
International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

44

Implementing Lossy Compression Technique for Video

Codecs

Islam Mohammad Saif
Department of Electronics and Communications, Ain

Shams University

Abdelhalim Zekry
Department of Electronics and Communications, Ain

Shams University

ABSTRACT

This paper provides an overview of the transform and

quantization operations in H.264 lossy coding techniques. It

declares the detailed simplification process for arithmetic

operations included in the implementation for the 4x4 AC and

the 2x2 & 4x4 DC luma and chroma blocks applying fast

DCT Butterfly implementation method for the AC component

and the effective Hadamard Transform implementation for the

DC components, in addition to the quantization process

procedure. However, this paper main aim is to provide a

complete software design and implementation for the decoder

process as defined in the ITU-T standard release 2011,

besides, it defines a proper way for implementing the encoder

process according to the defined decoder procedure defined in

the ITU-T Standard.

General Terms

H.264/AVC transform and quantization, video lossy

compression

Keywords

H.264, AVC, DCT, Hadamard, Butterfly, Quantization, AC,

DC

1. INTRODUCTION
Images and video coding techniques have been updated over

the last years very widely due to the dramatically updates in

the image quality, so the need for updating coding techniques

became a must. It has been updated from MPEG-1, MPEG-2,

H.261, and H.263 until the H.264 rose up to be the most

usable technique for the high quality imagery data

transmission. According to the image nature, as the image and

video quality increases, the frame storage area increases. So,

an urgent need for a new technique for image and video

compression came up in order to reduce the storage

consumption, also, the reduction in the transmission

bandwidth needed to transmit the image or video data.

H.264/AVC was developed by Joint Video Team (JVT),

which was formed by the ISO/IEC Moving Picture Expert

Group (MPEG) and the ITU-T Video Coding Expert Group

(VCEG) [1][2]. Since this time, H.264 came up to be the most

used technique in high quality imagery data. This is due to the

great reduce in the imagery processing time as it depends on a

4x4 blocks instead of 8x8 blocks in previous models. Also, it

depends on the fast DCT implementation using the Butterfly

method. Most of the papers done before declared either a way

to reduce the PSNR without implementation, declaring the

encoder idea without actual simulation for the process overall.

Also, most of the previous papers aim is to declare the ITU-T

release 2003 version.

The 4x4 H.264 forward matrix transformation in the Encoding

process is called the core integer transformation operation.

This operation depends on the core transform equation

“CXCT”, where X is the input frame residual matrix, C is the

core transform matrix and CT is its transpose. [7]

1 1 1 1

2 1 1 2

1 1 1 1

1 2 2 1

C

 
 

 
 
  
 

  

This operation consumes 128 multiplications & 96 additions,

comparing to those of the 8x8 H.263 implementation which

has 1024 multiplications & 896 additions, so it dramatically

reduces the computing and so the processing time. The

processing time is further reduced using the fast 4x4 DCT

Butterfly implementation technique which eliminates the use

for multiplication and replaces it by only addition, subtraction

and logical shifting operations only (This applies on the

FPGA implementation which uses the binary coding

technique).

In the decoding process, the 4x4 H.264 inverse matrix

transformation is called the core integer inverse

transformation operation. This operation depends on the core

inverse transform equation “CiYCi
T”, where Y is the received

matrix, Ci is the core inverse transform matrix and Ci
T is its

transpose.[7]

1 1 1 1/ 2

1 1/ 2 1 1

1 1/ 2 1 1

1 1 1 1/ 2

iC

 
 

 
 
  
 

  

Each 4x4 input block contains the high frequency data called

“AC” portion of the block, and the low frequency data called

“DC” portion of the block. According to the human visual

system (HVS), the human eye is more sensitive to the low

frequency data that the high frequency data [10]. So, in order

to conserve most of the information included in the block, DC

portion must be drawn from the frame and coded separately.

However, this DC data must have the least processing time

and resource consumption to minimize the overall operation

latency. The DC content is the first element in the input 4x4

matrix (element (0, 0)).

