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ABSTRACT 

This paper provides an overview of the transform and 

quantization operations in H.264 lossy coding techniques. It 

declares the detailed simplification process for arithmetic 

operations included in the implementation for the 4x4 AC and 

the 2x2 & 4x4 DC luma and chroma blocks applying fast 

DCT Butterfly implementation method for the AC component 

and the effective Hadamard Transform implementation for the 

DC components, in addition to the quantization process 

procedure. However, this paper main aim is to provide a 

complete software design and implementation for the decoder 

process as defined in the ITU-T standard release 2011, 

besides, it defines a proper way for implementing the encoder 

process according to the defined decoder procedure defined in 

the ITU-T Standard.   
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1. INTRODUCTION 
Images and video coding techniques have been updated over 

the last years very widely due to the dramatically updates in 

the image quality, so the need for updating coding techniques 

became a must. It has been updated from MPEG-1, MPEG-2, 

H.261, and H.263 until the H.264 rose up to be the most 

usable technique for the high quality imagery data 

transmission. According to the image nature, as the image and 

video quality increases, the frame storage area increases. So, 

an urgent need for a new technique for image and video 

compression came up in order to reduce the storage 

consumption, also, the reduction in the transmission 

bandwidth needed to transmit the image or video data. 

H.264/AVC was developed by Joint Video Team (JVT), 

which was formed by the ISO/IEC Moving Picture Expert 

Group (MPEG) and the ITU-T Video Coding Expert Group 

(VCEG) [1][2]. Since this time, H.264 came up to be the most 

used technique in high quality imagery data. This is due to the 

great reduce in the imagery processing time as it depends on a 

4x4 blocks instead of 8x8 blocks in previous models. Also, it 

depends on the fast DCT implementation using the Butterfly 

method. Most of the papers done before declared either a way 

to reduce the PSNR without implementation, declaring the 

encoder idea without actual simulation for the process overall. 

Also, most of the previous papers aim is to declare the ITU-T 

release 2003 version. 

The 4x4 H.264 forward matrix transformation in the Encoding 

process is called the core integer transformation operation. 

This operation depends on the core transform equation 

“CXCT”, where X is the input frame residual matrix, C is the 

core transform matrix and CT is its transpose. [7]  
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This operation consumes 128 multiplications & 96 additions, 

comparing to those of the 8x8 H.263 implementation which 

has 1024 multiplications & 896 additions, so it dramatically 

reduces the computing and so the processing time. The 

processing time is further reduced using the fast 4x4 DCT 

Butterfly implementation technique which eliminates the use 

for multiplication and replaces it by only addition, subtraction 

and logical shifting operations only (This applies on the 

FPGA implementation which uses the binary coding 

technique). 

In the decoding process, the 4x4 H.264 inverse matrix 

transformation is called the core integer inverse 

transformation operation. This operation depends on the core 

inverse transform equation “CiYCi
T”, where Y is the received 

matrix, Ci is the core inverse transform matrix and Ci
T is its 

transpose.[7] 
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Each 4x4 input block contains the high frequency data called 

“AC” portion of the block, and the low frequency data called 

“DC” portion of the block. According to the human visual 

system (HVS), the human eye is more sensitive to the low 

frequency data that the high frequency data [10]. So, in order 

to conserve most of the information included in the block, DC 

portion must be drawn from the frame and coded separately. 

However, this DC data must have the least processing time 

and resource consumption to minimize the overall operation 

latency. The DC content is the first element in the input 4x4 

matrix (element (0, 0)). 

