications. This proposed method at first

generates random test cases from Java programs. Then the

execution traces of the program are generated by executing

the Java program along with generated test cases.

Additionally for minimization of generated test set it

compares the activity diagram with the program running

traces. Three coverage criterions namely transition, simple

path coverage, and activity coverage are addressed for activity

diagrams. One limitation associated with this approach is that

it is restricted only to those UML activity diagrams which

don‟t contain or consider loops or concurrency artifacts. The

proposed technique was implemented as a software prototype

called AGTCG.

Chen et al. [5] developed a methodology for test cases

selection from randomly generated test cases set considering

UML activity diagrams for the coverage criteria for Java

programs. To generate abundant random test cases the author

has used a Java program. In this paper, activity diagrams are

employed for automatic generation of test cases and later on

providing a reduced test suite for Java Programs. As there is

the random generation of test cases but this randomness

cannot assure that the required coverage can be achieved with

the selected test cases. The online stock exchange system is

used as a case study. Further, the research has been

comprehended with a tool support allowing the user in

constructing, editing, and analyzing the UADs.

In [8] a technique for automatic generation of a test sequence

is presented which is an important activity during testing by

using UML activity diagram. The proposed technique first

converts the activity diagram into the XML file which is

further traversed to find the test sequences. To enrich the

study and generate the test sequences Verma & Arora have

proposed two algorithms.

First, an algorithm is used to extract the incoming and

outgoing edges from the activity diagram for each node. The

second algorithm utilizes these edges for test sequences

generation and also optimizes the test sequences by rejecting

the infeasible paths. Comparisons of the proposed technique

with the earlier techniques which involve an intermediary

model or graphical representation depict less overhead and

less cost involvement. Another benefit of the proposed

approach is that it involves lesser infeasible test cases because

of the optimization algorithm

An automatic technique incorporating the concurrent activities

in activity diagram is described in [10]. Due to the existence

of fork-join nodes in the activity diagram there can be a lot of

test scenarios which adds difficulty to the test case generation

process. The proposed technique also considers the domain

dependency between the concurrent activities to limit the

exponential growth of the test scenarios. The dependency

information between activities inside the fork and join pairs

helps in producing only the feasible or possible test scenarios

and thus help in dwindling the generation of infeasible test

scenarios.

A technique has been proposed by Sun et al. [11] for

automatic generation of test cases from activity diagrams

exploiting the model driven testing aspect. To generate the

test cases automatically from the tool first they preprocessed

the data and then extracted its activity set and transition set

(intermediate representation) which was further used to

generate the test sequence and test scenario. The

transformation rules are implemented to generate scenarios

considering concurrency coverage criteria specified by the

tester. With the adaptation of the TSGen tool testing can be

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.5, December2015

43

scheduled earlier which helps in better test planning & also

save the efforts.

4.2 Test case generation considering

various techniques using Activity

Diagrams
In [1] Kumar and Bhatia presented a technique to generate test

case by extracting and combining test cases from various

UML diagrams like class diagram, state diagram, and activity

diagram. The crux of the paper is that the author has

combined the information from multiple diagrams to generate

dynamic test cases. One of the practical and powerful

implications of combining information from multiple artifacts

is that these test cases cover the broader aspect of dynamic

testing. Online Hotel Reservation System is used as a case

study to generate dynamic and efficient test cases covering

both static and dynamic aspects of the software system.

Wang Linzhang et al. [2] have utilized Gray-Box technique

for test cases generation from UADs. Gray-box testing

technique generates test cases by representing the expected

behavior of the system along with the structure of the software

and the high-level design models of the software under

testing. Hence, the advantages of black box testing and white

box testing techniques are exploited by the gray box testing

technique. Basic path coverage criterion is used for the

extraction of test cases and scenarios from the UADs and the

basic condition in this regard is that the loop must be executed

at most once which helps in avoiding path explosion.

Hetal and Shinde [3] proposed the methodology for

minimization of generated test cases. It uses the model driven

testing technique for the optimal test suite generation. This

technique intends to study the changes in the design document

and its impact on the generated test cases resulting in

identifying common and uncommon test cases. Further a

focused study is carried out using uncommon test cases

resulting in better resource utilization. Test cases prioritization

is performed later on using code coverage, time and test effort

required for common and uncommon test cases execution.

