
 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

41

Program Complexity Finder: A Tool for Finding Program

Complexity in Terms of Cognitive Weight based on

Complexity Measurement Algorithm

Samrat Kumar Dey
Lecturer, Dept. of CSE

Dhaka International University
Dhaka, Bangladesh

Tamim Al Mahmud
Lecturer, Dept. of CSE

Dhaka International University
Dhaka, Bangladesh

ABSTRACT
Complexity Measurement of any piece of programming

problems is a key issue for Distributing Equivalent Problems

among examinees. Basic Control Structure or BCS Plays an

Important role to design a program and hence measuring

complexity value of any piece of programming problems.

Using of Cognitive weight concept of any BCS are purely

based on the thinking Capacity of Human Brain. In this

Research Basic control structure has been established in such

a way to reduce the limitation of existing Measures.

According to these cognitive data, a new software tool based

on java SE language and MySQL Database has been

established by using own developed algorithm. This software

is structured and developed based on the outcome of research

data which is capable of determining the complexity value of

several programming languages. It will facilitate the

instructors distributing the programming problems among the

students by maintaining equivalent level of difficulty. Thus,

the automatic complexity measurement application will

ensure the students to obtain programming problems with

equal difficulty level for evaluation.

General Terms

Software Complexity, Complexity Analysis, Software

Testing, Algorithm Analysis, Human Computer Interaction

Keywords

complexity measurement; basic control structure; cognitive

weight; equal distribution; software complexity;

1. INTRODUCTION
In the last several years, there has been a great deal of interest

in defining appropriate ways to measure the complexity of

software [23]. There are different facets of software

complexity, some of which have been computed using widely

accepted metrics like cyclomatic complexity, data/information

flow metrics, but very less attempts have been made to

measure the cognitive aspect of the complexity [5]. The

human mind's efforts needed for the comprehension of the

source code reflect a different dimension of complexity,

which is being measured in this paper [5]. Another issue

encountered in software complexity analysis is the

consideration of software as a human creative artefact and the

development of a suitable measure that recognizes this

fundamental characteristic. The existing measures for

software complexity can be classified into two categories: the

macro and the micro measures of software complexity [18]. A

significant issue encountered in computer science and

engineering in the field of programming problem distribution

is to distribute the problem equivalently among the learners.

In this paper, propose a new model for distributing

programming problems equivalently to the learners according

to the complexity values of programming problems. Motive is

to build a question bank with programming problems where

designed system will access the solution codes for finding out

the weight of respective question bank by applying the

established method. There are methods to find out the running

time of algorithms, which can be used for the equal

distribution of programs by comparing two different

algorithms. But, it is very difficult to measure especially when

there is no defined algorithm or is too much large and

complex. In Materials and Methods section, conducted a

survey with various programming problems; various

Cognitive Weights for various Basic Control Structures have

been defined. Implementation section provided with designed

algorithm and developed software which will help us to find

out the complexity of programming solution code and finally

in Result and Discussion section, an approach for the equal

distribution of the programming problems to the students

during examination has been provided.

2. METHODS AND MATERIALS
Solving programming problem is the heart of CSE courses. In

the section of programing courses evaluation programming

problems are need to be solved within a limited time are to be

distributed among students. Variant students will be tested

with miscellaneous programming problems. According to this

motive, programming problems may not be equally

distributed. As a result, some can find their problems easy and

others can get problems which are comparatively complex. In

this context, examines will not get the proper pronouncement.

But it should not happen. Aim of study is to distribute the

problem equally. For this reason, to minimize these problems

there should have a question bank which will contain various

programming problems and solution with different

complexities. There are various ways to compute run time

complexity of an algorithm. Different well-known algorithms

have also defined complexity value based on their run time.

Programming problems can be distributed consequently to

these values. In a specified boundary similar and

approximately similar problems will be put. Same methods

will be revolved for all problems on the questions bank.

Problems within a specific boundary will be deliberated as

analogous kinds of problems. In this exploration, we have

built a new complexity model for measure complexity values

of programming problems based on their solution codes. In

this case, after selecting a problem respective solution code

should be developed.