There are three types of image coding in the prediction and 

motion estimation stage (before this compression stage), 

4:4:4, 4:2:2, 4:2:0. All defines the size of the chroma macro 

block which defines the whole frame specifications. In this 

paper, the used technique is 4:2:0, in which the luma block is 

16x16 elements, while chroma block is 8x8 elements. So, DC 

data will form 4x4 matrix for the luma macro Block and 2x2 

matrix for the chroma macro Block.[2][7] 

As the DC block contains most of the information in the 

frame, so it is coded separately using the Hadamard transform 
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technique which applies the following equation “HXDCHT”, 

where H is the Hadamard Core Transform matrix[1][2] 
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where, H1 is the Hadamard transform matrix for the 2x2 

chroma macro block and H2 is the Hadamard transform matrix 

for the 4x4 luma macro block. The DCT and Hadamard 

transformation stage main purpose is to minimize the 

dependency for the compression process on the quantization 

step. The quantization process introduces the idea of possible 

signal loss for better compression efficiency. There are 

different quantization techniques for AC component other 

than the DC component. 

All of the previously discussed issues was implemented using 

matlab and simulink software. The main goal in implementing 

the software step is to test the design operation and the idea on 

how the processing time is minimized. The core idea is to 

reduce the transform matrix intense multiplication steps into 

just element by element simple multiplication, and even 

converting multiplication into addition stages in order to save 

resources. The software implementation using matlab and 

simulink codes will be declared in details in the following 

sections. 

2. TRANSFORM CODING 
The main purpose for the transform coding stage is to reduce 

the overhead for the quantization step. Transform coding 

portion is the most resources and time consuming portion of 

the whole lossy encoding operation, this is why several 

process reduction techniques have been applied to reduce the 

calculations processing time with maintaining the 

transformation accuracy. The whole 4x4 input matrix is 

transformed using the DCT technique, then the DC portion of 

the block is separated. AC component is quantized in order to 

improve the compression technique efficiency, however, the 

DC component is further transformed and quantized 

separately in order to maintain its information as it contains 

most of the frame information. The following blocks 

illustrates this operation: 

 

Fig 1: Lossy encoder block diagram 

 

Fig 2: Lossy decoder block diagram 

The ITU-T standard reference only illustrates the decoding 

technique, this paper clarifies a method to encode input signal. 

2.1 4x4 DCT block forward transform  
This procedure takes place in the encoder side. The transform 

operation idea is to eliminate the dependency of the 

compression operation on the quantization only by 

decomposing the signal using the discrete cosine transform 

(DCT) technique. The transformation process is performed 

according to the equation CXCT, where C is the core forward 

transformation matrix and X is the input signal matrix. So the 

equation implementation will be as follows: [2] [7] 
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This is a 3 4x4 matrix multiplication of about 128 

multiplications & 96 additions in the whole process which is a 

great time and resources consumption [11]. However, the 

DCT core operation could be simplified using the butterfly 

method. The butterfly method converts the 3 stages 4x4 

matrices multiplication operations into just addition, 

subtraction and shifting (in FPGA implementation, in integer 

coding it is multiplication by 2), it also converts the 2-D 

matrix multiplication into two stages 1-D matrix operation. Its 

idea of operation is as follows: [5] [6] 

 

Fig 3: Forward 1-D Butterfly implementation 

where, X0 to X3 are the 4x4 matrix 4-row elements and Y0 to 

Y3 are the corresponding transformed 4-elements 

respectively. B0 to B3 and Y0 to Y3 are defined as: 

B0=X0+X3                    Y0=B0+B1 

B1=X1+X2                    Y2=B0-B1 

B2=X1-X2                     Y1=B2+ (B3<<1) 

B3=X0-X3                     Y3=B3- (B2<<1) 

Note that the “<<” sign refers to the shifting process which 

compensate the multiplication process (e.g. 3 is represented in 

binary as 0011, 3*2=6 which is represented in binary as 0110, 

so by shifting  0011 to the left by one bit the number is 

multiplied by 2). This operation is done row by row, so the 

operation is no more a complex 2-D matrix multiplication any 

more, it is now a simple 1-D matrix operation. The overall 

row by row process is illustrated as follows: 

 

 

 

 

(2.1) 
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Fig 4: Fast DCT implementation block diagram 

So, the input matrix is transposed, then the row by row 

transformation takes place. At last the resulting matrix is 

further transposed, then again transformed. 