Ye et al. [16] have presented an approach based on regression

testing of the SUT using the activity diagram. Various

versions of the same software were analyzed to study the

impact of the different modifications performed in the system

by an automated approach considering different revisions of

the activity diagrams using the path coverage as a coverage

criteria. Execution traces are extracted from the execution of

software. From the execution traces, it revises the activity

diagram and then constructs the new activity diagram

automatically incorporating the revisions in the software. This

not only helps in identifying the affected path but also reflects

the new paths. The major contribution and a comparison with

the existing literature depict the automation of identification

process of changed parts and generation of new test cases for

testing new behaviors.

This paper [6] describes another way of generating test cases

from the UADs by using AC grammar. For the generation of

test case first the UAD is transformed into a grammar called

the activity convert grammar which is then used for the test

cases generation. The AC grammar based technique resulted

in all paths coverage and better performance as compared to

existing techniques. The conversion of the activity diagram

into AC grammar is a three step process. Firstly activity

diagram is converted into Activity Dependence (AD) table,

and then AC grammar is generated from the table which

ultimately results in test case generation. The path coverage

criteria and comparison of the results with path coverage have

been benchmarked by the authors. The results produced

depicted that path coverage technique was unable to detect

errors while their proposed technique detected four design

errors. One limitation with this study is that they have only

tested the results on the simple activity diagram and haven‟t

considered the activity diagrams containing fork, join, and

loops.

Patel & Patil in [7] has made a comparison of the two

techniques proposed for the automatic test case generation

using UADs and presented the results in the form of graphical

analysis. Both concurrent and non-concurrent activities have

been considered by the test case generation technique. In the

proposed solution they have not only covered the loop testing

but also considered the concurrent activities by developing an

innovative test coverage criteria namely activity path coverage

criteria. They have not only utilized both the techniques but

also have made a comparison of the techniques in the form of

a statistical graph of generated test cases from both the

techniques. One technique used in this paper first enriches the

UAD with the test information, which further lead to activity

graph generation from the UAD and further generates the test

cases from the activity graph. Similarly, second technique

utilizes certain variables like TDN, RNN, TDNI, RNNI, etc.,

to extract possible paths. They have implemented both the

algorithms to automatically generate test cases. One of the

basic limitation with this technique is that it only covers the

UAD and considers only one use case at a time and doesn‟t

consider the infinite loop if present in an activity diagram.

Khurana & Saha [18] have made a comparison of five

different techniques of test data generation using activity

diagrams. The five techniques used in this paper for

exploratory study are: (1) test data generation using IOAD

(input-output explicit activity diagram) (2) test data

generation using sub activity diagrams (3) test data generation

using condition classification tree method (4) test data

generation for acceptance testing (5) Enhanced test case

generation technique. They have made the comparative study

of these techniques on shipping company example. In

techniques 1 and 4 the major emphasis is on the user‟s

perspective meaning what user expects from the system.

When the test data is extracted from the activity diagram then

the technique 2 is beneficial whereas when there are complex

activity diagrams for a system then the number of test cases

generated is almost equivalent to the test case generated

through techniques 1 & 3. As a comparative case with other

approaches, technique 5 takes a lot of time because of the

involvement of tables, graphs and conversions in it. However,

the fifth technique results in a reduction of test cases in case

of complex activity diagrams involving loops when compared

with other techniques.

The technique presented in paper [20] converts the UAD into

an IOAD (input-output explicit activity diagram) that focuses

on the external interaction of the system and ignores internal

processing activities. It is used to derive test paths based on

the inputs/outputs given/received from the user because tester

rarely knows about the internal processing of the system being

tested. Using this strategy and all-path as the coverage

criterion all the interactions are exercised for appropriate

functioning. This technique deals with activity diagram from

user‟s perspective. It is also observed that technique focuses

on concurrent situations only. This technique concerns about

the input to, and the output from the system and internal

processing of the system is completely ignored.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.5, December2015

44

This paper [21] presents a technique that analyzes an activity

diagram and looks for activities that are not individual

activities rather a name for the group of activities and can be

expanded as a separate activity diagram. This new activity

diagram is inclusive in the previous one therefore called as the

sub-activity. Using this sub super activity relation fine details

in an activity diagram can be tested where any particular

activity performs a complete function. This technique uses

path coverage with round-robin strategy for sub-activities

included in the super activity diagram so that all combinations

of paths are avoided rather only valid and executable

combinations are taken.