There are three types of image coding in the prediction and

motion estimation stage (before this compression stage),

4:4:4, 4:2:2, 4:2:0. All defines the size of the chroma macro

block which defines the whole frame specifications. In this

paper, the used technique is 4:2:0, in which the luma block is

16x16 elements, while chroma block is 8x8 elements. So, DC

data will form 4x4 matrix for the luma macro Block and 2x2

matrix for the chroma macro Block.[2][7]

As the DC block contains most of the information in the

frame, so it is coded separately using the Hadamard transform

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

45

technique which applies the following equation “HXDCHT”,

where H is the Hadamard Core Transform matrix[1][2]

1

1 11

1 12
H

 
  

 

2

1 1 1 1

1 1 1 11

1 1 1 12

1 1 1 1

H

 
 

 
 
  
 

  

where, H1 is the Hadamard transform matrix for the 2x2

chroma macro block and H2 is the Hadamard transform matrix

for the 4x4 luma macro block. The DCT and Hadamard

transformation stage main purpose is to minimize the

dependency for the compression process on the quantization

step. The quantization process introduces the idea of possible

signal loss for better compression efficiency. There are

different quantization techniques for AC component other

than the DC component.

All of the previously discussed issues was implemented using

matlab and simulink software. The main goal in implementing

the software step is to test the design operation and the idea on

how the processing time is minimized. The core idea is to

reduce the transform matrix intense multiplication steps into

just element by element simple multiplication, and even

converting multiplication into addition stages in order to save

resources. The software implementation using matlab and

simulink codes will be declared in details in the following

sections.

2. TRANSFORM CODING
The main purpose for the transform coding stage is to reduce

the overhead for the quantization step. Transform coding

portion is the most resources and time consuming portion of

the whole lossy encoding operation, this is why several

process reduction techniques have been applied to reduce the

calculations processing time with maintaining the

transformation accuracy. The whole 4x4 input matrix is

transformed using the DCT technique, then the DC portion of

the block is separated. AC component is quantized in order to

improve the compression technique efficiency, however, the

DC component is further transformed and quantized

separately in order to maintain its information as it contains

most of the frame information. The following blocks

illustrates this operation:

Fig 1: Lossy encoder block diagram

Fig 2: Lossy decoder block diagram

The ITU-T standard reference only illustrates the decoding

technique, this paper clarifies a method to encode input signal.

2.1 4x4 DCT block forward transform
This procedure takes place in the encoder side. The transform

operation idea is to eliminate the dependency of the

compression operation on the quantization only by

decomposing the signal using the discrete cosine transform

(DCT) technique. The transformation process is performed

according to the equation CXCT, where C is the core forward

transformation matrix and X is the input signal matrix. So the

equation implementation will be as follows: [2] [7]

1 1 1 1 1 2 1 1

2 1 1 2 1 1 1 2

1 1 1 1 1 1 1 2

1 2 2 1 1 2 1 1

T
X

CXC

     
     

   
     
        
     

        

This is a 3 4x4 matrix multiplication of about 128

multiplications & 96 additions in the whole process which is a

great time and resources consumption [11]. However, the

DCT core operation could be simplified using the butterfly

method. The butterfly method converts the 3 stages 4x4

matrices multiplication operations into just addition,

subtraction and shifting (in FPGA implementation, in integer

coding it is multiplication by 2), it also converts the 2-D

matrix multiplication into two stages 1-D matrix operation. Its

idea of operation is as follows: [5] [6]

Fig 3: Forward 1-D Butterfly implementation

where, X0 to X3 are the 4x4 matrix 4-row elements and Y0 to

Y3 are the corresponding transformed 4-elements

respectively. B0 to B3 and Y0 to Y3 are defined as:

B0=X0+X3 Y0=B0+B1

B1=X1+X2 Y2=B0-B1

B2=X1-X2 Y1=B2+ (B3<<1)

B3=X0-X3 Y3=B3- (B2<<1)

Note that the “<<” sign refers to the shifting process which

compensate the multiplication process (e.g. 3 is represented in

binary as 0011, 3*2=6 which is represented in binary as 0110,

so by shifting 0011 to the left by one bit the number is

multiplied by 2). This operation is done row by row, so the

operation is no more a complex 2-D matrix multiplication any

more, it is now a simple 1-D matrix operation. The overall

row by row process is illustrated as follows:

(2.1)

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

46

Fig 4: Fast DCT implementation block diagram

So, the input matrix is transposed, then the row by row

transformation takes place. At last the resulting matrix is

further transposed, then again transformed.