2.2 4x4 DCT block inverse transform  
This procedure takes place in the decoder side, which is the 

portion that is declared in the ITU-T standard and from which 

the encoding technique was estimated. Accordingly, the 

transform operation also relies on the core inverse transform 

equation “CiYCi
T “. So the equation implementation will be as 

follows: [9] 
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Again, the Butterfly method could be applied on the decoder 

side as an inverse butterfly method as follows: 

 

 

Fig 5: Inverse 1-D Butterfly implementation 

where, Y’0 to Y’3 are the received 4-elements row of the 4x4 

matrix after forward quantization process, and X’0 to X’3 are 

the corresponding recovered elements. B’0 to B’3 and X’0 to 

X’3 are defined as follows: 

B’0=Y’0+Y’2                          X’0=B’0+B’3 

B’1=Y’0-Y’2                           X’1=B’1+B’2 

B’2= (Y’1>>1) –Y’3                X’2=B’1-B’2 

B’3=Y’1+ (Y’3>>1)                X’3=B’0-B’3 

Note that the “>>” sign refers to the shifting process which 

compensate the division process (e.g. 6 is represented in 

binary as 0110, 6/2=3 which is represented in binary as 0011, 

so by shifting  0110 to the right by one bit the number is 

divided by 2). This will also be applied to the same operation 

as Fig.4. 

2.3 2x2 and 4x4 DC block Hadamard 

transform 
DC component is the low frequency component of the block, 

the human visual system (HVS) is more sensitive to the low 

frequency frame component than the high frequency 

component as mentioned before. So, the DC component is 

further transformed using the Hadamard transform technique, 

also it is separately quantized and transmitted. The Hadamard 

transform forward and inverse operations are identical, this is 

because the core Hadamard transform matrix and its transpose 

are identical (H=Hi=HT). The Hadamard transformation 

operation follows the equation “HXDCH”. 

The equation implementation for 4x4 DC component and 2x2 

DC component respectively is: [1] 
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The butterfly method can also be applied to Hadamard 

transform equations. However this time there is no values in 

the Hadamard transform matrix other than 1 or -1, so the 

butterfly method contains only additions and subtractions 

only. 

The 2x2 DC Hadamard transform method could be applied 

(without the division by 2 step) using the following technique: 

 

Fig 6: 2x2 Fast Hadamard Transform Butterfly Method 

The 4x4 DC Hadamard transform method could be applied 

(without division by 4 step) using the following technique: 

 

Fig 7: 4x4 Fast Hadamard Transform Butterfly Method 

As noticed, there is no operations other than addition and 

subtraction only. So the operation is widely simplified. 

3. QUANTIZATION 
The Integer AC & DC frame components are quantized in 

order to eliminate the least important data to achieve the 

highest compression efficiency. H.264 quantizer is defined to 

be a scalar quantizer which maps every input sample into a 

corresponding output one. The big challenges facing the 

forward and inverse quantizers are: 

a. Eliminating the division processes 

b. Avoiding floating point arithmetic operations 

(2.2) 

(2.4) 

(2.5) 
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c. Applying the post and rescaling matrices 

d. Determining the proper quantization parameter (QP) 

The AC component is quantized in a special technique, while 

the DC component is quantized by another technique. This is 

due to the difference in the sensitivity between AC and DC 

components. The ITU-T also provides only inverse 

quantization technique for the decoder portion of the 

operation. The quantization operation is very dependent on 

the QP value which varies from 0 to 51. Its value is 

determined variably according to the type and the amount of 

information contained in the frame. It also varies between the 

luma and chroma frame components, it even varies between 

the AC and DC components within the same block. 