This technique [22] uses all the conditional branches in

finding out which branches of the conditions of UAD are

covered by which of the test cases by using a minimal test

suite. Conditions (diamonds) in the diagram are used to find

out minimal test suite that covers all conditional branches.

This technique gives immediate importance to internal

conditions and branches that will be followed with the given

input test data.

4.3 Articles involving the test case

minimization techniques using UML

Activity Diagrams
In this section, we present the test case prioritization

approaches using UADs considering that testing performed in

an optimized manner not only results in cost and time

reduction but also facilitates in end user requirement

satisfaction in an effective and efficient fashion.

In paper [9], Sabharwal et al. presented a test case generation

process based on Genetic Algorithm for the test path

prioritization which must be tested first. In this regard, they

have used both UML Activity and sequence diagrams for

extracting the test paths. The proposed approach makes use of

concepts of information flow (IF) model, Genetic Algorithm

(GA), and stack based techniques to identify the critical path

clusters. The application of genetic algorithms resulted in

optimization and improvement in the efficiency of testing

process. A stack-based approach is considered to assign

weights to different nodes of the activity diagrams &

incorporating the modifications in the testing requirements.

For this sake, they have made use of FAN-IN and FAN-OUT

techniques. Later by using the weights assigned they have

calculated the strength and complexity profile of each test

sequence generated and ultimately test paths are prioritized

with the higher strength and complexity. In the study, they

found that the proposed technique proved to be significant in

fault location identification during implementation resulting in

test effort reduction. One of the limitations of the study is that

the proposed technique has not been tested for the complex

scenarios.

An approach, for test cases integration and prioritization has

been proposed by Swain et al. [12] from UML activity and

communication diagram to generate cluster level test cases.

They have introduced an intermediate tree representation

named COMMACT tree built from the communication and

activity diagrams. Then a traversal of COMMACT tree results

in extraction of the test cases considering not only simple

predicates but also the conditional predicates. The approach

produced a prioritization metric considering method activity

sequence and associated artifacts under guard conditions.

Their approach resulted in non-redundant and prioritized test

scenarios along with adequacy test coverage.

In this paper, an attempt has been made to generate optimized

(best fitted) and prioritized test cases from both activity &

collaboration diagram using the constrained based genetic

algorithms. In the proposed system, they have made use of

combinatorial optimization technique by making an amalgam

of transition coverage with the genetic algorithms. The core

theme of the C-GA is that it takes all the possible values as

input and then to minimize the input domain constrained

genetic algorithm is applied. Further by using fitness function

optimal test set is extracted. The fitness function assigns a

weight to each and every event in the input domain and more

weight is assigned to those events that have more decision

points i.e., branches. As a basic principle to minimize the

number of errors in the test case generation they have also

proposed an error minimization technique.

Jena et al. [14] presented a test cases prioritization technique

using UADs by using the genetic algorithms. This technique

first converts the UAD into activity flow table which is further

converted into an activity flow graph. Up till this point, this

approach uses the common techniques because a lot of

techniques talk about the transition of activity diagram into a

graph. Activity coverage criterion has been used in this article

for the traversal of flow graph extracted from the activity

diagram for test cases generation using the depth-first search

method by involving activity diagrams from multiple

domains. Furthermore, generated test cases are optimized

using a simple genetic algorithm which reduces the number of

test cases generated. A comparison of proposed technique

with state-of-the-art describes this technique also take

conditions, interactions, concurrent paths and asynchronous

activities into consideration. In their future work they want to

automate the proposed approach and also want to make an

exploratory study by applying this technique on other UML

design diagrams.

In [15] a technique has been proposed for test set

prioritization based on the structural artifacts on the UML

activity diagrams. In this technique, the UAD is first

converted into a tree structure. Then a weight is assigned to

each branch of the tree on the basis of the probability of defect

occurrence and the complexity of the each branch of the

extracted tree. This technique not only covers the simple

aspect of activity diagrams but also considers the fork and join

constructs by assigning them the highest weight and priority.

An approach for the prioritization of test case is proposed by

Fernandez and Misra [17] using software risk information.

Firstly different risk factors were identified that can affect the

software and then the other factors that can affect the risk

factors were extracted. Further, the experimental study was

conducted involving more than one hundred IT professionals

for the validation of the proposed method. The proposed

method helped in rearranging the test effort by taking into

consideration the risk assumed by the end user considering

risk factor. One of the practical implications of the proposed

approach is that it can help in improving the efficiency &

effectiveness when applied to complex and real projects.