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

42

3. COGNITIVE WEIGHT

3.1 Cognitive Weight of a Software
The objective of this section is to discuss the basis of research

for measuring program complexity. Cognitive Informatics to

measure the complexity of a program, which is called

Cognitive complexity. Cognitive complexity, the new

measure for software complexity, is a measure of the

cognitive and psychological complexity of software as a

human intelligence artifact. For comprehending a given

program, naturally need to focus on the architecture and basic

control structures (BCSs) of the software. Here, we have

designed a model to find out the cognitive weights of the

BCSs. BCSs are a set of essential flow control mechanisms

that are used for building logical software architectures [22]–

[2]. Three BCSs are commonly identified: the sequential,

branch, and iteration structures [8]. Although it can be proven

that an iteration may be represented by the combination of

sequential and Branch structures, it is convenient to keep

iteration as an independent BCS. In addition, two advanced

BCSs in system model-ling, known as recursion and parallel,

have been described by Hoare et al. [22]. Wang [22]–[2], [22]

extended the above set of BCSs to cover Function call and

interrupt. There are two other important control structures that

can be found in various modern programming languages: 1.

Exceptions, 2. internal exits from loops (for example

expressed by the break-statement in C or Java). Note that

some languages like Pascal do not allow such exits. However,

there are good reasons for using this control structure under

some circumstances [17]. We have used 13 Basic Control

Structures: SEQUENTIAL, IF-THEN-ELSE, SWITCH,

BREAK, CONTINUE, RETURN, FOR, WHILE, DO-

WHILE, USER DEFINED FUNCTION (UDF),

RECURSION, EXCEPTION HANDLING, and REPEAT-

UNTIL. There are many researches that are based on

cognitive weight to find out the complexity of a program.

Some of them used extra two control structures such as

PARALLEL EXECUTION and INTERRUPT shown in Table

1. Table 1 shows the cognitive weights proposed in [18] and

[20] and the “inherent complexities” from [15]. [18] Says that

the cognitive weights in this paper have been defined “based

on empirical studies in cognitive informatics”. However, the

layout of the experiments (if there were any) has never been

published. From a scientific point of view, this means nothing

else than that these empirical studies have to be regarded as

being non-existent. [15] Stresses that the inherent complexity

weights used in their paper have been defined “as a starting

point” as a subjective measurement. No experiments have

been carried out.

Table 1. Cognitive Weights [21]

Category Control

Structure

Cognitive

Weight

in [Shao

et al.

2003]

Cognitive

Weight

in [Wang

2006]

Inherent

Complexity

in

[McQuaid

1997]

Sequence Sequence 1 1 1

Branch if-then-

[else]

2 3 3

 Case 3 4 3

Iteration for-do 3 7 2

 repeat-

until

3 7

 while-do 3 8 3

Embedded

Component

Call of a

user-

defined

function

2 7

 Recursion 3 11

Concurrency Parallel

Execution

4 15

 Interrupt 4 22

Definition 1: The cognitive weight of software is the

measurement of difficulty or comparative time and effort

required for understanding a given piece of software modelled

by a number of BCSs. [18]

Definition 2: Total cognitive weight of a software component,

Wc, is defined as the sum of the cognitive weights of its j

linear blocks composed of individual BCSs. Since each block

may consist of k layers of nesting BCSs, and each layer of i

linear BCSs, the total cognitive weight, Wc, can be calculated

by

If there is no embedded BCS in any of the j block i.e. k=1

then it can be simplified as

 [18]

3.2 Data Collection and Observation
For finding out the cognitive weight, we have selected some

programs each of them represents one control structure. Every

program contains nearly same number of lines. We have not

used two control structures, PARALLEL and INTERRUPT

individually in this observation. Because, a program that

describes this control structure contains other control

structures used in the observation. So by using the weights of

other control structures we can find the complexity of these

two types of control structures. During the survey, we gave 20

programs containing individual BCSs to different class of

students at undergraduate level. Research work carried on

twenty students among which thirteen students were from

level 3 and 4 and seven were from level 1 and 2. After reading

the problems, every student gave the result of the selected

programs. They gave the result according to their thinking

capacity of brain for individual BCS. All 20 students consider

the initial fact of sequential statement as a sequential

statement contain weight 1. Based on the weight of sequential

statement selected 20 students gave the other BCS respective

weight. These weight will help us to find out the average

weight of individual BCS and later we will use this to find the

complexity of any program. Maximum number of problems is

taken from [C for contest by Tamnun E Mursalin]. Some

programs are also developed by us and some are taken from

the Internet. We have chosen some common programs like

operator precedence, Fibonacci number generation, GPA

Calculation, vowel test, factorial generation, reverse number

print, and so on because the above listed programs are quite

capable of defining BCSs which will use in this research.

Reason for choosing such common program for making

problems relatively in a similar level (simple or complex).

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

43

Following is a sample of a sequential statement program

which we have used in survey.