3.1 4x4 AC inverse quantization 
 The main inverse quantization equation is: [2] [7] 

Y’=Z’.Qstep 

where, Y’ is the inverse quantized data and Z’ is the received 

data. What should be done in this stage is to re-scale the 

received data in order to prepare it to the transformation stage 

to sustain the most proper recovered data in the received 

signal, also the equation should be simplified in order to 

minimize the processing consumption portions such as 

multiplication and division. So, the previous equation is 

simplified according to the following graph  

 

Fig 8: Inverse quantization simplification procedure 

where, Y’ is the received data and Z’ is the recovered data, 

IDCT is the full transformation operation without 

simplification, Ci is the core inverse transformation operation 

defined in equation 2.2, Si is the rescaling matrix, Qstep is the 

quantization step size and VF is defined according to fig 8 as 

VF=Qstep.Si.26 

also Si is defined as 

 

 

 

 

Qstep is very dependent on QP value. There is a different 

Qstep value for every QP value. Qstep value doubles every 

increase in the QP value by 6 which is illustrated in the 

following table 

Table 1. Qstep values vs. QP 

QP Qstep QP Qstep 

0 0.625 … … 

1 0.6875 18 5 

2 0.8125 … … 

3 0.875 24 10 

4 1 … … 

5 1.125 30 20 

6 1.25 … … 

7 1.375 36 40 

8 1.625 … … 

9 1.75 42 80 

10 2 … … 

11 2.25 48 160 

12 2.5 … … 

… … 51 224 

Respectively, VF is derived according to fig 8 from the 

following equation 

VF~ Si.Qstep.26 

and is defined in the ITU-T standard referring to QP values as 

Table 2. VF values according to the QP Values 

QP 

Positions 

(0,0), (0,2), (2,0), 

(2,2) 

Positions 

(1,1),(1,3),(3,1), 

(3,3) 

Other 

Positions 

0 10 16 13 

1 11 18 14 

2 13 20 16 

3 14 23 18 

4 16 25 20 

5 18 29 23 

In order to provide a complete simplified form for the inverse 

quantization equation, the ITU-T standard provides the 

following procedure [1] 

dij=(cij.LevelScale(QP%6,i,j)) <<(QP/6 - 4), for QP>=24 

dij=(cij.LevelScale(QP%6,i,j)+(1<<(3-QP/6)))>>(4 – QP/6) 

                                                                      ,for QP<24 

where, dij is the inverse quantized data which is defined 

previously as Y’, cij is the received data which is defined 

previously as Z’, the “<<” sign refers to the shifting process 

which compensate the multiplication process (e.g. 3 is 

represented in binary as 0011, 3*2=6 which is represented in 

binary as 0110, so by shifting 0011 to the left by one bit the 

number is multiplied by 2) and the “>>” sign refers to the 

shifting process which compensate the division process (e.g. 6 

is represented in binary as 0110, 6/2=3 which is represented in 

binary as 0011, so by shifting  0110 to the right by one bit the 

number is divided by 2). The LevelScale is defined as 

LevelScale(QP%6,i,j)=weightScale(i.j).v(QP%6,n) 

where the weightScale is=24=16 and v(QP%6,n) is the VF 

factor defined in table 2. The weightScale value importance is 

mainly in high profile imagery data, however, in this paper the 

main goal is to implement the ordinary imagery types, as the 

weightScale step is compensated in the inverse quantization 

equation by the shifting by 4 step (<<4 and >>4), so both 

could be eliminated from the equations. So the final inverse 

quantization equation becomes [7] 

Y’=Z’.VF/2floor(QP/6) 

The Y’ output is inverse transformed by equation 2.2 and 

rounded by the following equation according to the standard 

Rij=(hij+25)>>6 

where, rij is the recovered data and hij is the transformed data, 

this operation is equivalent to dividing by 26 and flooring the 

resulted data. 
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3.2 4x4 AC forward quantization  
The core quantization operation follows the following 

equation [2] [7] 

Z=round(Y/Qstep)  

where, Z is the quantizer output, Y is the transformed 4x4 AC 

integer block matrix and Qstep is the quantization step size 

which is very dependent on QP value as discussed before. In 

order to simplify the operation and eliminate the Qstep 

fraction calculations, the core equation is transformed into a 

different form which follows the following procedure: 