2.2 4x4 DCT block inverse transform
This procedure takes place in the decoder side, which is the

portion that is declared in the ITU-T standard and from which

the encoding technique was estimated. Accordingly, the

transform operation also relies on the core inverse transform

equation “CiYCi
T “. So the equation implementation will be as

follows: [9]

1 1 1 1/ 2 1 1 1 1

1 1/ 2 1 1 1 1/ 2 1/ 2 1

1 1/ 2 1 1 1 1 1 1

1 1 1 1/ 2 1/ 2 1 1 1/ 2

T

i i

Y
C YC

     
     

   
     
        
     

        

Again, the Butterfly method could be applied on the decoder

side as an inverse butterfly method as follows:

Fig 5: Inverse 1-D Butterfly implementation

where, Y’0 to Y’3 are the received 4-elements row of the 4x4

matrix after forward quantization process, and X’0 to X’3 are

the corresponding recovered elements. B’0 to B’3 and X’0 to

X’3 are defined as follows:

B’0=Y’0+Y’2 X’0=B’0+B’3

B’1=Y’0-Y’2 X’1=B’1+B’2

B’2= (Y’1>>1) –Y’3 X’2=B’1-B’2

B’3=Y’1+ (Y’3>>1) X’3=B’0-B’3

Note that the “>>” sign refers to the shifting process which

compensate the division process (e.g. 6 is represented in

binary as 0110, 6/2=3 which is represented in binary as 0011,

so by shifting 0110 to the right by one bit the number is

divided by 2). This will also be applied to the same operation

as Fig.4.

2.3 2x2 and 4x4 DC block Hadamard

transform
DC component is the low frequency component of the block,

the human visual system (HVS) is more sensitive to the low

frequency frame component than the high frequency

component as mentioned before. So, the DC component is

further transformed using the Hadamard transform technique,

also it is separately quantized and transmitted. The Hadamard

transform forward and inverse operations are identical, this is

because the core Hadamard transform matrix and its transpose

are identical (H=Hi=HT). The Hadamard transformation

operation follows the equation “HXDCH”.

The equation implementation for 4x4 DC component and 2x2

DC component respectively is: [1]

2 2

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1
/ 4

1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

DC

DC

X
H X H

    
    

   
    
       
    

        

1 1

1 1 1 1
/ 2

1 1 1 1

DC

DC

X
H X H

    
     

     

The butterfly method can also be applied to Hadamard

transform equations. However this time there is no values in

the Hadamard transform matrix other than 1 or -1, so the

butterfly method contains only additions and subtractions

only.

The 2x2 DC Hadamard transform method could be applied

(without the division by 2 step) using the following technique:

Fig 6: 2x2 Fast Hadamard Transform Butterfly Method

The 4x4 DC Hadamard transform method could be applied

(without division by 4 step) using the following technique:

Fig 7: 4x4 Fast Hadamard Transform Butterfly Method

As noticed, there is no operations other than addition and

subtraction only. So the operation is widely simplified.

3. QUANTIZATION
The Integer AC & DC frame components are quantized in

order to eliminate the least important data to achieve the

highest compression efficiency. H.264 quantizer is defined to

be a scalar quantizer which maps every input sample into a

corresponding output one. The big challenges facing the

forward and inverse quantizers are:

a. Eliminating the division processes

b. Avoiding floating point arithmetic operations

(2.2)

(2.4)

(2.5)

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

47

c. Applying the post and rescaling matrices

d. Determining the proper quantization parameter (QP)

The AC component is quantized in a special technique, while

the DC component is quantized by another technique. This is

due to the difference in the sensitivity between AC and DC

components. The ITU-T also provides only inverse

quantization technique for the decoder portion of the

operation. The quantization operation is very dependent on

the QP value which varies from 0 to 51. Its value is

determined variably according to the type and the amount of

information contained in the frame. It also varies between the

luma and chroma frame components, it even varies between

the AC and DC components within the same block.