5. EVALUATION OF TEST CASE

GENERATION TECHNIQUES
The existing state of the art techniques utilize different

additional methods for the test cases generation from the

UAD and most commonly used methods are trees, graphs,

genetic algorithms (GA), labeled transition systems (LTS) and

finite state machines (FSM). From the systematic literature

review of the testing techniques, it is established that a few of

the techniques focus on resolving the problem of generation

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.5, December2015

45

of redundant paths during generation of test cases from the

UADs. Mostly in the existing techniques behavioral diagrams

are used which have an associated drawback of limited test

coverage and some result in redundant test cases with less test

coverage. The techniques mostly generate a large number of

test sequences and test cases for achieving a good result.

There is still a gap of the automation of the testing process

from the UML activity diagrams, most of the techniques are

not automated, some have a few aspects of the process

automated and some utilize the information from other UML

diagrams to complete the test case generation process. Some

approaches have described the theoretical aspects of the

process with a few examples and case studies. However, the

proposed approaches generate test cases for all the types of

the testing (white box, black box & gray box) and ascertaining

almost all the levels of testing.

6. CONCLUSION
In this literature review, we have explored the different state

of the art techniques utilizing UADs for the generation of test

cases. We have categorized the reviewed techniques into

automated and semi-automated techniques involving different

testing approaches like gray-box, model driven and

integration testing. Further, we have also reviewed the

techniques used for test case optimization and prioritization

using UAD. For most of the test case prioritization

techniques, genetic algorithms are used. In most of the

studies, activity diagrams are first converted into some

intermediate state which is further converted into a graph or

tree to generate the test cases. Different coverage criterion has

been used by different techniques for the generation of test

cases and their optimization. The analysis of the literature

depicts that much of the existing work has been highly

concentrated on the simple UML activity diagrams and a few

of the studies have talked about complex UAD involving the

adaptation of concurrency, joins, forks, and loops. To

conclude it can rightly be said that there is still a room for

automatic test case generation from UAD combining multiple

coverage criterions and considering complex activity

diagrams.

Table 2: A comparison of different techniques

Technique Testing Aspect Testing

Technique

Case Study Test Criteria based on

Activity Diagram

Kumar and Bhatia

(2012)

Test Case

Generation

___ Hotel

Reservation

System

Pre-Condition, Post Condition,

Guard Condition

Linzhang et al (2004) Test Case

Generation

Gray Box

Testing

Technique

(DFS)

ATM Basic Path Coverage Criterion

Hetal and Shinde

(2014)

Test Case

Generation and

Minimization

Model Based

Testing

Technique

Hall Booking ___

Mingsong et al. (2007) Test Case

Generation

Program

Execution

Traces

JAVA

Applications

Activity, Transition and

Simple Path Coverage

Chen et al. (2007) Test Case

Generation

Black Box On-line stock

exchange system

Yes (all)

Pechtanun &

Kansomkeat (2012)

Test Case

Generation

AC grammar NO Path Coverage

Patel & Patil (2013) Test Case

Generation

Model Based

Test case

generation

Technique

JAVA

Implementation

Activity path coverage, Loop

coverage and Concurrent

Activities

Verma & Arora (2014) Test Sequence

Generation

XML NO Path coverage criteria

Sabharwal et al. (2011) Test Case

Prioritization

Genetic

Algorithm

Student

Enrolment system

Path coverage criteria

Sapna & Mohanty

(2008)

Test Scenario

Generation

Domain

Dependency

NO Activity, Transition & path

adequacy criteria

Biswal et al. (2011) Test Case

Prioritization &

Optimization

Constrained

Genetic

Algorithm

ATM cash

withdrawal

Transition Coverage Criteria

Jena et al. (2014) Test Case

Optimization

Genetic

Algorithm

ATM Withdrawal

system

Activity Coverage Criteria

Ye et al. (2012) Test Case

Generation

Integration

Testing

Online stocking

exchange

system(OSES)

Path Coverage Criteria

Andreas Heinecke

(2010)