 

Fig 9: Quantization simplification procedure 

where, DCT is the full discrete cosine transform operation 

without simplification, Cf is the core transform operation 

declared in equation 2.1, Sf is the post scaling factor which is 

the result of the transformation simplification operation and 

has the value of 

 

 

 

 

 

 

where, 𝑎 =
1

2
 , 𝑏 =  

2

5
  . MF is defined according to table 3 as 

follows 

Table 3. MF values according to the QP Values 

QP 

Positions 

(0,0), (0,2), (2,0), 

(2,2) 

Positions 

(1,1),(1,3),(3,1), 

(3,3) 

Other 

Positions 

0 13107 5243 8066 

1 11916 4660 7490 

2 10082 4194 6554 

3 9362 3647 5825 

4 8192 3355 5243 

5 7282 2893 4559 

The data in the table was derived from the fact that 

MF~Sf.(215/Qstep) 

Referring to the VF and combining with equation 3.3, MF will 

be defined as 

MF~Sf.Si. (215/VF) 

which is the actual equation from where the MF value was 

derived from. Referring to the fact that Qstep is doubled for 

every increase in QP value by 6, so the final forward 

quantization equation becomes [7] 

Z=round((Cf.MF)>>(15+floor(QP/6))) 

3.3 4x4 Luma DC forward quantization  
According to the forward AC quantization model, all of the 

implemented procedure remains the same, but there will be a 

slight change in the equation. Besides, the DC component is 

always allocated in the (0, 0) place in the frame, so the values 

of the MF factor will be only MF (0, 0). All of the rest factors 

remains the same. So, the 4x4 DC forward quantization core 

equation becomes [7] 

ZDC=round ((YDC>>((QP/6)-6)).(MFDC(0,0)>>10)), for QP>=36 

ZDC=round (((YDC<<(6-(QP/6))) - 

         (1<<(5-(QP/6)))).(MFDC(0,0)>>10)), for QP<36 

All the previous variables is defined according to the 4x4 AC 

forward quantization model, and MFDC is defined according to 

the following table 

Table 4. MFDC values according to the QP Values 

QP 

Positions 

(0,0), (0,2), (2,0), 

(2,2) 

Positions 

(1,1),(1,3),(3,1), 

(3,3) 

Other 

Positions 

0 100 63 77 

1 91 56 71 

2 77 50 63 

3 71 44 56 

4 63 40 50 

5 56 35 44 

The MFDC value was derived from the following equation 

MFDC=round ((1/VF).1000) 

and the multiplication by 1000 is to eliminate the fractional 

part of the operation and eliminate the need for the division 

operation, also this part is compensated by the shifting 

operation (>>10) which is equivalent to dividing by 1024. 

3.4 4x4 Luma DC inverse quantization  
According to the inverse AC quantization model, again all the 

implemented procedures are the same, but also with the 

changes in the equation. Also the VF factor will be only for 

VF (0, 0). Everything else remains the same. So, the 4x4 DC 

inverse quantization core equation becomes: [1] 

YDC=round (ZDC.VF(0,0))<<((QP/6)-6), for QP>=36 

YDC=round (((ZDC.VF(0,0))+(1<<(5-QP/6))))>>(6-(QP/6))  

                                                            , for QP<36 

All the previous variables is defined according to the 4x4 AC 

Inverse quantization model. 

3.5 2x2 Chroma DC forward quantization  
The forward quantization model for the 2x2 chroma DC 

quantizer model is exactly the same as the 4x4 luma DC 

model which is 

ZDC=round ((YDC.MFDC(0,0))>>(5+(QP/6))) 

There is no difference at all in the values. 
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3.6 2x2 Chroma DC inverse quantization  
The inverse quantization model for the 2x2 chroma DC have a 

slight differences than the 4x4 luma DC model. The core 2x2 

chroma DC inverse quantization model equation becomes [1] 

YDC=round (((ZDC.VF(0,0))<<(QP/6))>>5) 

All the variables and values are defined as before. 