#include<stdio.h>

int main (void){

int first,second,result;

printf(“Enters two numbers: ”);

scanf(“%d %d”,&first,&second);

result= first+second;

printf (“The two numbers are:%d %d\n ”,first, second);

printf (“The Result is: %d”, result);}

3.2.1 Survey Sample Questions
BCS 1: Sequential

#include<stdio.h>

int main (void)

{int first,second,result;

printf(“Enters two numbers: ”);

scanf(“%d %d”,&first,&second);

result=first+second;

printf(“The two numbers are: %d %d\n ”,first,second);

printf(“The Result is: %d”,result);}

BCS 2: Jump

Break Statement

#include< stdio.h>

Main()

{int x=1;

while(x<=10)

{printf(“x=%d\n”,x);

If(x==5)

break;

x++;}}

Continue Statement

#include<stdio.h>

main(){

int x;

for(x=0;x<=100;x++)

{if(x%2) continue;

printf(“%d\n”,x)}}

Return statement

#include <stdio.h>

#include <stdlib.h>

#include <stdio.h>

int max(int num1, int num2);

int main ()

{ int a = 100;

 int b = 200;

 int ret;

 ret = max(a, b);

 printf("Max value is : %d\n", ret);

 return 0;}

int max(int num1, int num2)

{ int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;}

BCS 3: Conditional

If statement

#include<stdio.h>

main(){

int number

printf(“Type in your number”)

scanf(“%d”,&number);

if(number<0)

number=number*(-1);

printf(“The absolute value is: %d\n”,number);

}

3.2.2 Survey Result Analysis

Fig 1: Graphical Representation of Derived Cognitive

Weight Based on Survey Result

3.3 Representation of Complexity Model
In this section, we will show how measured cognitive weights

can be used to find out total weight or complexity, Wbcs of a

given program. There are two different architectures for

calculating Wbcs [16]:

 Either all the BCS’s are in a linear layout. For this

case, sum of the weights of all n BCS’s are added

Wlinear=

 (1)

 Here, q = 1, 2,…,j

 j = Number of linear BCSs

For example, we can consider the following Java code.

Numbers in the right hand side indicates the weights of the

respective BCSs.

1. public class SST{

2. public static void main (String args []){

 a. Integer value_1 = 20; 1

 b. Integer value_2 =10; 1

 c. value_1 = value_1+ 5; 1 += 4

 d. System.out.println (value_1); 1

3. }

4. }

In the above program, line number 1 and 2 are common in

Java code. Within the brackets, there are four (a-d) linear

sequential statements. They are all independent i.e. they are

not embedded in other BCSs. From the previous section, we

have obtained the weights of various control structures, where

the weight for sequential statements is 1. Therefore, total

weight of this program will be,Wlinear=1+1+1+1=4

 Or some BCS’s are embedded in others. For this

case, cognitive weights of inner BCS’s are

multiplied with the weights of external BCS’s.

0

2

4

6

8

Average(L-1&

L-3)

Average(L-2 &

L-4)

Average(All

level)

CW

Sequential Break Continue Return If

Switch If-then-Else For While Do-While

UDF Recursion Exception

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

44

Wembedded=
 …………………………….. (2)

 Here, i = n,…….., 2, 1

 n = Total number of BCSs in which the current BCS is

embedded + 1

 1 = Own weight

 2 = Respective parent BCS of 1

 3 = Respective parent BCS of 2

 ………………………………..

 n = Respective parent BCS of (n-1)

Parent Control Structure means the structure which encloses

another control structure. So, by examining the total weight or

complexity of the above Java program, we can conclude the

calculation of total complexity by the following equation:

Wbcs=

 ………………. (3)

Here, l = 1, 2… p

 p = Total number of embedded BCSs

For making the complexity measure language independent,

first two lines of the above source code are not considered for

measuring complexity. They are common for the Java codes

such as main () or void main () used in C

4. SOFTWARE IMPLEMENTATION
In this section we will show how designed system scan the

programs and then give the weight of the programs. We have

built own method to measure the weight of programming

problems. Implementing this task in real life is not so much

easy. It’s a hard task and done it by own developed program.

Initial step is to measure the complexity of programs which

not contain any embedded structure. Embedded structure

means one BCS contain another BCS inside his structure. We

are quite successful to do this by the help of survey result

which represent the cognitive weight of the respective BCS.

Main goal is to access the database which is basically a

question bank containing programs and then pick the set of

problems from database for measuring the complexity of

respective problems. Following figure showing how designed

system works in real life from set of input problems to

complexity value of problems as output

Fig 2: Proposed model for distributing equivalent problems

4.1 Developed Algorithm
With the help of the research data of Cognitive Weight we

have built own Algorithm which is Capable of Determining

the Exact complexity value of any programming problems as

we found in Manual Calculation. The following snippet of

pseudo code of program will indicate how developed system

execute for finding programs complexity values.