Test Case

Generation

Applied

Modified Depth-

First-Search

Algorithm

Traveler problem

All path coverage criterion

Biswal (2008) Test Case Depth first ATM Path Coverage Criteria

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.5, December2015

46

 (2008) Generation search

Philip Samuel (2009) Test Case

Generation

Grey Box ATM Path Coverage Criteria

Kim et al. (2007) Test Case

Generation

I/O explicit

Activity

Diagram (IOAD)

Order Processing

System

Path Coverage Criteria

Boghdady et al. (2011) Test Case

Generation

Activity

Dependency

Graph (ADG)

ATM All branch,

All predicate, All basis path

coverage criteria

Table 3: A comparison of different techniques (PROS & CONS)

Technique Technique Advantages Disadvantages

Sun Transformation-based

approach

Considers conditional activities along

with parallel activities of system

under testing for test case generation.

It ignores the loop conditions which requires

that some activities must be repeated satisfying

a particular condition.

Kim et al. I/O explicit Activity

Diagram (IOAD)

It controls the redundant test case

generation by overwhelming the

internal input and output events.

Test cases are generated by using basic path

coverage criterion and consider only the single

occurrence of each activity. This will result in

the execution of the activities in the loop only

once. This technique will also remove the

redundant edges and nodes while intending to

generate the representative paths from the

basic paths.

Fan et al. Integration testing

(Bottom-up strategy)

& (round-robin

strategy),

Functional

decomposition

Due to Round robin strategy this

technique generated the least number

of test cases when it is compared

with the other techniques.

As this technique transforms the each activity

into a sub activity which results in increase in

the number of test cases generated as

compared to other techniques.

Swain et al. COMMACT tree Combines the data from both UML

Activity and Sequence Diagram

which results in detection of fault

from both the diagrams.

Redundant test cases generation

Boghdady et al. Branch coverage

criterion and Depth

First Search (DFS)

traversal technique

Incorporates the hybrid coverage

criterion

Covers all the conditions, branches

and basic paths however loops are

considered only zero or one times

The basic drawback associated with this

technique is that it considers the execution of

loops at most once.

Wang et al. Table representation

DFS algorithm

Generates the test cases directly from

UADs

Completely based on UML models

Mostly automated

Simple fork-join

Pechtanun &

Kansomkeat

AC Grammar Helps in better identifying the

dependency between activities.

Results have been tested on the simple activity

diagram

Didn‟t consider activity diagrams containing

fork, join and loops.

Boghdady et al. Activity Dependency

Graph (ADG)

Activity Dependency

Table (ADT)

Cyclomatic

Complexity

Test coverage criteria covers all the

types of nodes like decision, fork,

merge, join, activity and object nodes

and also covers the conditional

threads and loops.

It executes the loop activities only once.

7. REFERENCES
[1] Kumar, R., & Bhatia, R. K. (2012). Interaction Diagram

Based Test Case Generation. In Global Trends in

Information Systems and Software Applications (pp.

202-211). Springer Berlin Heidelberg.

[2] Linzhang, W., Jiesong, Y., Xiaofeng, Y., Jun, H.,

Xuandong, L., & Guoliang, Z. (2004, November).

Generating test cases from UML activity diagram based

on gray-box method. In Software Engineering

Conference, 2004. 11th Asia-Pacific (pp. 284-291).

IEEE.

[3] Ms. Hetal J. Thanki, Prof. S.M.Shinde. "Test Case

Generation and Minimization using UML Activity

Diagram in Model Driven Environment", International

Journal of Computer & organization Trends (IJCOT), V9

(1):41-44 June 2014.

[4] C. Mingsong, Q. Xiaokang, and L. Xuandong,

“Automatic Test Case Generation for UML Activity

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.5, December2015

47

Diagrams”, In Proc. of the International Workshop on

Automation of software test, pp. 2-8, 2006.

[5] Chen, M., Qiu, X., Xu, W., Wang, L., Zhao, J., & Li, X.

(2009). UML activity diagram-based automatic test case

generation for Java programs. The Computer

Journal, 52(5), 545-556.

[6] Pechtanun, K., & Kansomkeat, S. (2012, June).

Generation test case from UML activity diagram based

on AC grammar. In Computer & Information Science

(ICCIS), 2012 International Conference on (Vol. 2, pp.

895-899). IEEE.

[7] Patel, P. E., & Patil, N. N. (2013, April). Testcases

Formation using UML Activity Diagram.

In Communication Systems and Network Technologies

(CSNT), 2013 International Conference on (pp. 884-

889). IEEE.