4. IMPLEMENTATION 
The whole encoder and decoder operation was implemented 

using the matlab software as a code and simulink software as 

a functional blocks. The following sections will discuss the 

full operation in details. 

4.1 Encoder implementation  

4.1.1 Matlab implementation 
The encoder matlab implementation is a full implementation 

for the encoder operation including the forward block 

transform, DC component extraction, AC component 

quantization and DC component transformation and 

quantization prior to forwarding it to the next stage (entropy 

lossless encoding). The matlab implementation could be 

summarized according to the following flow chart: 

 

Fig 10: Full Transform – Quantization Encoder Block 

Diagram 

According to the previous chart, the procedure goes as 

follows: First of all, the 4x4 predicted block is gathered from 

the prediction stage, then reformed in the form of matrix, then 

the transformation operation takes place. According to the 

previously discussed method of operation, the full 4x4 block 

is transformed using the simplified butterfly fast DCT 

transform declared in equation 2.1 and fig 3 and fig 4. 

According to the frame formation, the low frequency data is 

formed in the first element of the 4x4 residual block, so each 

DC element from each macro block is gathered according to 

the frame type. If the frame was a luma frame, then there will 

be 16 DC elements forming a 4x4 DC matrix, however, if the 

frame was a chroma frame, so only 4 elements is needed to 

form a 2x2 DC matrix. Those formed DC matrices is further 

transformed using the Hadamard transform technique, each 

one according to its frame type as declared in equations 2.4 

and 2.5. All the matrix multiplication procedure is converted 

into just addition, subtraction and element by element 

multiplication by only the value 2. After the DC frame is 

formed, it is quantized using the specified quantization 

technique declared in equations 3.12 and 3.14 each of its type 

and then forwarded separately to the entropy encoder step, 

then the AC portion of the macro block is also quantized 

according to equation 3.11 and forwarded separately to the 

entropy encoder step. 

4.1.2 Simulink implementation 
The simulink implementation makes the idea of operation 

clearer, as it is formed of functional blocks, each one has its 

own purpose. It is implemented as follows: 

 

Fig 11: Full Transform – Quantization Encoder Simulink 

Implementation 

This block formation was done according to the matlab 

coding implementation technique. The “forward butterfly 

DCT” block contains the 4x4 fast butterfly DCT 

implementation for the input block, “forward quantizer” block 

contains the quantization procedure for the AC portion, the 

“frame type selector” block defines whether the block is luma 

or chroma, and accordingly passes the signal to the proper 

stage (2x2 DC transform stage or 4x4 DC transform stage). 

The “2x2 DC formation” and “4x4 DC block formation” 

blocks gathers the DC data from each received block in order 

to form the 2x2 chroma DC block or the 4x4 luma DC block. 

After that, the data is passed to the proper Hadamard 

transformation block, then to the proper quantization block 

then transmitted with the quantized AC 4x4 block to the 

decoder side.  

4.2 Decoder implementation  

4.2.1 Matlab implementation 
The decoder matlab implementation is a full implementation 

for the decoder operation including the AC block rescaling 

and inverse quantization and DC component rescaling and 

inverse transformation and re-insertion into the 4x4 block, 

then the final block inverse transformation process takes place 

using the inverse fast DCT butterfly implementation method. 

The matlab implementation could be summarized according 

to the following flow chart: 

 

Fig 12: Full Transform – Quantization Decoder Block 

Diagram 

(3.16) 
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According to the previous chart, the procedure goes as 

follows: The received signal is actually of two types, AC and 

DC, each signal has its rescaling and inverse transformation 

technique. For the AC block, it is always 4x4 block, so it is 

reverse quantized and re-scaled according to equation 3.6. 