3.1 4x4 AC inverse quantization
 The main inverse quantization equation is: [2] [7]

Y’=Z’.Qstep

where, Y’ is the inverse quantized data and Z’ is the received

data. What should be done in this stage is to re-scale the

received data in order to prepare it to the transformation stage

to sustain the most proper recovered data in the received

signal, also the equation should be simplified in order to

minimize the processing consumption portions such as

multiplication and division. So, the previous equation is

simplified according to the following graph

Fig 8: Inverse quantization simplification procedure

where, Y’ is the received data and Z’ is the recovered data,

IDCT is the full transformation operation without

simplification, Ci is the core inverse transformation operation

defined in equation 2.2, Si is the rescaling matrix, Qstep is the

quantization step size and VF is defined according to fig 8 as

VF=Qstep.Si.26

also Si is defined as

Qstep is very dependent on QP value. There is a different

Qstep value for every QP value. Qstep value doubles every

increase in the QP value by 6 which is illustrated in the

following table

Table 1. Qstep values vs. QP

QP Qstep QP Qstep

0 0.625 … …

1 0.6875 18 5

2 0.8125 … …

3 0.875 24 10

4 1 … …

5 1.125 30 20

6 1.25 … …

7 1.375 36 40

8 1.625 … …

9 1.75 42 80

10 2 … …

11 2.25 48 160

12 2.5 … …

… … 51 224

Respectively, VF is derived according to fig 8 from the

following equation

VF~ Si.Qstep.26

and is defined in the ITU-T standard referring to QP values as

Table 2. VF values according to the QP Values

QP

Positions

(0,0), (0,2), (2,0),

(2,2)

Positions

(1,1),(1,3),(3,1),

(3,3)

Other

Positions

0 10 16 13

1 11 18 14

2 13 20 16

3 14 23 18

4 16 25 20

5 18 29 23

In order to provide a complete simplified form for the inverse

quantization equation, the ITU-T standard provides the

following procedure [1]

dij=(cij.LevelScale(QP%6,i,j)) <<(QP/6 - 4), for QP>=24

dij=(cij.LevelScale(QP%6,i,j)+(1<<(3-QP/6)))>>(4 – QP/6)

 ,for QP<24

where, dij is the inverse quantized data which is defined

previously as Y’, cij is the received data which is defined

previously as Z’, the “<<” sign refers to the shifting process

which compensate the multiplication process (e.g. 3 is

represented in binary as 0011, 3*2=6 which is represented in

binary as 0110, so by shifting 0011 to the left by one bit the

number is multiplied by 2) and the “>>” sign refers to the

shifting process which compensate the division process (e.g. 6

is represented in binary as 0110, 6/2=3 which is represented in

binary as 0011, so by shifting 0110 to the right by one bit the

number is divided by 2). The LevelScale is defined as

LevelScale(QP%6,i,j)=weightScale(i.j).v(QP%6,n)

where the weightScale is=24=16 and v(QP%6,n) is the VF

factor defined in table 2. The weightScale value importance is

mainly in high profile imagery data, however, in this paper the

main goal is to implement the ordinary imagery types, as the

weightScale step is compensated in the inverse quantization

equation by the shifting by 4 step (<<4 and >>4), so both

could be eliminated from the equations. So the final inverse

quantization equation becomes [7]

Y’=Z’.VF/2floor(QP/6)

The Y’ output is inverse transformed by equation 2.2 and

rounded by the following equation according to the standard

Rij=(hij+25)>>6

where, rij is the recovered data and hij is the transformed data,

this operation is equivalent to dividing by 26 and flooring the

resulted data.

(3.1)

(3.2)

2 2

2 2

2 2

2 2

a ab a ab

ab b ab b
Si

a ab a ab

ab b ab b

 
 
 


 
 
  

(3.4)

(3.5)

(3.6)

(3.7)

(3.3)

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

48

3.2 4x4 AC forward quantization
The core quantization operation follows the following

equation [2] [7]

Z=round(Y/Qstep)

where, Z is the quantizer output, Y is the transformed 4x4 AC

integer block matrix and Qstep is the quantization step size

which is very dependent on QP value as discussed before. In

order to simplify the operation and eliminate the Qstep

fraction calculations, the core equation is transformed into a

different form which follows the following procedure:

Fig 9: Quantization simplification procedure

where, DCT is the full discrete cosine transform operation

without simplification, Cf is the core transform operation

declared in equation 2.1, Sf is the post scaling factor which is

the result of the transformation simplification operation and

has the value of

where, 𝑎 =
1

2
 , 𝑏 =

2

5
 . MF is defined according to table 3 as

follows

Table 3. MF values according to the QP Values

QP

Positions

(0,0), (0,2), (2,0),

(2,2)