[8] Verma, V., & Arora, V. (2014, May). A novel approach

for automatic test sequence generation for java fork/join

from activity diagram. In Advanced Communication

Control and Computing Technologies (ICACCCT), 2014

International Conference on (pp. 1611-1615). IEEE.

[9] Sangeeta Sabharwal, Ritu Sibal and Chayanika Sharma,

“Applying Genetic Algorithm for Prioritization of Test

Case Scenarios Derived from UML Diagrams”, IJCSI

International Journal of Computer Science Issues, Vol. 8,

Issue 3, No. 2, May 2011.

[10] Sapna, P. G., & Mohanty, H. (2008, December).

Automated Scenario Generation Based on UML Activity

Diagrams. In Information Technology, 2008. ICIT'08.

International Conference on (pp. 209-214). IEEE.

[11] Sun, C. A., Zhang, B., & Li, J. (2009, August). TSGen:

A UML Activity Diagram-Based Test Scenario

Generation Tool. In Computational Science and

Engineering, 2009. CSE'09. International Conference

on (Vol. 2, pp. 853-858). IEEE.

[12] Swain, R. K., Panthi, V., Mohapatra, D. P., & Behera, P.

K. (2014). Prioritizing test scenarios from UML

communication and activity diagrams. Innovations in

Systems and Software Engineering, 10(3), 165-180.

[13] Biswal, B. N., Nanda, P., & Mohapatra, D. P. (2010). A

Novel Approach for Optimized Test Case Generation

Using Activity and Collaboration Diagram. International

Journal of Computer Applications, 1(14), 67-71.

[14] Jena, A. K., Swain, S. K., & Mohapatra, D. P. (2014,

February). A novel approach for test case generation

from UML activity diagram. In Issues and Challenges in

Intelligent Computing Techniques (ICICT), 2014

International Conference on (pp. 621-629). IEEE.

[15] Sapna, P. G., & Mohanty, H. (2009, July). Prioritization

of scenarios based on UML Activity Diagrams.

In Computational Intelligence, Communication Systems

and Networks, 2009. CICSYN'09. First International

Conference on (pp. 271-276). IEEE.

[16] Ye, N., Chen, X., Ding, W., Jiang, P., Bu, L., & Li, X.

(2012, July). Regression Test Cases Generation Based on

Automatic Model Revision. In Theoretical Aspects of

Software Engineering (TASE), 2012 Sixth International

Symposium on (pp. 127-134). IEEE.

[17] Fernandez-Sanz, L., & Misra, S. (2012). Practical

Application of UML Activity Diagrams for the

Generation of Test Cases. Proceedings of the Romanian

Academy, Series A, 13(3), 251-260.

[18] Khurana, R., & Saha, A. (2012). Empirical Comparison

of Test Data Generation Techniques using Activity

Diagrams. International Journal of Computer

Applications, 51(7), 13-19.

[19] Kansomkeat, S., Thiket, P., & Offutt, J. (2010, October).

Generating test cases from UML activity diagrams using

the Condition-Classification Tree Method. In Software

Technology and Engineering (ICSTE), 2010 2nd

International Conference on (Vol. 1, pp. V1-62). IEEE.

[20] Hyungchoul Kim, Sungwon Kang, Jongmoon Baik,

Inyoung Ko , “Test Cases Generation from UML

Activity Diagrams”, Eighth ACIS International

Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed

Computing, 2007. SNPD 2007, VOL 3 pp. 556-561.

[21] Xin Fan, Jian Shu, LinLan Liu, QiJun Liang, “Test Case

Generation from UML Sub-activity and Activity

Diagram”, 2009 Second International Symposium on

Electronic Commerce and Security(ISECS „09) , VOL 2,

pp. 244-288.

[22] Supaporn Kansomkeat, Phachayanee Thiket Jeff Offutt,

“Generating Test Cases from UML Activity Diagrams

using the Condition-Classification Tree Method”, 2010

2nd International Conference on Software Technology

and Engineering(ICSTE), pp. V1-62 – V1-66.

[23] Pakinam N. Boghdady, Nagwa L. Badr, Mohamed A.

Hashim, Mohamed F. Tolba , „An Enhanced Test Case

Generation Technique Based on Activity Diagrams”,

2011 International Conference on Computer Engineering

& Systems (ICCES), pp. 289-294.

IJCATM : www.ijcaonline.org