However, for the DC signal it has two types, 2x2 chroma 

block and 4x4 luma block, each signal type has its own 

technique, so, the type of signal is detected at first, then 

rescaled according to equations 3.14 or 3.16 and inverse 

transformed according to equations 2.4 or 2.5 according to its 

type. At last, the DC value is re-inserted again in the block, 

and then the whole block is further inverse transformed using 

the fast 4x4 butterfly DCT transform technique in equation 

2.2. 

4.2.2 Simulink implementation 
The simulink implementation makes the idea of operation 

clearer, as it is formed of functional blocks, each one has its 

own purpose. It is implemented as follows: 

Fig 13: Full Transform – Quantization Decoder Simulink 

Implementation 

This block formation was done according to the matlab 

coding implementation technique. As the quantization and the 

transformation in the encoder is reversed, the operation 

sequence is also reversed. The “rescaling” block contains the 

AC portion rescaling process, the “4x4 DC rescaling” and 

“2x2 DC rescaling” blocks contains the luma and chroma DC 

rescaling processes respectively, the “4x4 inverse hadamard 

transform” and “2x2 inverse hadamard transform” blocks are 

the inverse DC transformation techniques for luma and 

chroma DC data respectively, the “AC & 4x4 DC block 

reformation” and “AC & 2x2 DC block reformation” blocks 

contains the reinsertion for the DC data into the block prior to 

the last transformation step in the “inverse DCT” block. 

5. VERIFICATION  

5.1.1 AC Results verification 
In order to verify the correctness of the proposed model “The 

H.264 advanced video compression standard” provides a full 

calculated example for the operation. Suppose the input at the 

encoder is the 4x4 matrix 

58 64 51 58

52 64 56 66

62 63 61 64

59 51 63 69

X

 
 
 
 
 
 

 

and suppose QP = 6. 

Then the output of the core transform W = CXCT after 

calculation is 

961 41 15 48

34 72 30 104

15 3 15 24

13 81 5 8

W

  
 
  
 
 
 

 

 

And the output of the forward quantizer is 

192 5 3 6

4 5 3 8

3 0 3 3

1 6 0 0

Z

  
 
  

 
 
 
 

 

Making loop back such that the output of the encoder is input 

to the decoder, the final recovered data will be 

58 63 51 59

53 64 57 66
'

62 63 60 64

59 52 63 68

X

 
 
 
 
 
 

 

 

Fig 14: Full AC transform – quantization encoder - 

decoder implementation verification 

Figure 14 shows the input and different stages output results 

in the built simulink model of the codec. By comparing these 

results with the manual computation above, a full agreement 

is found which proves the correctness of the developed 

simulink model. Since the codec is lossy because of the 

quantization errors there will be errors between the input and 

output of the codec. 

5.1.2 4x4 DC Results verification 
The luma DC model has no verification in the reference, 

however its tests were done manually for the input DC block 

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

DCX

 
 
 
 
 
 

 

In this case, the error is minimized in order to maintain most 

of the low frequency information data, in this example the 

error is a zero matrix. 
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Fig 15: Full luma DC transform – quantization encoder - 

decoder implementation verification 

5.1.3 2x2 DC Results verification 
The chroma DC model also has no verification in the 

reference, however its tests were done manually for the input 

DC block 

1 2

3 4
DCX

 
  
 

 

In this example, the error does not exceed “1” value. 

 

Fig 16: Full chroma DC transform – quantization encoder 

- decoder implementation verification 

6. CONCLUSION 
This paper defines in details the theoretical basis and the 

software implementation of the decoder for the lossy part in 

H264 source coding. It also defines a way to implement the 

encoder portion as the ITU-T standard reference only defines 

the decoder portion. The software implementation includes 

the matlab programming code and the simulink functional 

blocks model for both encoder and decoder portions. 

The future part of the previously discussed technique is 

accurately estimating a proper quantization parameter (QP) in 

order to achieve the best quantization efficiency and also best 

PSNR. Also, there may be a functional hardware 

implementation using FPGA modules.  
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