Input: A set of programs

Output: Calculated complexity of programs

For each input character

IF (input stream==for) THEN

 Call class for ()

Complexity for-check ()

 Index return index

IF (input stream==if) THEN

 Call class IF ()

IF (input stream==SEQUENCE) THEN

 Complexity SEQUENCE complexity

 END FOR

 PRINT complexity

4.2 Developed Software for measuring

Complexity Value
For measuring complexity value of any programming

problems we have built a software system with the help of

Java language and MySQL Database. Basically this software

is capable of measuring complexity value by using developed

algorithm which is based on Cognitive Weight of Basic

Control Structure (BCS). To work with it first of all we need

to build a question bank which contain Programming

Problems in MySQL Database. Programming problems can be

put into several Question bank. So we can have a bank or a set

of problems for different source, books or collection from

where problems could be select for distribution. Need to

browse the problems from Database for complexity

measurement. The value of programs complexity is shown in

following Fig. 7. The Measured Value will also store in

database. From the stored value software systems categorized

the problems for further distribution among the learners

according to own formula of measurement. However, this

software is fully compatible with any operating systems

supporting Java. Hopefully, further improvement of this

software will surely produce a great dimension in near future.

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

45

Fig 3: Creation of Problem Bank

Fig 4: Inserting Problems into Question Bank

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

46

Fig 5: Measuring Complexity Value of Inserted Problems from Database

5. RESULT AND DISCUSSION
After the measurement of the complexity of some problems,

we have concluded the result. We have got the complexity

value of some problems. From the observation of the

complexity values, we can say that, 1. If the number of lines is

the same, but one program contains BCSs which are more

embedded, then this program will definitely result in high

complexity value. 2. If the number of linear BCSs is the same

or approximately same, but one program contains BCSs of

relatively higher weight, then this program will result in

comparatively higher complexity value. 3. For programs with

increasing number of lines, the complexity increases gradually

(without any exceptions).

5.1 Problems Distribution based on

Complexity Value
In order to distribute similar types of problems among the

learners in a competitive manner in the examination we have

categorized the values of programs complexity according

following formula where

λ=Lowest Weight from a set of problems

η= Highest Weight from a set of problems

δ=Difference between η & λ

ψ=Desire Number of Category for Facilitator

χ=Number of Category

φ= δ/ψ
χ
1= λ + φ

χ
2=

 χ
1+ φ

χ
3=

 χ
2+ φ

Category ή=Category (ή-1) + φ

5.2 Future Works
In this research we have developed a software based

complexity measurement systems. Complexity Measurement

is based on the research data of cognitive weight. But at this

moment we are capable of finding out the complexity of

program only for linear structure with the help of designed

systems. Moreover, still we are working on how easily we can

distribute the programming problems directly from software

systems. Hopefully we will also include the BCSs

PARALLEL and INTERRUPT into designed systems in later

work.

6. CONCLUSION
Main aim is to help facilitator to distribute programming

problems equally through a software system. Therefore, we

have proposed a model for distributing Equivalent problems

among learners. Also we built a software system to measure

complexity value of problems based on cognitive Weight of

Basic Control Structures (BCS). Important features of this

measure are that it is easy to calculate, less time consuming,

simple to understand. It also satisfies most of the properties of

 International Journal of Computer Applications (0975 – 8887)

Volume 131 – No.8, December2015

47

a good measurement of complexity. We believe future

improvement on this research will produce a great dimension

in the area of complexity measurement of programming

problems and also ensure the equal distribution of

programming problems.

7. REFERENCES
[1] Baker, A. L. and Zweben, S. H. 1980. “A comparison of

Measures of control flow Complexity,” IEEE

Transaction on Software Engineering, No.6, pp506-511.

[2] Barbier F. 2002. “Component-based software

measurement,” chap. 14 in Business Component-Based

Software Engineering, ed. F. Barbier, Boston: Kluwer

Academic Publishers, pp. 247–262.

[3] Bashir, G. M. M. Dey, S. K. Tariq, S. S. M. Islam, M. S.

Dec. 2014. “Complexity measurement: A new approach

to ensure equal distribution of programming problems

for evaluation,” in Proc. IEEE Int. Conf. ICECE, pp. 780

– 783.

[4] Basili, V. R. 1980. “Qualitative Software Complexity

Models: A Summary in Tutorial on Models and Methods

for Software Management and Engineering,” Los

Alamitos, Calif.: IEEE Computer Society Press.

[5] Chhabra, J. K. July 6 - 8, 2011. “Code Cognitive

Complexity: A New Measure,” Proceedings of the

World Congress on Engineering 2011, Vol II WCE 2011,

London, U.K.