Positions

(1,1),(1,3),(3,1),

(3,3)

Other

Positions

0 13107 5243 8066

1 11916 4660 7490

2 10082 4194 6554

3 9362 3647 5825

4 8192 3355 5243

5 7282 2893 4559

The data in the table was derived from the fact that

MF~Sf.(215/Qstep)

Referring to the VF and combining with equation 3.3, MF will

be defined as

MF~Sf.Si. (215/VF)

which is the actual equation from where the MF value was

derived from. Referring to the fact that Qstep is doubled for

every increase in QP value by 6, so the final forward

quantization equation becomes [7]

Z=round((Cf.MF)>>(15+floor(QP/6)))

3.3 4x4 Luma DC forward quantization
According to the forward AC quantization model, all of the

implemented procedure remains the same, but there will be a

slight change in the equation. Besides, the DC component is

always allocated in the (0, 0) place in the frame, so the values

of the MF factor will be only MF (0, 0). All of the rest factors

remains the same. So, the 4x4 DC forward quantization core

equation becomes [7]

ZDC=round ((YDC>>((QP/6)-6)).(MFDC(0,0)>>10)), for QP>=36

ZDC=round (((YDC<<(6-(QP/6))) -

 (1<<(5-(QP/6)))).(MFDC(0,0)>>10)), for QP<36

All the previous variables is defined according to the 4x4 AC

forward quantization model, and MFDC is defined according to

the following table

Table 4. MFDC values according to the QP Values

QP

Positions

(0,0), (0,2), (2,0),

(2,2)

Positions

(1,1),(1,3),(3,1),

(3,3)

Other

Positions

0 100 63 77

1 91 56 71

2 77 50 63

3 71 44 56

4 63 40 50

5 56 35 44

The MFDC value was derived from the following equation

MFDC=round ((1/VF).1000)

and the multiplication by 1000 is to eliminate the fractional

part of the operation and eliminate the need for the division

operation, also this part is compensated by the shifting

operation (>>10) which is equivalent to dividing by 1024.

3.4 4x4 Luma DC inverse quantization
According to the inverse AC quantization model, again all the

implemented procedures are the same, but also with the

changes in the equation. Also the VF factor will be only for

VF (0, 0). Everything else remains the same. So, the 4x4 DC

inverse quantization core equation becomes: [1]

YDC=round (ZDC.VF(0,0))<<((QP/6)-6), for QP>=36

YDC=round (((ZDC.VF(0,0))+(1<<(5-QP/6))))>>(6-(QP/6))

 , for QP<36

All the previous variables is defined according to the 4x4 AC

Inverse quantization model.

3.5 2x2 Chroma DC forward quantization
The forward quantization model for the 2x2 chroma DC

quantizer model is exactly the same as the 4x4 luma DC

model which is

ZDC=round ((YDC.MFDC(0,0))>>(5+(QP/6)))

There is no difference at all in the values.

2 2

2 2

2 2

2 2

2 2

2 4 2 4

2 2

2 4 2 4

ab ab
a a

ab b ab b

Sf
ab ab

a a

ab b ab b

 
 
 
 
 

  
 
 
 
 
  

(3.14)

(3.15)

(3.8)

(3.12)

(3.9)

(3.10)

(3.11)

(3.13)

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

49

3.6 2x2 Chroma DC inverse quantization
The inverse quantization model for the 2x2 chroma DC have a

slight differences than the 4x4 luma DC model. The core 2x2

chroma DC inverse quantization model equation becomes [1]

YDC=round (((ZDC.VF(0,0))<<(QP/6))>>5)

All the variables and values are defined as before.

4. IMPLEMENTATION
The whole encoder and decoder operation was implemented

using the matlab software as a code and simulink software as

a functional blocks. The following sections will discuss the

full operation in details.

4.1 Encoder implementation

4.1.1 Matlab implementation
The encoder matlab implementation is a full implementation

for the encoder operation including the forward block

transform, DC component extraction, AC component

quantization and DC component transformation and

quantization prior to forwarding it to the next stage (entropy

lossless encoding). The matlab implementation could be

summarized according to the following flow chart:

Fig 10: Full Transform – Quantization Encoder Block

Diagram

According to the previous chart, the procedure goes as

follows: First of all, the 4x4 predicted block is gathered from

the prediction stage, then reformed in the form of matrix, then

the transformation operation takes place. According to the

previously discussed method of operation, the full 4x4 block

is transformed using the simplified butterfly fast DCT

transform declared in equation 2.1 and fig 3 and fig 4.

According to the frame formation, the low frequency data is

formed in the first element of the 4x4 residual block, so each

DC element from each macro block is gathered according to

the frame type. If the frame was a luma frame, then there will

be 16 DC elements forming a 4x4 DC matrix, however, if the

frame was a chroma frame, so only 4 elements is needed to

form a 2x2 DC matrix. Those formed DC matrices is further

transformed using the Hadamard transform technique, each

one according to its frame type as declared in equations 2.4

and 2.5. All the matrix multiplication procedure is converted

into just addition, subtraction and element by element

multiplication by only the value 2. After the DC frame is

formed, it is quantized using the specified quantization

technique declared in equations 3.12 and 3.14 each of its type

and then forwarded separately to the entropy encoder step,

then the AC portion of the macro block is also quantized

according to equation 3.11 and forwarded separately to the

entropy encoder step.

4.1.2 Simulink implementation
The simulink implementation makes the idea of operation

clearer, as it is formed of functional blocks, each one has its

own purpose. It is implemented as follows:

Fig 11: Full Transform – Quantization Encoder Simulink

Implementation

This block formation was done according to the matlab

coding implementation technique. The “forward butterfly

DCT” block contains the 4x4 fast butterfly DCT

implementation for the input block, “forward quantizer” block

contains the quantization procedure for the AC portion, the

“frame type selector” block defines whether the block is luma

or chroma, and accordingly passes the signal to the proper

stage (2x2 DC transform stage or 4x4 DC transform stage).

The “2x2 DC formation” and “4x4 DC block formation”

blocks gathers the DC data from each received block in order

to form the 2x2 chroma DC block or the 4x4 luma DC block.

After that, the data is passed to the proper Hadamard

transformation block, then to the proper quantization block

then transmitted with the quantized AC 4x4 block to the

decoder side.

4.2 Decoder implementation

4.2.1 Matlab implementation
The decoder matlab implementation is a full implementation

for the decoder operation including the AC block rescaling

and inverse quantization and DC component rescaling and

inverse transformation and re-insertion into the 4x4 block,

then the final block inverse transformation process takes place

using the inverse fast DCT butterfly implementation method.

The matlab implementation could be summarized according

to the following flow chart:

Fig 12: Full Transform – Quantization Decoder Block

Diagram

(3.16)

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

50

According to the previous chart, the procedure goes as

follows: The received signal is actually of two types, AC and

DC, each signal has its rescaling and inverse transformation

technique. For the AC block, it is always 4x4 block, so it is

reverse quantized and re-scaled according to equation 3.6.

However, for the DC signal it has two types, 2x2 chroma

block and 4x4 luma block, each signal type has its own

technique, so, the type of signal is detected at first, then

rescaled according to equations 3.14 or 3.16 and inverse

transformed according to equations 2.4 or 2.5 according to its

type. At last, the DC value is re-inserted again in the block,

and then the whole block is further inverse transformed using

the fast 4x4 butterfly DCT transform technique in equation

2.2.

4.2.2 Simulink implementation
The simulink implementation makes the idea of operation

clearer, as it is formed of functional blocks, each one has its

own purpose. It is implemented as follows:

Fig 13: Full Transform – Quantization Decoder Simulink

Implementation

This block formation was done according to the matlab

coding implementation technique. As the quantization and the

transformation in the encoder is reversed, the operation

sequence is also reversed. The “rescaling” block contains the

AC portion rescaling process, the “4x4 DC rescaling” and

“2x2 DC rescaling” blocks contains the luma and chroma DC

rescaling processes respectively, the “4x4 inverse hadamard

transform” and “2x2 inverse hadamard transform” blocks are

the inverse DC transformation techniques for luma and

chroma DC data respectively, the “AC & 4x4 DC block

reformation” and “AC & 2x2 DC block reformation” blocks

contains the reinsertion for the DC data into the block prior to

the last transformation step in the “inverse DCT” block.