[6] Halstead, M. H. 1997. “Elements of Software Science,”

New York: Elsevier North-Holland Inc.

[7] Henry, S. and Kafura, D. 1981. “Software structure

metrics based on information flow,” IEEE Transactions

on Software Engineering, 7(5): 510-518.

[8] Hoare, C. A. R. Hayes, I. He, J. J. Morgan, C.C. Roscoe,

A. W. Sanders, J. W. Sorensen, I. H. Spivey, J. M. and

Sufrin, B. A. Aug. 1987. “Laws of programming,”

Comm. ACM, vol. 30, no. 8, pp. 672–686.

[9] Kan, S. H. 2002. “Metrics and Models in Software

Quality Engineering” (2nd Edition). Boston: Addison-

Wesley Professional.

[10] Kearney, J. K. Sedlmeyer, R. L. Thompson, W. B. Gary,

M. A. and Adler, M. A. 1986. “Software Complexity

Measurement,” Vol. 28, New York: ACM Press, pp.

1044–1050.

[11] Kearney, Joseph K. Sedlmeyer, Robert L. Thompson,

William B. Gray, Michael A. And Adler, Michael A.

November 1986. ” SOFTWARE COMPLEXITY

MEASUREMENT”, Communications of the ACM,

Volume 29, Number 11.

[12] Klemola, T. and Rilling, J. 2004. “ A Cognitive

Complexity Metric based on Category Learning,” IEEE

International Conference on Cognitive Informatics.

[13] Kushwaha, D. S. and Misra, A. K. January 2006. “A

Modified Cognitive Information Complexity Measure of

Software,” ACM SIGSOFT Software Engineering

Notes, Vol. 31, No.1.

[14] McCabe, T. H. Dec. 1976. “A Complexity Measure,”

IEEE Transaction on Software Engineering, vol. 2, no. 4,

pp. 308-320.

[15] McQuaid, P. A. 1997. “The profile metric and software

quality,” International Conference on Software Quality,

October 6-8 1997, Montgomery, pages 245–252.

[16] Mishra, S. 2006. “ A Complexity Measure based on

Cognitive Weights.” International Journal of Theoretical

and Applied Computer Science, vol 1, no 1, pp. 1-10.

[17] Roberts, E. S. 1995. “Loop exits and structured

programming: reopening the debate,” In SIGCSE

’95:Proceedings of the twenty-sixth SIGCSE technical

symposium on Computer science education, pages 268–

272, New York, NY, USA, ACM Press.

[18] Shao, J. and Wang, Y. 2003. “ A new measure of

software complexity based on cognitive weights,” IEEE

Canadian Journal of Electrical and Computer

Engineering, 28(2):69–74.

[19] Uddin, Md. R. February 2013. “ Equivalence of

Problems in Problem Based e-Learning of Database,”

Unpublished.

[20] Wang, Y. 2006. “On the Informatics Laws and

Deductive Semantics of Software,” IEEE Trans on

Systems, Man, nad Cybernetics (C), 36(2), March, pp.

161-171.

[21] Wang, Y. Aug. 2002. “On cognitive informatics:

Keynote lecture,” In Proc. 1st IEEE Int. Conf. Cognitive

Informatics (ICCI’02), Calgary, Alta., pp. 34–42.

[22] Wang, Y. Oct. 2002. “The real-time process algebra

(RTPA),” Annals of Software Engineering, vol. 14, pp.

235–274.

[23] Weyuker, E. J. September 1988. “Evaluating software

complexity measure,” IEEE Transaction on Software

Engineering, Vol. 14(9): 1357-1365.

[24] Yanming, CHU. and Shiyi, XU. July 2007. “Exploration

of Complexity in Software Reliability” Tsinghua Science

And Technology, ISSN 1007-0214 48/49 pp266-269,

Volume 12, Number S1.

[25] Yin, M. L. Peterson, J. Arellano, R. R. 2004. “Software

Complexity factor in Software reliability assessment,In

Reliability and Maintainability,” 2004 Annual

Symposium-RAMS, pp190-194.

[26] Yindun, S. and Shiyi, X. July 2007. “A New Method for

Measurement and Reduction of Software Complexity,”

Tsinghua Science And Technology, 1007-021438/49,

Volume 12, Number S1, pp.212-216.

[27] Yindun, S. and Shiyi, X. July 2007. “Exploration of

Complexity in Software Reliability,” Tsinghua Science

And Technology, Volume 12, Number S1, pp.266-269.

IJCATM : www.ijcaonline.org