5. VERIFICATION

5.1.1 AC Results verification
In order to verify the correctness of the proposed model “The

H.264 advanced video compression standard” provides a full

calculated example for the operation. Suppose the input at the

encoder is the 4x4 matrix

58 64 51 58

52 64 56 66

62 63 61 64

59 51 63 69

X

 
 
 
 
 
 

and suppose QP = 6.

Then the output of the core transform W = CXCT after

calculation is

961 41 15 48

34 72 30 104

15 3 15 24

13 81 5 8

W

  
 
  
 
 
 

 

And the output of the forward quantizer is

192 5 3 6

4 5 3 8

3 0 3 3

1 6 0 0

Z

  
 
  

 
 
 
 

Making loop back such that the output of the encoder is input

to the decoder, the final recovered data will be

58 63 51 59

53 64 57 66
'

62 63 60 64

59 52 63 68

X

 
 
 
 
 
 

Fig 14: Full AC transform – quantization encoder -

decoder implementation verification

Figure 14 shows the input and different stages output results

in the built simulink model of the codec. By comparing these

results with the manual computation above, a full agreement

is found which proves the correctness of the developed

simulink model. Since the codec is lossy because of the

quantization errors there will be errors between the input and

output of the codec.

5.1.2 4x4 DC Results verification
The luma DC model has no verification in the reference,

however its tests were done manually for the input DC block

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

DCX

 
 
 
 
 
 

In this case, the error is minimized in order to maintain most

of the low frequency information data, in this example the

error is a zero matrix.

International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.7, December2015

51

Fig 15: Full luma DC transform – quantization encoder -

decoder implementation verification

5.1.3 2x2 DC Results verification
The chroma DC model also has no verification in the

reference, however its tests were done manually for the input

DC block

1 2

3 4
DCX

 
  
 

In this example, the error does not exceed “1” value.

Fig 16: Full chroma DC transform – quantization encoder

- decoder implementation verification

6. CONCLUSION
This paper defines in details the theoretical basis and the

software implementation of the decoder for the lossy part in

H264 source coding. It also defines a way to implement the

encoder portion as the ITU-T standard reference only defines

the decoder portion. The software implementation includes

the matlab programming code and the simulink functional

blocks model for both encoder and decoder portions.

The future part of the previously discussed technique is

accurately estimating a proper quantization parameter (QP) in

order to achieve the best quantization efficiency and also best

PSNR. Also, there may be a functional hardware

implementation using FPGA modules.

7. REFERENCES
[1] “ITU-T H.264 Advanced Video Coding for Generic

Audio Visual Services”, Standard Reference Book

[2] “H.264 and MPEG-4 Video Compression”, by Ian E. G.

Richardson

[3] “Adaptive Initial Quantization Parameter Determination

for H.264/AVC Video Transcoding”, by Zhenyu Wu,

Hong Yang Yu, Bin Tang and Chang Wen Chen, Fellow

IEEE

[4] “Implementation and Analysis of Architecture for the

4x4 2-D Forward Hadamard Transform of H.264/AVC”,

by Daniel Palomino, Guilherme Correa, Robson

Dornelles, Felipe Sampaio, Diego Nobel, Luciano

Agostini

[5] “Optimization of 4x4 Integer DCT in H.264/AVC

Encoder”, by Charles S. Lubobya, Mqele M. Dlodlo,

Gerhard De. Jager and Keith L. Ferguson

[6] “Architecture for Area Efficient 2-D Transform in

H.264/AVC”, by Yu-Ting Kuo, Tay-Jyi Lin, Chih-Wei

Liu and Chein-Wei Jen

[7] “The H.264 Advanced Video Compression Standard”, by

Ian E. Richardson

[8] “Source Coding and Compression Transform Coding”,

by Dr. Eng. Khaled Shawky

[9] “Low Complexity Transform and Quantization in

H.264/AVC”, by Henrique S. Malvar, Fellow IEEE,

Antti Hallapuro, Marta Karcz Ewicz and Louis Kerofsky,

Member IEEE

[10] “The VC-1 and H.264 Video Compression Standards for

Broadband Video Services”, by Lee, Jae-Beom, Kalva,

Hari

[11] “Low complexity DCT engine for image and video

compression”, by Maher Jridi, Yousri Ouerhani, Ayman

Alfalou

[12] “Reference Design Software".

IJCATM : www.ijcaonline.org

